Dissertations / Theses on the topic 'Semiconductor to metal transition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Semiconductor to metal transition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Luo, Ming. "Transition-metal ions in II-VI semiconductors ZnSe and ZnTe /." Morgantown, W. Va. : [West Virginia University Libraries], 2006. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4630.
Full textTitle from document title page. Document formatted into pages; contains xiv, 141 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 135-141).
Kashefi-Naini, A. "A study of some transition metal-silicon Schottky barrier diodes." Thesis, University of Kent, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375200.
Full textKajikawa, Hiroaki. "Slow dynamics in the semiconductor-metal transition region of liquid chalcogens." 京都大学 (Kyoto University), 2007. http://hdl.handle.net/2433/136830.
Full textPeleckis, Germanas. "Studies on diluted oxide magnetic semiconductors for spin electronic applications." Access electronically, 2006. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20070821.145447/index.html.
Full textProskuryakov, Yuri. "Interactions, localisation and the metal to insulator transition in two-dimensional semiconductor systems." Thesis, University of Exeter, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288367.
Full textHall, Ralph Stephen. "Photocapacitance studies of transition metal related deep levels in III-V and II-VI semiconducters." Thesis, University of St Andrews, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329476.
Full textStollenwerk, Tobias [Verfasser]. "Ferromagnetic Semiconductor-Metal Transition in Heterostructures of Electron Doped Europium Monoxide / Tobias Stollenwerk." Bonn : Universitäts- und Landesbibliothek Bonn, 2013. http://d-nb.info/1045276324/34.
Full textRamanathan, Sivakumar. "Optical and electrical properties of compound and transition metal doped compound semiconductor nanowires." VCU Scholars Compass, 2009. http://scholarscompass.vcu.edu/etd/1667.
Full textWright, Trevor. "A comparison of the metal-insulator transitions amporphous metal-semiconductor alloys." Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264356.
Full textHart, Lewis. "Novel transition metal dichalcogenide semiconductors and heterostructures." Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.760986.
Full textSilber, Georg Thomas. "Molecular semiconductors based on transition metal complexes." Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/18018.
Full textNeuenschwander, Jürg. "A high pressure low temperature study on rare earth compounds : semiconductor to metal transition /." [S.l.] : [s.n.], 1988. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=8668.
Full textCollins-McIntyre, Liam James. "Transition-metal doped Bi2Se3 and Bi2Te3 topological insulator thin films." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:480ea55a-5cac-4bab-a992-a3201f10f4c5.
Full textKim, Changsu. "Optical, laser spectroscopic, and electrical characterization of transition metal doped ZnSe and ZnS nano- and microcrystals." Birmingham, Ala. : University of Alabama at Birmingham, 2009. https://www.mhsl.uab.edu/dt/2009r/kim.pdf.
Full textTitle from PDF title page (viewed Feb. 3, 2010). Additional advisors: Renato Camata, Derrick Dean, Chris M. Lawson, Andrei Stanishevsky, Sergey Vyazovkin. Includes bibliographical references (p. 133-140).
Watson, Deborah Lee. "Quantum interference effects in the magnetoresistance of semiconductor structures near the metal to insulator transition." Thesis, University of Exeter, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286547.
Full textRacke, David. "Measuring and Controlling Energy Level Alignment at Hybrid Organic/Inorganic Semiconductor Interfaces." Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/556212.
Full textShen, Pin-Chun. "Large-area CVD growth of two-dimensional transition metal dichalcogenides and monolayer MoS₂ and WS₂ metal-oxide-semiconductor field-effect transistors." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112003.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 54-55).
Two-dimensional semiconducting materials such as MoS₂ and WS₂ have been attractive for use in ultra-scaled electronic and optoelectronic devices because of their atomically-thin thickness, direct band gap, and lack of dangling bonds. Methods for large-area growth of 2D semiconducting materials are needed to bring them to practical applications. This thesis aims to develop reliable methods for growing high-quality monolayer MoS₂ and WS₂ by CVD and explore their intrinsic electrical transport properties for electronic and optoelectronic device applications. The as-grown monolayer MoS₂ and WS₂ exhibit n-type semiconducting behavior with excellent optical properties. Various techniques are employed to characterize the CVD-grown materials, including photoluminescence, UV-visible absorption, Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. Moreover, the electronic transport characteristics of single-layer CVD-grown MoS₂ and WS₂ field-effect transistors with a back-gated configuration are demonstrated.
by Pin-Chun Shen.
