Academic literature on the topic 'Semigroup stability'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Semigroup stability.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Semigroup stability"
Bodor, Bertalan, Erkko Lehtonen, Thomas Quinn-Gregson, and Nikolaas Verhulst. "HS-stability and complex products in involution semigroups." Semigroup Forum 103, no. 2 (August 10, 2021): 395–413. http://dx.doi.org/10.1007/s00233-021-10213-x.
Full textChill, R., D. Seifert, and Y. Tomilov. "Semi-uniform stability of operator semigroups and energy decay of damped waves." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, no. 2185 (October 19, 2020): 20190614. http://dx.doi.org/10.1098/rsta.2019.0614.
Full textHan, Xiaoshuang, Mingyan Teng, and Ming Fang. "Well-posedness and Stability of the Repairable System with Three Units and Vacation." Journal of Systems Science and Information 2, no. 1 (February 25, 2014): 54–76. http://dx.doi.org/10.1515/jssi-2014-0054.
Full textXueli, Song, and Peng Jigen. "Equivalence of Lp Stability and Exponential Stability of Nonlinear Lipschitzian Semigroups." Canadian Mathematical Bulletin 55, no. 4 (December 1, 2012): 882–89. http://dx.doi.org/10.4153/cmb-2011-070-0.
Full textSoliman, Ahmed. "A common fixed point theorem for semigroups of nonlinear uniformly continuous mappings with an application to asymptotic stability of nonlinear systems." Filomat 31, no. 7 (2017): 1949–57. http://dx.doi.org/10.2298/fil1707949s.
Full textAcu, Ana Maria, and Ioan Raşa. "A C0-Semigroup of Ulam Unstable Operators." Symmetry 12, no. 11 (November 7, 2020): 1844. http://dx.doi.org/10.3390/sym12111844.
Full textBobrowski, Adam, and Ryszard Rudnicki. "On convergence and asymptotic behaviour of semigroups of operators." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, no. 2185 (October 19, 2020): 20190613. http://dx.doi.org/10.1098/rsta.2019.0613.
Full textBraga Barros, Carlos J., Josiney A. Souza, and Victor H. L. Rocha. "Lyapunov stability for semigroup actions." Semigroup Forum 88, no. 1 (October 24, 2013): 227–49. http://dx.doi.org/10.1007/s00233-013-9527-2.
Full textKumar, Dharmendra, Kalyan B. Sinha, and Sachi Srivastava. "Stability of the Markov (conservativity) property under perturbations." Infinite Dimensional Analysis, Quantum Probability and Related Topics 23, no. 02 (June 2020): 2050009. http://dx.doi.org/10.1142/s0219025720500095.
Full textSun, Xi Ping, Min Luo, and Kai Fang. "A Continuous Semigroup Approach to the Distributional Stability of Nonlinear Models." Applied Mechanics and Materials 525 (February 2014): 653–56. http://dx.doi.org/10.4028/www.scientific.net/amm.525.653.
Full textDissertations / Theses on the topic "Semigroup stability"
Aroza, Benlloch Javier. "Dynamics of strongly continuous semigroups associated to certain differential equations." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/57186.
Full text[ES] La presente memoria "Dinámica de semigrupos fuertemente continuos asociadas a ciertas ecuaciones diferenciales'' es analizar, desde el punto de vista del análisis funcional, la dinámica de las soluciones de ecuaciones de evolución lineales. Estas soluciones pueden ser representadas por semigrupos fuertemente continuos en espacios de Banach de dimensión infinita. El objetivo de nuestra investigación es proporcionar condiciones globales para obtener caos, en el sentido de Devaney, y propiedades de estabilidad de semigrupos fuertemente continuos, los cuales son soluciones de ecuaciones de evolución lineales. Este trabajo está compuesto de tres capítulos principales. El Capítulo 0 es introductorio y define la terminología básica y notación usada, además de presentar los resultados básicos que usaremos a lo largo de esta tesis. Los Capítulos 1 y 2 describen, de forma general, un semigrupo fuertemente continuo inducido por un semiflujo en espacios de Lebesgue y en espacios de Sobolev, los cuales son solución de una ecuación diferencial lineal en derivadas parciales de primer orden. Además, algunas caracterizaciones de las principales propiedades dinámicas, incluyendo hiperciclicidad, mezclante, débil mezclante, caos y estabilidad, se obtienen a lo largo de estos capítulos. El Capítulo 3 describe las propiedades dinámicas de una ecuación en diferencias basada en el llamado modelo de nacimiento-muerte y analiza las condiciones previamente probadas para este modelo, mejorándolas empleando una estrategia diferente. La finalidad de esta tesis es caracterizar propiedades dinámicas para este tipo de semigrupos fuertemente continuos de forma general, cuando sea posible, y extender estos resultados a otros espacios. A lo largo de esta memoria, estos resultados son comparados con los resultados previos dados por varios autores en años recientes.
