Academic literature on the topic 'Semiconductors electronic properties'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Semiconductors electronic properties.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Semiconductors electronic properties"

1

Batstone, J. L. "Structural and electronic properties of defects in semiconductors." Proceedings, annual meeting, Electron Microscopy Society of America 53 (August 13, 1995): 4–5. http://dx.doi.org/10.1017/s0424820100136398.

Full text
Abstract:
The development of growth techniques such as metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy during the last fifteen years has resulted in the growth of high quality epitaxial semiconductor thin films for the semiconductor device industry. The III-V and II-VI semiconductors exhibit a wide range of fundamental band gap energies, enabling the fabrication of sophisticated optoelectronic devices such as lasers and electroluminescent displays. However, the radiative efficiency of such devices is strongly affected by the presence of optically and electrically active defect
APA, Harvard, Vancouver, ISO, and other styles
2

Klimm, Detlef. "Electronic materials with a wide band gap: recent developments." IUCrJ 1, no. 5 (2014): 281–90. http://dx.doi.org/10.1107/s2052252514017229.

Full text
Abstract:
The development of semiconductor electronics is reviewed briefly, beginning with the development of germanium devices (band gapEg= 0.66 eV) after World War II. A tendency towards alternative materials with wider band gaps quickly became apparent, starting with silicon (Eg= 1.12 eV). This improved the signal-to-noise ratio for classical electronic applications. Both semiconductors have a tetrahedral coordination, and by isoelectronic alternative replacement of Ge or Si with carbon or various anions and cations, other semiconductors with widerEgwere obtained. These are transparent to visible lig
APA, Harvard, Vancouver, ISO, and other styles
3

MAJIDI, ROYA. "EFFECT OF DOPING ON THE ELECTRONIC PROPERTIES OF GRAPHYNE." Nano 08, no. 06 (2013): 1350060. http://dx.doi.org/10.1142/s1793292013500604.

Full text
Abstract:
We have used density functional theory to study the effect of doping on the electronic properties of graphyne. The graphyne with alpha type has been considered since it is analogous to graphene. The electronic properties of graphynes containing B , N or O impurity have been compared with those of pure graphyne. It is found that the electronic properties of alpha graphyne change from semimetal to semiconductor by doping. The B -doped graphyne becomes a p-type semiconductor, while N -doped and O -doped graphynes are n-type semiconductors. Our results provide possibility of opening an energy gap
APA, Harvard, Vancouver, ISO, and other styles
4

Morgan, G. J., J. N. Burr, N. A. Bruce, B. J. Hickey, and J. M. Holender. "The electronic properties of amorphous semiconductors." Journal of Non-Crystalline Solids 137-138 (January 1991): 149–52. http://dx.doi.org/10.1016/s0022-3093(05)80078-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gonçalves, L. C. D., and A. B. Henriques. "Electronic properties of gated -doped semiconductors." Semiconductor Science and Technology 12, no. 2 (1997): 203–9. http://dx.doi.org/10.1088/0268-1242/12/2/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Khanin, D. V., and S. E. Kul’kova. "Electronic Properties of III – V Semiconductors." Russian Physics Journal 48, no. 1 (2005): 70–77. http://dx.doi.org/10.1007/s11182-005-0086-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

CAMPBELL, I. H., and D. L. SMITH. "ELECTRICAL TRANSPORT IN ORGANIC SEMICONDUCTORS." International Journal of High Speed Electronics and Systems 11, no. 02 (2001): 585–615. http://dx.doi.org/10.1142/s0129156401000952.

Full text
Abstract:
Organic semiconductors have processing and performance advantages for low cost and/or large area applications that have led to their rapid commercialization. Organic semiconductors are π conjugated materials, either small molecules or polymers. Their electrical transport properties are fundamentally distinct from those of inorganic semiconductors. Organic semiconductor thin films are amorphous or polycrystalline and their electronic structures consist of a distribution of localized electronic states with different energies. The localized sites are either individual molecules or isolated conjug
APA, Harvard, Vancouver, ISO, and other styles
8

Fortunato, Elvira, Alexandra Gonçalves, António Marques, et al. "Multifunctional Thin Film Zinc Oxide Semiconductors: Application to Electronic Devices." Materials Science Forum 514-516 (May 2006): 3–7. http://dx.doi.org/10.4028/www.scientific.net/msf.514-516.3.

Full text
Abstract:
In this paper we report some of the recent advances in transparent thin film oxide semiconductors, specifically zinc oxide (ZnO), produced by rf magnetron sputtering at room temperature with multifunctional properties. By controlling the deposition parameters it is possible to produce undoped material with electronic semiconductor properties or by doping it to get either n-type or p-type semiconductor behavior. In this work we refer our experience in producing n-type doping ZnO as transparent electrode to be used in optoelectronic applications such as solar cells and position sensitive detecto
APA, Harvard, Vancouver, ISO, and other styles
9

Ngai, J. H., K. Ahmadi-Majlan, J. Moghadam, et al. "Electrically Coupling Multifunctional Oxides to Semiconductors: A Route to Novel Material Functionalities." MRS Advances 1, no. 4 (2016): 255–63. http://dx.doi.org/10.1557/adv.2016.101.