S.M.
Muckel, Franziska [Verfasser], and Gerd [Akademischer Betreuer] Bacher. "Transition metal doped colloidal semiconductor nanocrystals : from functionality to device development / Franziska Muckel ; Betreuer: Gerd Bacher." Duisburg, 2018. http://d-nb.info/1155722787/34.
Full textMuckel, Franziska Elisabeth [Verfasser], and Gerd [Akademischer Betreuer] Bacher. "Transition metal doped colloidal semiconductor nanocrystals : from functionality to device development / Franziska Muckel ; Betreuer: Gerd Bacher." Duisburg, 2018. http://d-nb.info/1155722787/34.
Full textSimo, Aline. "Physical properties of vanadium dioxide nanoparticles: application as 1-d nanobelts room temperature for hydrogen gas sensing." Thesis, University of the Western Cape, 2013. http://hdl.handle.net/11394/4581.
Full textTransition metal oxides magneli phases present crystallographic shear structure which is of great interest in multiple applications because of their wide range of valence, which is exhibited by the transition metals. The latter affect chemical and physical properties of the oxides. Amongst them we have nanostructures VO2 system of V and O components which are studied including chemical and physical reactions based on non-equilibrium thermodynamics. Due to their structural classes of corundum, rocksalt, wurtzite, spinel, perovskite, rutile, and layer structure, these oxides are generally used as catalytic materials which are prepared by common methods under mild conditions presenting distortion or defects in the case of VO2. Existence of an intermediate phase is proved using an x-ray thermodiffraction experiment providing structural information as the nanoparticles are heated. Potential application as gas sensing device has been the first time obtained due to the high surface to volume ratio, and good crystallinity, purity of the material and presence of suitable nucleating defects sites due to its n-type semiconductor behavior. In addition, annealing effect on nanostructures VO2 nanobelts shows a preferential gas reductant of Ar comparing to the N2 gas. Also, the hysteresis loop shows that there is strong size dependence to annealing treatment on our samples. This is of great interest in the need of obtaining high stable and durable material for Mott insulator transistor and Gas sensor device at room temperature.
Fan, Junpeng. "Synthesis and advanced structural and magnetic characterization of mesoporous transition metal–doped sno2 powders and films." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/457982.
Full textThis Thesis dissertation covers the synthesis by means of nanocasting and evaporation–induced self–assembly (EISA) methods as well as the advanced characterization of Ni, Cu–doped mesoporous SnO2 powders and films. The origin of the magnetic properties in these materials is also discussed in detail. Firstly, ordered mesoporous SnO2 powders doped with different Ni amounts were synthesized by nanocasting from mesoporous KIT–6 silica. Successful replication of the silica template was verified by scanning electron microscopy. No extra phases attributed to Ni or NiO were detected in the corresponding X–ray diffractograms except for the sample with the highest doping amount (e.g., 9 at.% Ni), for which NiO as secondary phase was observed. The oxidation state and spatial distribution of Ni in the powders was investigated by X–ray photoelectron spectroscopy and electron energy loss spectroscopy, respectively. Ni–containing powders exhibit ferromagnetic response at low and room temperatures, due to uncompensated spins at the surface of NiO nanoparticles and the occurrence of oxygen vacancies. Secondly, continuous mesoporous Ni–doped SnO2 thin films were synthesized from variable [Ni(II)]/[Sn(IV)] molar ratios through a sol–gel based self–assembly process, using P–123 triblock copolymer as a structure directing agent. A deep structural characterization revealed a truly 3–D nanoporous structure with thickness in the range of 100–150 nm, and average pore size about 10 nm. Grazing incidence X–ray diffraction experiments indicated that Ni had successfully substituted Sn in the rutile–type lattice, although energy–dispersive X–ray analyses also revealed the occurrence of small NiO clusters in the films produced from high [Ni(II)]/[Sn(IV)] molar ratios. Interestingly, the magnetic properties of these mesoporous films significantly vary as a function of the doping percentage. The undoped SnO2 films exhibit a diamagnetic behaviour, whereas a clear paramagnetic signal with small ferromagnetic contribution dominates the magnetic response of the Ni–doped mesoporous films. Thirdly, the magnetic properties of ordered mesoporous Cu–doped SnO2 powders, prepared by hard–templating from KIT–6 silica, were also studied. While Fe contamination or the presence of oxygen vacancies might be a plausible explanation of the room temperature ferromagnetism, the low–temperature ferromagnetism was mainly and uniquely assigned to the nanoscale nature of the formed antiferromagnetic CuO nanoparticles (uncompensated spins and shape–mediated spin canting). The reduced blocking temperature, which resided between 30 and 5 K, and small vertical shifts in the hysteresis loops confirmed size effects in the CuO nanoparticles.
