Dissertations / Theses on the topic 'Semigroup stability'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 19 dissertations / theses for your research on the topic 'Semigroup stability.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Aroza, Benlloch Javier. "Dynamics of strongly continuous semigroups associated to certain differential equations." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/57186.
Full text[ES] La presente memoria "Dinámica de semigrupos fuertemente continuos asociadas a ciertas ecuaciones diferenciales'' es analizar, desde el punto de vista del análisis funcional, la dinámica de las soluciones de ecuaciones de evolución lineales. Estas soluciones pueden ser representadas por semigrupos fuertemente continuos en espacios de Banach de dimensión infinita. El objetivo de nuestra investigación es proporcionar condiciones globales para obtener caos, en el sentido de Devaney, y propiedades de estabilidad de semigrupos fuertemente continuos, los cuales son soluciones de ecuaciones de evolución lineales. Este trabajo está compuesto de tres capítulos principales. El Capítulo 0 es introductorio y define la terminología básica y notación usada, además de presentar los resultados básicos que usaremos a lo largo de esta tesis. Los Capítulos 1 y 2 describen, de forma general, un semigrupo fuertemente continuo inducido por un semiflujo en espacios de Lebesgue y en espacios de Sobolev, los cuales son solución de una ecuación diferencial lineal en derivadas parciales de primer orden. Además, algunas caracterizaciones de las principales propiedades dinámicas, incluyendo hiperciclicidad, mezclante, débil mezclante, caos y estabilidad, se obtienen a lo largo de estos capítulos. El Capítulo 3 describe las propiedades dinámicas de una ecuación en diferencias basada en el llamado modelo de nacimiento-muerte y analiza las condiciones previamente probadas para este modelo, mejorándolas empleando una estrategia diferente. La finalidad de esta tesis es caracterizar propiedades dinámicas para este tipo de semigrupos fuertemente continuos de forma general, cuando sea posible, y extender estos resultados a otros espacios. A lo largo de esta memoria, estos resultados son comparados con los resultados previos dados por varios autores en años recientes.
[CAT] La present memòria "Dinàmica de semigrups fortament continus associats a certes equacions diferencials'' és analitzar, des del punt de vista de l'anàlisi funcional, la dinàmica de les solucions d'equacions d'evolució lineals. Aquestes solucions poden ser representades per semigrups fortament continus en espais de Banach de dimensió infinita. L'objectiu de la nostra investigació es proporcionar condicions globals per obtenir caos, en el sentit de Devaney, i propietats d'estabilitat de semigrups fortament continus, els quals són solucions d'equacions d'evolució lineals. Aquest treball està compost de tres capítols principals. El Capítol 0 és introductori i defineix la terminologia bàsica i notació utilitzada, a més de presentar els resultats bàsics que utilitzarem al llarg d'aquesta tesi. Els Capítols 1 i 2 descriuen, de forma general, un semigrup fortament continu induït per un semiflux en espais de Lebesgue i en espais de Sobolev, els quals són solució d'una equació diferencial lineal en derivades parcials de primer ordre. A més, algunes caracteritzacions de les principals propietats dinàmiques, incloent-hi hiperciclicitat, mesclant, dèbil mesclant, caos i estabilitat, s'obtenen al llarg d'aquests capítols. El Capítol 3 descrivís les propietats dinàmiques d'una equació en diferències basada en el model de naixement-mort i analitza les condicions prèviament provades per aquest model, millorant-les utilitzant una estratègia diferent. La finalitat d'aquesta tesi és caracteritzar propietats dinàmiques d'aquest tipus de semigrups fortament continus de forma general, quan siga possible, i estendre aquests resultats a altres espais. Al llarg d'aquesta memòria, aquests resultats són comparats amb els resultats previs obtinguts per diversos autors en anys recents.
Aroza Benlloch, J. (2015). Dynamics of strongly continuous semigroups associated to certain differential equations [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/57186
TESIS
Mulzet, Alfred Kenric. "Exponential Stability for a Diffusion Equation in Polymer Kinetic Theory." Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/30473.
Full textPh. D.
Song, Degong. "On the Spectrum of Neutron Transport Equations with Reflecting Boundary Conditions." Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/26375.