Full text
Abstract:
ABSTRACTComplex oxides and semiconductors exhibit distinct yet complementary properties owing to their respective ionic and covalent natures. By electrically coupling oxides to semiconductors within epitaxial heterostructures, enhanced or novel functionalities beyond those of the constituent materials can potentially be realized. Key to electrically coupling oxides to semiconductors is controlling the physical and electronic structure of semiconductor – crystalline oxide heterostructures. Here we discuss how composition of the oxide can be manipulated to control physical and electronic structu
APA, Harvard, Vancouver, ISO, and other styles
10

Brillson, Leonard, Jonathan Cox, Hantian Gao, et al. "Native Point Defect Measurement and Manipulation in ZnO Nanostructures." Materials 12, no. 14 (2019): 2242. http://dx.doi.org/10.3390/ma12142242.

Full text
Abstract:
This review presents recent research advances in measuring native point defects in ZnO nanostructures, establishing how these defects affect nanoscale electronic properties, and developing new techniques to manipulate these defects to control nano- and micro- wire electronic properties. From spatially-resolved cathodoluminescence spectroscopy, we now know that electrically-active native point defects are present inside, as well as at the surfaces of, ZnO and other semiconductor nanostructures. These defects within nanowires and at their metal interfaces can dominate electrical contact properti
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Semiconductors electronic properties"

1

Najda, S. P. "Electronic properties of semiconductors." Thesis, University of St Andrews, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wolverson, D. "Optical and electronic properties of disordered semiconductors." Thesis, University of Exeter, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bunning, J. C. "Electronic transport properties of linear organic semiconductors." Thesis, Queen Mary, University of London, 2006. http://qmro.qmul.ac.uk/xmlui/handle/123456789/1757.

Full text
Abstract:
The electronic transport properties of certain organii c semIi conductors are expected to exhibit a quasi one-dimensional nature. Pulsed laser techniques have been used to study transient photoconductivity in a number of such linear molecular systems. This thesis explores carrier motion of zeolite encapsulated conjugated polymers such as polyacetylene and polypropyne, columnar discotic liquid crystals and single walled carbon nanotubes. At the time of writing, this thesis presents the first observations of transient photoconductivity for carbon nanotubes. In the systems studied: electric field
APA, Harvard, Vancouver, ISO, and other styles
4

Niles, Julian C. "The structural, electronic, vibrational and optical properties of C₇₈ isomers." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/30513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Landes, Christy. "The dependence of the opto-electronic properties of CdSe nanoparticles on surface properties." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/30657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Boskovic, Desanka. "Electronic properties of organic semiconductors and low-dimensional materials." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/456582.

Full text
Abstract:
Los semiconductores orgánicos se han convertido en un grupo muy interesante de materiales por sus buenas propiedades de transporte de carga y aplicaciones tecnológicas masivas. Entre todos ellos, el rubreno ganó gran interés porque es un semiconductor orgánico con la movilidad más alta del portador, que puede alcanzar 40cm2=V s para los agujeros. Aquí ofrecemos una descripción completa de los primeros principios de las propiedades electrónicas y el acoplamiento electrón-fonón (incluyendo el tipo de acoplamientos Holstein y Peierls) para los prototipicos cristales de rubreno. Los materia
APA, Harvard, Vancouver, ISO, and other styles
7

Lague, Stephen Brian. "The structural and electronic properties of some liquid semiconductors." Thesis, University of Bristol, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Collins, Reuben T. McGill T. C. "Electronic properties of heterostructures and defects in compound semiconductors /." Diss., Pasadena, Calif. : California Institute of Technology, 1985. http://resolver.caltech.edu/CaltechETD:etd-03262008-142511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Korlann, Scott Douglas. "Electronic and magnetic properties of surfactant templated nanostructured semiconductors." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1779690231&sid=5&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gopir, Geri Kibe Ak. "Electronic and optical properties of III-V heterostructures." Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336297.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Semiconductors electronic properties"

1

Shik, A. Y. Electronic properties of inhomogeneous semiconductors. Gordon and Breach, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cohen, Marvin L. Electronic structure and optical properties of semiconductors. Springer-Verlag, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cohen, Marvin L. Electronic Structure and Optical Properties of Semiconductors. Springer Berlin Heidelberg, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cohen, Marvin L. Electronic Structure and Optical Properties of Semiconductors. Springer Berlin Heidelberg, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cohen, Marvin L., and James R. Chelikowsky. Electronic Structure and Optical Properties of Semiconductors. Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-61338-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cohen, Marvin L., and James R. Chelikowsky. Electronic Structure and Optical Properties of Semiconductors. Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-97080-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