Wilkinson, Aidan. "Transport phenomena in two-phase systems." Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/25574.
Full textZhou, Shengqiang. "Transition metal implanted ZnO: a correlation between structure and magnetism." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1209998012687-36583.
Full textGorini, Lorenzo. "Electrical contact properties of ultrathin transition metal dichalcogenide sheets." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16884/.
Full textLiu, William K. "Electron spin dynamics in quantum dots, and the roles of charge transfer excited states in diluted magnetic semiconductors /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/8588.
Full textCho, Suyeon. "Synthesis and characterization of refractory oxides doped with transition metal ions." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00856580.
Full textCarnio, Edoardo. "The metal-insulator transition in doped semiconductors : an ab initio approach." Thesis, University of Warwick, 2018. http://wrap.warwick.ac.uk/106449/.
Full textLancaster, Adam. "Mid-IR waveguide lasers in transition metal doped II-VI semiconductors." Thesis, Heriot-Watt University, 2017. http://hdl.handle.net/10399/3342.
Full textDurandurdu, Murat. "Polyamorphism in Semiconductors." Ohio University / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1040060243.
Full textZhou, Shengqiang. "Transition metal implanted ZnO: a correlation between structure and magnetism." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A23718.
Full textHerwadkar, Aditi Dr. "Electronic structure and magnetism in some transition metal nitrides: MN-doped ScN, dilute magnetic semiconductor and CrN, Mott insulator." Case Western Reserve University School of Graduate Studies / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=case1164816868.
Full textHerwadkar, Aditi A. "Electronic structure and magnetism in some transition metal nitrides Mn-doped ScN, dilute magnetic semiconductor and CrN, Mott insulator /." online version, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=case1164816868.
Full textGatuna, Ngigi wa. "Intrinsic vacancy chalcogenides as dilute magnetic semiconductors : theoretical investigation of transition-metal doped gallium selenide /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/10595.
Full textCrowley, Kyle McKinley. "Electrical Characterization, Transport, and Doping Effects in Two-Dimensional Transition Metal Oxides." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1597327584506971.
Full textMakino, Yukio. "Chemical Interpretation of Superconductivity by Valence Electron Parameters." 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/188509.
Full textLeighton, Christopher. "Persistent photoconductivity and the metal-insulator transition in Cd(_1-x)Mn(_x)Te:In." Thesis, Durham University, 1997. http://etheses.dur.ac.uk/5008/.
Full textEiting, Christopher James. "Growth of III-V nitride materials by MOCVD for device applications /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Full textDocherty, Callum James. "Terahertz spectroscopy of graphene and other two-dimensional materials." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:98c03952-dc3f-442b-bbc0-d8397645cc1b.
Full textKortan, Victoria Ramaker. "Transition-metal dopants in tetrahedrally bonded semiconductors: symmetry and exchange interactions from tight-binding models." Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/1865.
Full textNur, Baizura Binti Mohamed. "Study on photoluminescence quantum yields of atomically thin-layered two-dimensional semiconductors transition metal dichalcogenides." Kyoto University, 2018. http://hdl.handle.net/2433/233854.
Full textLe, Thi Ly. "Preparation of transition metal oxide thin films used as solar absorbers." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30120/document.