Full textPh. D.
Schulze, Bert-Wolfgang, and Yuming Qin. "Uniform compact attractors for a nonlinear non-autonomous equation of viscoelasticity." Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2009/2989/.
Full textGhader, Mouhammad. "Stabilité et contrôlabilité exacte des systèmes distribués couplés avec différents types d'amortissement." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS078.
Full textIn this work, we study the stabilization and the exact controllability of some distributed problems. In the first part, we study the stability of a one-dimensional Bresse System with infinite memory type control and/or with heat conduction given by Cattaneo's law acting in the shear angle displacement, where we consider the interesting case of fully Dirichlet boundary conditions. Indeed, under a equal speed of propagation condition, we establish the exponential stability of the System. However, in the natural physical case when the speeds of propagation are different, using a spectrum method, we show that the Bresse System is not uniformly exponentially stable. In this case, we establish a polynomial energy decay rate. Our study is valid for all other mixed boundary conditions. In the second part, we study the stabilization of a weakly damped elastic System of an abstract second order equation. Indeed, under some condition on the parameters, using a spectrum method, we establish the exponential stability of the System. However, when the System is not uniformly stable, using a spectrum method, we establish the optimal polynomial decay rate of the energy of the System. In the third part, we study the indirect boundary exact controllability of a one-dimensional Timoshenko System. Indeed, we consider the cases when the speed waves propagate with equal or different speeds. We use non harmonic analysis to establish weak observability inequality, which depends on the ratio of the waves propagation speeds. Next, using the HUM method, we prove that the System is exactly controllable, and that the control time can be small
Pena, Ismael da Silva [UNESP]. "Análise de estabilidade de sistemas dinâmicos híbridos e descontínuos modelados por semigrupos:." Universidade Estadual Paulista (UNESP), 2008. http://hdl.handle.net/11449/94205.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Sistemas dinâmicos híbridos se diferenciam por exibir simultaneamente variados tipos de comportamento dinâmico (contínuo, discreto, eventos discretos) em diferentes partes do sistema. Neste trabalho foram estudados resultados de estabilidade no sentido de Lyapunov para sistemas dinâmicos híbridos gerais, que utilizam uma noção de tempo generalizado, definido em um espaço métrico totalmente ordenado. Mostrou-se que estes sistemas podem ser imersos em sistemas dinâmicos descontínuos definidos em R+, de forma que sejam preservadas suas propriedades qualitativas. Como foco principal, estudou-se resultados de estabilidade para sistemas dinâmicos descontínuos modelados por semigrupos de operadores, em que os estados do sistema pertencem à espaços de Banach. Neste caso, de forma alternativa à teoria clássica de estabilidade, os resultados não utilizam as usuais funções de Lyapunov, sendo portanto mais fáceis de se aplicar, tendo em vista a dificuldade em se encontrar tais funções para muitos sistemas. Além disso, os resultados foram aplicados à uma classe de equações diferenciais com retardo.
Hybrid dynamical systems are characterized for showing simultaneously a variety of dynamic behaviors (continuous, discrete, discrete events) in different parts of the System. This work discusses stability results in the Lyapunov sense for general hybrid dynamical systems that use a generalized notion of time, defined in a completely ordered metric space. It has been shown that these systems may be immersed in discontinuous dynamical systems defined in R+, so that their quality properties are preserved. As the main focus, it is studied stability results for discontinuous dynamical systems modeled by semigroup operators, in which the states belong to Banach spaces. In this case, an alternative to the classical theory of stability, the results do not make use of the usual Lyapunov functions, and therefore are easier to apply, in view of the difficulty in finding such functions for many systems. Furthermore, the results were applied to a class of time-delay discontinuous differential equations.
Fischer, Arthur Geromel. "Robustez da dinâmica sob perturbações: da semicontinuidade superior à estabilidade estrutural." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-08012016-110211/.
Full textThe main goal of this work is the study of structural stability of global attractors. We start this work by presenting the concept and basic properties of semigroups and global attractors. We then studied gradient and dinamically gradient semigroups, showing that these concepts are equivalent and that a small autonomous pertubation of a gradient semigroup remains a gradient semigroup. We studied the stable and unstable manifolds in the neighbourhood of a hyperbolic equilibrium point and the behavior of periodic solutions under perturbation. Finally, we studied the Morse-Smale semigroups.