[CAT] La present memòria "Dinàmica de semigrups fortament continus associats a certes equacions diferencials'' és analitzar, des del punt de vista de l'anàlisi funcional, la dinàmica de les solucions d'equacions d'evolució lineals. Aquestes solucions poden ser representades per semigrups fortament continus en espais de Banach de dimensió infinita. L'objectiu de la nostra investigació es proporcionar condicions globals per obtenir caos, en el sentit de Devaney, i propietats d'estabilitat de semigrups fortament continus, els quals són solucions d'equacions d'evolució lineals. Aquest treball està compost de tres capítols principals. El Capítol 0 és introductori i defineix la terminologia bàsica i notació utilitzada, a més de presentar els resultats bàsics que utilitzarem al llarg d'aquesta tesi. Els Capítols 1 i 2 descriuen, de forma general, un semigrup fortament continu induït per un semiflux en espais de Lebesgue i en espais de Sobolev, els quals són solució d'una equació diferencial lineal en derivades parcials de primer ordre. A més, algunes caracteritzacions de les principals propietats dinàmiques, incloent-hi hiperciclicitat, mesclant, dèbil mesclant, caos i estabilitat, s'obtenen al llarg d'aquests capítols. El Capítol 3 descrivís les propietats dinàmiques d'una equació en diferències basada en el model de naixement-mort i analitza les condicions prèviament provades per aquest model, millorant-les utilitzant una estratègia diferent. La finalitat d'aquesta tesi és caracteritzar propietats dinàmiques d'aquest tipus de semigrups fortament continus de forma general, quan siga possible, i estendre aquests resultats a altres espais. Al llarg d'aquesta memòria, aquests resultats són comparats amb els resultats previs obtinguts per diversos autors en anys recents.
Aroza Benlloch, J. (2015). Dynamics of strongly continuous semigroups associated to certain differential equations [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/57186
TESIS
Mulzet, Alfred Kenric. "Exponential Stability for a Diffusion Equation in Polymer Kinetic Theory." Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/30473.
Full textPh. D.
Song, Degong. "On the Spectrum of Neutron Transport Equations with Reflecting Boundary Conditions." Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/26375.
Full textPh. D.
Schulze, Bert-Wolfgang, and Yuming Qin. "Uniform compact attractors for a nonlinear non-autonomous equation of viscoelasticity." Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2009/2989/.
Full textGhader, Mouhammad. "Stabilité et contrôlabilité exacte des systèmes distribués couplés avec différents types d'amortissement." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS078.