Full textThe present thesis deals with the synthesis and structural characterization of transition metals doped cobalt and manganese based spinel oxides MxCo2-xMnO4 (with M = Ni, Cu, Zn and x = 0, 0.15, 0.30, 0.60), in relationships with their conduction and optical properties. These materials are good p-type semiconductors and light absorbers in the UV and visible regions, therefore interesting for photo-catalysis and photovoltaics. The first chapter is a brief overview of the energy context and nature of global warming, renewable energy resources and a literature review of materials used for solar cells including the newly studied system type based on all-oxide photovoltaics. Chapter two presents all the experimental methods and characterization techniques used for this research work. The inorganic polycondensation method optimized in our laboratory and used for synthesizing spinel oxide powders at low temperature (T < 120 °C) without complex organic agents is described. Then, the preparation of colloidal dispersions stabilized at room temperature using an azeotrope solution based on absolute ethanol and water only is described, in order to obtain homogenous oxide thin films by the dip-coating technique. The third chapter presents detailed results on the atomic and electronic structures of the materials under study performed by using a full density functional theory investigation thanks to a collaboration with the CEMES. First principles electronic structure calculations were performed for the first time to our knowledge over the whole spinel oxide solid solution range MnxCo3-xO4 (0 = x = 3), and compared with our experimental data. A small band gap of ~ 0.8 eV is calculated, due to metal-metal transitions in B sites. The experimental band gaps observed at 1.5 and 2.2 eV, which increase with the amount of manganese, would correspond to B-A and O-B transitions, respectively. The magnetic properties of these materials are also discussed. Chapter four shows the experimental details of the preparation and characterization of the spinel oxide powders, colloidal dispersions and thin films. All samples (Ni, Cu or Zn-doped Co2MnO4) are well crystallized with a single cubic spinel oxide phase. Nanoparticles are spherical and their diameters vary from 20 to 50 nm, doping with Zn, Ni to Cu, mainly due to steric effects. Homogenous oxide thin films were deposited on quartz, alumina, titanium nitride and platinum in order to measure their optical and electrical properties, and to increase the film compactness (thus electrical conductivity and light absorbance) after thermal treatment. Thin films are well preserved up to 900 °C in air and can handle higher temperatures (up to 1000 ºC) on platinum without reaction with the substrate. Chapter five deals with the optical and electrical properties of thin films before and after sintering. The optical properties were measured over a wide range of wavelengths (UV-VIS). The optical properties of spinel oxide thin films show two strong absorption band gaps for each composition at the UV front and close to 700 nm in wavelength. These band gaps are direct and mostly lower than 2 eV for the first band. Both band gaps increase with further doping and decrease after annealing. Thin film resistivity is about 105 .cm at room temperature and decreases with increasing temperature (a few tens of 20cm at 300 ºC). In parallel to the soft chemistry method and dip-coating technique used to prepare our spinel oxide thin layers, Pulsed Laser Deposition technique was used to prepare pure Co2MnO4 and Cu2O dense thin films. Their structural and optical main features are discussed
Liu, Mingde. "Magnetization-steps spectroscopy in dilute magnetic semiconductors and in molecular magnetism /." Thesis, Connect to Dissertations & Theses @ Tufts University, 1998.
Find full textAdviser: Yaacov Shapira. Submitted to the Dept. of Physics. Includes bibliographical references. Access restricted to members of the Tufts University community. Also available via the World Wide Web;
Channam, Venkat Sunil Kumar. "Synthesis of strongly correlated oxides and investigation of their electrical and optical properties." Thesis, Toulouse, INPT, 2017. http://www.theses.fr/2017INPT0075/document.
Full textStrongly correlated oxides are studied widely for the host of unique applications, such as hightemperature superconductivity, colossal magneto resistance, exotic magnetic, charge and orbital ordering, and insulator-to-metal transitions. Transitional metal oxides which form the majority of the correlated oxide systems and oxides of Vanadium, especially VO2 and V2O5 are the two most favourite systems among researchers for several applications. In this thesis, the growth and characterization of VO2 and V2O5 are discussed along with a special focus on the optical property, especially thermochromic properties. Traditionally SMT behaviour and Infrared reflectively was the focus area for VO2 research, and its only until recently that VO2 is being treated as a much more complex system and investigated as highly responsive naturally disordered metamaterial near the phase transition temperature where the material exhibits semiconducting and metallic phase co-existence. Since each phase of VO2 has a distinct optical and electrical properties, controlling the extent of phase transitions by accurate temperature modulation, enables exploitation of the material for new properties like emissivity modulation in the NIR region and for creating IR visible reversible and rewritable patterns. V2O5 is traditionally seen as a high TCR material and regarded as material of choice for application ranging from catalysis, gas sensors to lithium batteries. In this study, however we focus on the optical properties of the material, especially the visible range thermochromic nature of V2O5 coatings synthesised by oxidative annealing of MOCVD grown VOx coatings. The impact of doping and selective oxygen vacancy generation on the thermochromic property are discussed
Venkatachalam, Anusha. "Investigation of self-heating and macroscopic built-in polarization effects on the performance of III-V nitride devices." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29669.