R, Chelikowsky James, ed. Electronic structure and optical properties of semiconductors. 2nd ed. Springer-Verlag, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lew Yan Voon, Lok C. and SpringerLink (Online service), eds. The k p Method: Electronic Properties of Semiconductors. Springer-Verlag Berlin Heidelberg, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Electronic properties of engineering materials. Wiley, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kikoin, K. A. Transition metal impurities in semiconductors: Electronic structure and physical properties. World Scientific, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Semiconductors electronic properties"

1

Hummel, Rolf E. "Semiconductors." In Electronic Properties of Materials. Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-4914-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hummel, Rolf E. "Semiconductors." In Electronic Properties of Materials. Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-8164-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hummel, Rolf E. "Semiconductors." In Electronic Properties of Materials. Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-02954-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hummel, Rolf E. "Semiconductors." In Electronic Properties of Materials. Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-86538-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hummel, Rolf E. "Semiconductors." In Electronic Properties of Materials. Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-02424-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Barr, A. "Electrical Properties of Semiconductors." In Electronic Materials. Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3818-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tanaka, Keiji, and Koichi Shimakawa. "Electronic Properties." In Amorphous Chalcogenide Semiconductors and Related Materials. Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9510-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tanaka, Keiji, and Koichi Shimakawa. "Electronic Properties." In Amorphous Chalcogenide Semiconductors and Related Materials. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69598-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mori, Takehiko. "Organic Semiconductors." In Electronic Properties of Organic Conductors. Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55264-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yu, Peter Y., and Manuel Cardona. "Electronic Properties of Defects." In Fundamentals of Semiconductors. Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-03313-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Semiconductors electronic properties"

1

da Silva, A. Ferreira. "Electronic and Optical Properties of TiO2." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rojas-Cuervo, A. M., C. P. Barrera-Patiño, R. R. Rey-González, Jisoon Ihm, and Hyeonsik Cheong. "Electronic Properties of Two-dimensional Hexagonal Systems." In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dürkop, T. "Nanotubes are High Mobility Semiconductors." In STRUCTURAL AND ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES: XVI International Winterschool on Electronic Properties of Novel Materials. AIP, 2002. http://dx.doi.org/10.1063/1.1514114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Joe, Yong S., Sun H. Lee, Eric R. Hedin, Jisoon Ihm, and Hyeonsik Cheong. "Electronic and Transport Properties of DNA-based Nanowires." In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hill, Ian G., and Antoine Kahn. "Interface electronic properties of organic molecular semiconductors." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Zakya H. Kafafi. SPIE, 1998. http://dx.doi.org/10.1117/12.332610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Grbić, B. "Electronic properties of C-doped (100) AlGaAs heterostructures." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Clark, Stewart J. "Structural And Electronic Properties Of HgTe Quantum Dots." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schulz, S., S. Schumacher, and G. Czycholl. "InN/GaN quantum dots: Electronic and optical properties." In PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2730181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kuranov, Dmitriy Y., Marina E. Bedrina, and Nikolai V. Egorov. "The structure and electronic properties of organic semiconductors." In 2015 International Conference "Stability and Control Processes" in Memory of V.I. Zubov (SCP). IEEE, 2015. http://dx.doi.org/10.1109/scp.2015.7342233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nakayama, Takashi. "Chirality and Electronic/Optical Properties of Screw-vacancy In2Se3." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994049.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Semiconductors electronic properties"

1

Dongarra, Jack, and Stanimire Tomov. Predicting the Electronic Properties of 3D, Million-atom Semiconductor nanostructure Architectures. Office of Scientific and Technical Information (OSTI), 2012. http://dx.doi.org/10.2172/1036499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hall, Douglas C., Patrick J. Fay, Thomas H. Kosel, Bruce A. Bunker, and Russell D. Dupuis. Electronic Properties and Device Applications of III-V Compound Semiconductor Native Oxides. Defense Technical Information Center, 2006. http://dx.doi.org/10.21236/ada449186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Afrin, Shakila. Investigation of Electronic and Optical Properties of 2-Dimensional Semiconductor Tin Selenide (SnSe) Thin Films. Portland State University Library, 2000. http://dx.doi.org/10.15760/etd.6738.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ast, D. G. [Structure and electronic properties of defects at nonlattice matched III-V semiconductor interfaces]. Progress report, 1989--90. Office of Scientific and Technical Information (OSTI), 1990. http://dx.doi.org/10.2172/90071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Boggess, Thomas F. Electronic, Optical and Structural Properties of 6.1 Angstrom III-V Semiconductor Heterostructures for High-Performance Mid-Infrared Lasers. Defense Technical Information Center, 2003. http://dx.doi.org/10.21236/ada421467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!