Full textIn this work, we study the stabilization and the exact controllability of some distributed problems. In the first part, we study the stability of a one-dimensional Bresse System with infinite memory type control and/or with heat conduction given by Cattaneo's law acting in the shear angle displacement, where we consider the interesting case of fully Dirichlet boundary conditions. Indeed, under a equal speed of propagation condition, we establish the exponential stability of the System. However, in the natural physical case when the speeds of propagation are different, using a spectrum method, we show that the Bresse System is not uniformly exponentially stable. In this case, we establish a polynomial energy decay rate. Our study is valid for all other mixed boundary conditions. In the second part, we study the stabilization of a weakly damped elastic System of an abstract second order equation. Indeed, under some condition on the parameters, using a spectrum method, we establish the exponential stability of the System. However, when the System is not uniformly stable, using a spectrum method, we establish the optimal polynomial decay rate of the energy of the System. In the third part, we study the indirect boundary exact controllability of a one-dimensional Timoshenko System. Indeed, we consider the cases when the speed waves propagate with equal or different speeds. We use non harmonic analysis to establish weak observability inequality, which depends on the ratio of the waves propagation speeds. Next, using the HUM method, we prove that the System is exactly controllable, and that the control time can be small
Pena, Ismael da Silva [UNESP]. "Análise de estabilidade de sistemas dinâmicos híbridos e descontínuos modelados por semigrupos:." Universidade Estadual Paulista (UNESP), 2008. http://hdl.handle.net/11449/94205.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Sistemas dinâmicos híbridos se diferenciam por exibir simultaneamente variados tipos de comportamento dinâmico (contínuo, discreto, eventos discretos) em diferentes partes do sistema. Neste trabalho foram estudados resultados de estabilidade no sentido de Lyapunov para sistemas dinâmicos híbridos gerais, que utilizam uma noção de tempo generalizado, definido em um espaço métrico totalmente ordenado. Mostrou-se que estes sistemas podem ser imersos em sistemas dinâmicos descontínuos definidos em R+, de forma que sejam preservadas suas propriedades qualitativas. Como foco principal, estudou-se resultados de estabilidade para sistemas dinâmicos descontínuos modelados por semigrupos de operadores, em que os estados do sistema pertencem à espaços de Banach. Neste caso, de forma alternativa à teoria clássica de estabilidade, os resultados não utilizam as usuais funções de Lyapunov, sendo portanto mais fáceis de se aplicar, tendo em vista a dificuldade em se encontrar tais funções para muitos sistemas. Além disso, os resultados foram aplicados à uma classe de equações diferenciais com retardo.
Hybrid dynamical systems are characterized for showing simultaneously a variety of dynamic behaviors (continuous, discrete, discrete events) in different parts of the System. This work discusses stability results in the Lyapunov sense for general hybrid dynamical systems that use a generalized notion of time, defined in a completely ordered metric space. It has been shown that these systems may be immersed in discontinuous dynamical systems defined in R+, so that their quality properties are preserved. As the main focus, it is studied stability results for discontinuous dynamical systems modeled by semigroup operators, in which the states belong to Banach spaces. In this case, an alternative to the classical theory of stability, the results do not make use of the usual Lyapunov functions, and therefore are easier to apply, in view of the difficulty in finding such functions for many systems. Furthermore, the results were applied to a class of time-delay discontinuous differential equations.
Fischer, Arthur Geromel. "Robustez da dinâmica sob perturbações: da semicontinuidade superior à estabilidade estrutural." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-08012016-110211/.
Full textThe main goal of this work is the study of structural stability of global attractors. We start this work by presenting the concept and basic properties of semigroups and global attractors. We then studied gradient and dinamically gradient semigroups, showing that these concepts are equivalent and that a small autonomous pertubation of a gradient semigroup remains a gradient semigroup. We studied the stable and unstable manifolds in the neighbourhood of a hyperbolic equilibrium point and the behavior of periodic solutions under perturbation. Finally, we studied the Morse-Smale semigroups.
Tchousso, Abdoua. "Étude de la stabilité asymptotique de quelques modèles de transfert de chaleur." Lyon 1, 2004. http://www.theses.fr/2004LYO10119.
Full textPace, Michele. "Stochastic models and methods for multi-object tracking." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2011. http://tel.archives-ouvertes.fr/tel-00651396.
Full textTristani, Isabelle. "Existence et stabilité de solutions fortes en théorie cinétique des gaz." Thesis, Paris 9, 2015. http://www.theses.fr/2015PA090013/document.