Full textCommittee Chair: Yoder, Douglas; Committee Member: Graham, Samuel; Committee Member: Allen, Janet; Committee Member: Klein, Benjamin; Committee Member: Voss, Paul. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Silva, Luciane Janice Venturini da. "Transição semicondutor-metal em nanocristais de VO2 termoeletricamente ativada." Universidade Federal de Santa Maria, 2015. http://repositorio.ufsm.br/handle/1/3933.
Full textIn this thesis, structural and electrical characteristics are investigated around the thermally triggered semiconductor to metal transition in VO2 thin films. The films, the metallics electrodes, as well as SiO2 buffer layers have been deposited by reactive magnetron sputtering onto Si substrates. The crystallographic and morphological characteristics have been observed through measurements of X-Ray diffraction as a function of the temperature, and atomic force microscopy (AFM). The nanoscale electrical characterization have been performed using a measurement system via nano-tips. The results of X-ray diffraction at room temperature revealed that the samples are polycrystalline and are strongly textured in the < 011 > direction, which is almost perpendicular to the substrate plane. The X-Ray diffraction spectra have been extracted at different temperatures to follow the crystallographic transition experienced by VO2 near the transition temperature. For films deposited on SiO2 (without electrodes) and the Ta electrode at temperatures below the critical temperature for the transition, the material presented in the monoclinic phase M1. Within the range of temperatures that comprises the transition occurs progressive appearance of the peak corresponding to the (110) plane of R rutile phase. Within a range at relatively higher temperatures, there is a coexistence of phases R and M1 and M2 may be the M2 monoclinic. As would be expected, the peak of rutile structure grows to the point of being virtually the only present when the temperature reaches about 80°C. The transition from one crystallographic film VO2 with Pd electrode was accompanied by diffraction measured at room temperature. The peak (011) of phase M1 is much smaller compared to the samples deposited on Ta electrode. However, contrary to the Ta electrode film which is likely to have grown in the shape of very small nano-grain or even amorphous form, the Pd electrode film is polycrystalline and highly textured. The transport properties during the electrical phase transition were investigated using injection of electrical current perpendicular to the sample plane. Films grown on Ta electrodes showed abrupt semiconductor-metal phase transitions in different nano-crystallites VO2. The IV characteristics of the film on the Pd electrode had an S-NDR region, specifically attributed to the formation of a filamentary current flow between the Pd probe and the electrode. The details of this phenomenon could not be established definitively, but if in fact the electrical transition is present in nano-crystallites measured, it was suggested that the origin of this conducting channel may be related to reminiscent earlier phase transitions.
Nesta tese, realizou-se uma investigação estrutural e elétrica em torno da transição semicondutor-metal desencadeada termicamente em filmes finos de VO2. Os filmes foram depositados por magnetron sputtering reativo, os eletrodos metálicos, bem como camadas buffers de SiO2 sobre os substratos de Si foram depositados por magnetron sputtering. As características cristalográficas e morfológicas foram evidenciadas através de medidas de difração de raios-X em função da temperatura e microscopia de força atômica (AFM), respectivamente. A caracterização elétrica, em nanoescala foi realizada utilizando-se um sistema de medidas via nano-ponteiras. Os resultados de difração de raios-X à temperatura ambiente revelaram que as amostras são policristalinas e estão fortemente texturizados com a direção < 011 > praticamente perpendicular ao plano do substrato. Os difratogramas em função da temperatura foram realizados para acompanhar a transição cristalográfica que o VO2 apresenta próximo a temperatura de 68°C. Para os filmes depositados sobre SiO2 (sem eletrodo) e sobre o eletrodo de Ta, em temperaturas abaixo da temperatura crítica para a transição, o material apresentou-se na fase monoclínica M1. Na faixa de temperaturas que compreende a transição, ocorre o surgimento progressivo do pico correspondente ao plano (110) da fase rutila R. Para uma faixa relativamente grande de temperaturas, há uma coexistência das fases M1 e R e, eventualmente da monoclínica M2. Como seria de se esperar, o pico da estrutura rutila cresce até o ponto de ser praticamente o único presente, quando a temperatura atingiu cerca de 80°C. A transição cristalográfica de um filme de VO2 com eletrodo de Pd foi acompanhada por medidas de difração à temperatura ambiente. O pico (011) da fase M1 é muito menor comparado ao das amostras depositadas sobre eletrodo de Ta. Porém, contrariamente ao eletrodo de Ta, que provavelmente tenha crescido na forma de nano-grãos muito pequenos ou mesmo na forma amorfa, o filme de Pd depositado é policristalino e bastante texturizado. As propriedades de transporte durante a transição de fase elétrica forma investigadas utilizando-se injeção de corrente elétrica perpendicular ao plano da amostra. Esta investigação, para os filmes crescidos sobre eletrodo de Ta, mostraram abruptas transições de fase semicondutor-metal em diferentes nano-cristalitos de VO2. As características I-V do filme com eletrodo de Pd apresentaram uma região com S-NDR, especificamente atribuída à formação de um regime filamentar de corrente entre a ponteira e o eletrodo de Pd. Os detalhes deste fenômeno não puderam ser estabelecidos de forma definitiva, mas se de fato a transição elétrica está presente nos nano-cristalitos medidos, sugeriu-se que a origem deste canal condutor pode estar relacionada com transições de fase anteriores e remanescentes.
Mahani, Mohammad Reza. "Magnetic solotronics near the surface of a semiconductor and a topological insulator." Doctoral thesis, Linnéuniversitetet, Institutionen för fysik och elektroteknik (IFE), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-40398.
Full textFichou, Denis. "L'interface oxyde de zinc/électrolyte : étude des processus primaires." Paris 6, 1986. http://www.theses.fr/1986PA066259.
Full textMatsui, Masafuyu. "Role of Interchain Interaction in Determining the Band Gap of Trigonal Selenium: A Density Functional Theory Study with a Linear Combination of Bloch Orbitals." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/195940.
Full textLima, Francisco Anderson de Sousa. "Application of transition-metal-oxide-based nanostructured thin films on third generation solar cells." reponame:Repositório Institucional da UFC, 2015. http://www.repositorio.ufc.br/handle/riufc/14584.
Full textSubmitted by Marlene Sousa (mmarlene@ufc.br) on 2015-12-17T12:45:41Z No. of bitstreams: 1 2015_tese_faslima.pdf: 24015209 bytes, checksum: a66470eb7a55b6b3c2a5e8544c6d4d32 (MD5)
Approved for entry into archive by Marlene Sousa(mmarlene@ufc.br) on 2015-12-18T12:18:53Z (GMT) No. of bitstreams: 1 2015_tese_faslima.pdf: 24015209 bytes, checksum: a66470eb7a55b6b3c2a5e8544c6d4d32 (MD5)
Made available in DSpace on 2015-12-18T12:18:53Z (GMT). No. of bitstreams: 1 2015_tese_faslima.pdf: 24015209 bytes, checksum: a66470eb7a55b6b3c2a5e8544c6d4d32 (MD5) Previous issue date: 2015-10-30
One of the greatest challenges of our time is to devise means to provide energy in a sustainable way to attend an exponentially growing demand. The energy demand is expected to grow 56% by 2040. In this context, the use of clean and sustainable sources of energy is imperative. Among these sources, solar energy is the only one which can meet the total world energy requirement even considering such large growth in demand. The solar power incident on the Earth's surface every second is equivalent to 4 trillion 100-watt light bulbs. Photovoltaic solar cells are one of several ways to harness solar energy. These cells convert solar energy directly into electricity. Commercial photovoltaic devices are already a reality, but their share of the world energy matrix is still quite small, mainly due to the high costs. Next generation photovoltaics open a number of new possibilities for photovoltaic energy applications that can potentially decrease the overall cost of energy production. Transition metal semiconductor oxides are promising materials that can be produced by low cost methods and o er