Full textThe topic of this thesis is the study of models coming from kinetic theory. In all the problems that are addressed, the associated linear or linearized problem is analyzed from a spectral point of view and from the point of view of semigroups. Tothat, we add the study of the nonlinear stability when the equation is nonlinear. More precisely, to begin with, we treat the problem of trend to equilibrium for the fractional Fokker-Planck and Boltzmann without cut-off equations, proving an exponential decay to equilibrium in spaces of type L1 with polynomial weights. Concerning the inhomogeneous Landau equation, we develop a Cauchy theory of perturbative solutions in spaces of type L2 with various weights such as polynomial and exponential weights and we also prove the exponential stability of these solutions. Then, we prove similar results for the inhomogeneous inelastic diffusively driven Boltzmann equation in a small inelasticity regime in L1 spaces with polynomial weights. Finally, we study in the same and uniform framework from the spectral analysis point of view with a semigroup approach several Fokker-Planck equations which converge towards the classical one
Books on the topic "Semigroup stability"
Eisner, Tanja. Stability of Operators and Operator Semigroups. Basel: Springer Basel, 2010. http://dx.doi.org/10.1007/978-3-0346-0195-5.
Full textEisner, Tanja. Stability of operators and operator semigroups. Basel: Birkhäuser, 2010.
Find full textEisner, Tanja. Stability of operators and operator semigroups. Basel: Birkhäuser, 2010.
Find full textBook chapters on the topic "Semigroup stability"
Bucci, Francesca. "Stability of Holomorphic Semigroup Systems under Nonlinear Boundary Perturbations." In Optimal Control of Partial Differential Equations, 63–76. Basel: Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-8691-8_6.
Full textNeustupa, Jiří. "Stability of Solutions of Parabolic Equations by a Combination of the Semigroup Theory and the Energy Method." In Navier—Stokes Equations and Related Nonlinear Problems, 11–22. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1415-6_2.
Full textEisner, Tanja. "Stability of C0-semigroups." In Stability of Operators and Operator Semigroups, 79–132. Basel: Springer Basel, 2010. http://dx.doi.org/10.1007/978-3-0346-0195-5_3.
Full textLuo, Zheng-Hua, Bao-Zhu Guo, and Omer Morgul. "Stability of C0-Semigroups." In Stability and Stabilization of Infinite Dimensional Systems with Applications, 109–64. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0419-3_3.
Full textGil’, Michael I. "Strongly Continuous Semigroups." In Stability of Finite and Infinite Dimensional Systems, 261–84. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5575-9_13.
Full textDesch, W., and W. Schappacher. "Linearized stability for nonlinear semigroups." In Lecture Notes in Mathematics, 61–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0099183.
Full textBhat, B. V. Rajarama, and Sachi Srivastava. "Stability of Quantum Dynamical Semigroups." In Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, 67–85. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18494-4_5.
Full textDel Moral, Pierre. "Stability of Feynman-Kac Semigroups." In Probability and its Applications, 121–55. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4684-9393-1_4.
Full textBelfakih, Keltouma, Elhoucien Elqorachi, and Themistocles M. Rassias. "Solutions and Stability of Some Functional Equations on Semigroups." In Ulam Type Stability, 167–98. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28972-0_9.
Full textEisner, Tanja. "Stability of linear operators." In Stability of Operators and Operator Semigroups, 37–77. Basel: Springer Basel, 2010. http://dx.doi.org/10.1007/978-3-0346-0195-5_2.
Full textConference papers on the topic "Semigroup stability"
Liu, Shuyang, Reza Langari, and Yuanchun Li. "Control Design for the System of Manipulator Handling a Flexible Payload With Input Constraints." In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-8970.
Full textBalas, Mark J., and Susan A. Frost. "A Stabilization of Fixed Gain Controlled Infinite Dimensional Systems by Augmentation With Direct Adaptive Control." In ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3726.
Full textBalas, Mark J. "Augmentation of Fixed Gain Controlled Infinite Dimensional Systems With Direct Adaptive Control." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23179.
Full textChill, Ralph, and Yuri Tomilov. "Stability of operator semigroups: ideas and results." In Perspectives in Operator Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-6.
Full textBalas, Mark J., and Susan A. Frost. "Adaptive Tracking Control for Linear Infinite Dimensional Systems." In ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9098.
Full text