interesting new features. The use of these materials in next generation photovoltaics is therefore a very promising and interesting application. In this thesis work zinc, titanium and vanadium oxides were used in next generation solar cells. Thin lms of zinc oxide were synthesized by the low cost and environmentally friendly techniques of electrodeposition and hydrothermal synthesis and applied as working electrodes in highly e cient dye sensitized solar cells (DSSCs). The lms were characterized by structural and optical techniques while the cells were tested by current vs: voltage and quantum e ciency measurements. The e ciencies of these cells were as high as 2.27% using ZnO thin lms without any post deposition treatment. Moreover, natural dyes extracted from plants of northeastern Brazil were applied as sensitizers in DSSCs assembled with commercial available TiO 2 as working electrode. The natural dyes were extracted employing very simple methods and were characterized by XPS and UPS techniques. Their band alignments were shown to be compatible with the TiO 2 as well as with the mediator electrolyte. The e ciency of DSSCs sensitized with natural dyes were as high as 1.33%. Finally, water based V 2 O 5 was used as hole transport medium (HTM) in conventional organic solar cells (OSCs) and ITO-free, plastic OSCs. The results obtained with V 2 O 5 were compared with the results obtained from cells assembled with PEDOT:PSS, which is the most used HTM. This comparison showed that the use of V 2 O 5 as HTM can lead to more e cient OSCs. The stability of these devices were evaluated by tests applying the ISOS standards ISOS-D-1, ISOS-L-1 and ISOS-O-1. A UV- lter and a protective graphene oxide (GO) layer were employed seeking to improve the stability of OSCs. The combination of both UV- lter and GO protective layer was shown to be the most e ective way to improve the stability of these devices
Um dos maiores desa os do nosso tempo e desenvolver formas para fornecer energia de forma sustent avel para atender uma demanda que cresce exponencialmente e que dever a crescer 56% at e 2040. Neste contexto, o uso de fontes limpas e sustent aveis de energia e um imperativo. Entre essas fontes, a energia solar e a unico que pode satisfazer a ne- cessidade total de energia do mundo, mesmo considerando o crescimento na demanda. A pot^encia solar incidente na superf cie da Terra a cada segundo e equivalente a 4 trilh~oes de l^ampadas de 100 watts. C elulas solares fotovoltaicas s~ao uma das v arias maneiras de aproveitar a energia solar, convertendo-a diretamente em eletricidade. Dispositivos com- erciais fotovoltaicos j a s~ao uma realidade, mas a sua participa c~ao na matriz energ etica mundial ainda e muito pequena, principalmente devido aos seus custos elevados. C elulas fotovoltaicas de nova gera c~ao abrem uma s erie de novas possibilidades para aplica c~oes de energia fotovoltaica que pode diminuir o custo total de produ c~ao de energia. Oxidos semicondutores de metais de transi c~ao s~ao materiais promissores que podem ser produzi- dos atrav es de m etodos de baixo custo e que possuem caracter sticas interessantes. Por conseguinte, o uso destes materiais em energia fotovoltaica de pr oxima gera c~ao se apre- senta com uma aplica c~ao promissora. Nesta tese de doutorado oxidos de zinco, tit^anio e van adio foram utilizados em c elulas solares de pr oxima gera c~ao. Filmes nos de oxido de zinco foram sintetizados por eletrodeposi c~ao e s ntese hidrot ermica. Os lmes foram apli- cados como eletrodos de trabalho em c elulas solares sensibilizadas por corante (DSSCS) altamente e cientes. Os lmes foram caracterizados por t ecnicas estruturais e oticas en- quanto que as c elulas foram testadas por medidas de corrente vs: voltagem e de e ci^encia qu^antica. A e ci^encia dessas c elulas atingiu 2,27% utilizando lmes nos de ZnO sem qualquer tratamento p os-deposi c~ao. Al em disso, corantes naturais extra dos de plan- tas do nordeste do Brasil foram aplicados como sensibilizadores em DSSCs montadas com TiO 2 comercial utilizado como eletrodo de trabalho. Os corantes naturais foram extra das empregando m etodos simples e foram caracterizados por espectroscopia de fotoel etrons excitados por raios X e por radia c~ao ultravioleta, XPS e UPS respectivamente. Seus alin- hamentos de banda se mostraram compat veis com o TiO 2 e com o eletrodo de regenera c~ao. A e ci^encia das DSSCs sensibilizadas com corantes naturais chegou a 1,33%. Finalmente, V 2 O 5 a base de agua foi usado como material transportador de buracos (HTM) em c elulas solares org^anicas (OSCs) convencionais e OSCs de pl astico constru das sem ITO. Os re- sultados obtidos com V 2 O 5 foram comparados com os resultados de c elulas constru das com PEDOT:PSS, que e o HTM mais utilizado. Esta compara c~ao revelou que o uso de V 2 O 5 como HTM pode levar a OSCs mais e cientes. A estabilidade destes dispositivos foi avaliada por testes aplicando os padr~oes ISOS-D-1, ISOS-L-1 e ISOS-O-1. O uso de ltros ultravioleta e de uma camada protetora de oxido de grafeno reduzido foi testado com o intuito de melhorar a estabilidade desses dispositivos. O uso de uma combina c~ao de ambos se mostrou a forma mais efetiva de melhorar a estabilidade das OSCs
Koperski, Maciej. "Propriétés optiques des couches minces de dichalcogénures de métaux de transition." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY019/document.
Full textThe research reported in the thesis entitled ‘Optical properties of thin layers of transition metal dichalcogenides’ focuses on physical phenomena which emerge in the limit of two-dimensional (2D) miniaturisation when the thickness of fabricated films reaches an atomic scale. The importance of such man-made structures has been revealed by the dynamic research on graphene: a single atomic plane of carbon atoms arranged in honeycomb lattice. Graphene is intrinsically gapless and therefore mainly explored with respect to its electric properties. The investigation of semiconducting materials which can also display the hexagonal crustal structure and which can be thinned down to individual layers, bridges the concepts characteristic of graphene-like systems (K-valley physics) with more conventional properties of semiconductors. This has been indeed demonstrated in a number of recent studies of ultra-thin films of semiconducting transition metal dichalcogenides (sc-TMD). Particularly appealing, from the point of view of optical studies, is a transformation of the bandgap alignment of sc-TMD films, from the indirect bandgap bulk crystals to the direct bandgap system in single layers. The presented thesis work provides a comprehensive optical characterisation of thin structures of sc-TMD crystals. The manuscript is divided into five parts: three main chapters with a preceding introduction and the appendix reporting the supplementary studies of another layered material: hexagonal boron nitride.Introduction. The fundamental properties of the investigated crystals are presented, especially those which are important from the point of view of optical studies. The discussion includes information on the crystal structure, Brillouin zone and electronic band structure. Also, the general description of the samples’ preparation process and experimental set-up is provided.Chapter 1. Basic optical characterisation of excitonic resonances in mono- and multi-layers of sc-TMDs. The optical response, as seen in the reflectance and luminescence spectra of thin sc-TMDs is analysed (mostly for MoSe2 and WSe2 materials). The impact of the number of layers and temperature on the optical resonances is studied and interpreted in details. The complementary time-resolved study is also presented.Chapter 2. Zeeman spectroscopy of excitonic resonances in magnetic fields. The evolution of the optical resonances in an external magnetic field, applied perpendicularly to the layers of sc-TMD materials is investigated. Based on these results, a phenomenological model is developed aiming to describe the linear with magnetic field contributions to the energy of individual electronic states in fundamental sub-bands of sc-TMD monolayers. Furthermore, the effects of optical pumping are investigated in WSe2 monolayers, which can be tuned by tiny magnetic fields.Chapter 3. Single photon sources in thin sc-TMD flakes. The discovery of localised narrow lines emitting centres has been in thin sc-TMD flakes is presented. An investigation of their fundamental properties is discussed. This includes the measurements of temperature and magnetic field evolution of the photoluminescence lines, and the analysis of the polarisation properties and the excitation spectra as well as photon correlation measurements.Appendix A. Single photon emitters in boron nitride crystals. Hexagonal boron nitride also belongs to the family of layered materials, but it exhibits much larger band gap than semiconducting transition metal dichalcogenides. A narrow lines emitting centres has been observed in boron nitride structures, which reveal multiple similarities to defect centres in wide gap materials. They are characterised in a similar manner as the emitting centres in WSe2