Tchousso, Abdoua. "Étude de la stabilité asymptotique de quelques modèles de transfert de chaleur." Lyon 1, 2004. http://www.theses.fr/2004LYO10119.
Full textPace, Michele. "Stochastic models and methods for multi-object tracking." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2011. http://tel.archives-ouvertes.fr/tel-00651396.
Full textTristani, Isabelle. "Existence et stabilité de solutions fortes en théorie cinétique des gaz." Thesis, Paris 9, 2015. http://www.theses.fr/2015PA090013/document.
Full textThe topic of this thesis is the study of models coming from kinetic theory. In all the problems that are addressed, the associated linear or linearized problem is analyzed from a spectral point of view and from the point of view of semigroups. Tothat, we add the study of the nonlinear stability when the equation is nonlinear. More precisely, to begin with, we treat the problem of trend to equilibrium for the fractional Fokker-Planck and Boltzmann without cut-off equations, proving an exponential decay to equilibrium in spaces of type L1 with polynomial weights. Concerning the inhomogeneous Landau equation, we develop a Cauchy theory of perturbative solutions in spaces of type L2 with various weights such as polynomial and exponential weights and we also prove the exponential stability of these solutions. Then, we prove similar results for the inhomogeneous inelastic diffusively driven Boltzmann equation in a small inelasticity regime in L1 spaces with polynomial weights. Finally, we study in the same and uniform framework from the spectral analysis point of view with a semigroup approach several Fokker-Planck equations which converge towards the classical one
Pena, Ismael da Silva. "Análise de estabilidade de sistemas dinâmicos híbridos e descontínuos modelados por semigrupos /." São José do Rio Preto : [s.n.], 2008. http://hdl.handle.net/11449/94205.
Full textAbstract: Hybrid dynamical systems are characterized for showing simultaneously a variety of dynamic behaviors (continuous, discrete, discrete events) in different parts of the System. This work discusses stability results in the Lyapunov sense for general hybrid dynamical systems that use a generalized notion of time, defined in a completely ordered metric space. It has been shown that these systems may be immersed in discontinuous dynamical systems defined in R+, so that their quality properties are preserved. As the main focus, it is studied stability results for discontinuous dynamical systems modeled by semigroup operators, in which the states belong to Banach spaces. In this case, an alternative to the classical theory of stability, the results do not make use of the usual Lyapunov functions, and therefore are easier to apply, in view of the difficulty in finding such functions for many systems. Furthermore, the results were applied to a class of time-delay discontinuous differential equations.
Orientador: Geraldo Nunes Silva
Coorientador: Luís Antônio Fernandes de Oliveira
Banca: Carlos Alberto Raposo da Cunha
Banca: Waldemar Donizete Bastos
Mestre
Milce, Aril. "Fonctions Presque Automorphes et Applications aux EquationsDynamiques sur Time Scales." Thesis, Antilles, 2015. http://www.theses.fr/2015ANTI0011/document.
Full textIn this thesis, we refine the notion of almost automorphic functions on time scales introduced in the literature by Lizama and Mesquita, we explore some new properties of such functions and apply the results to study the existence and uniqueness of almost automorphic solution for a new class of dynamic equations on time scales. Then we introduce the concept of almost automorphic functions of order n on time scales, we investigate the fundamental properties of these functions and we use the findings to establish the existence and uniqueness and the global stability of almost automorphic solution of one to a first order dynamical equation with finite time varying delay. Then we present the concept of asymptotically almost automorphic functions of order n on time scales. We study the properties of these functions and we use the results to prove, under suitable hypothesis, that the unique solution to a problem with initial condition is asymptotically almost automorphic of order one at the one hand, and the existence and uniqueness of asymptotically almost automorphic solution for an integro-dynamic equation with nonlocal initial conditon on time scales in other hand. Finally, using the concept of semigroup on time scales introduced by Hamza and Oraby, we generalize the results in Lizama and Mesquita's paper for abstract Banach spaces, that is, we study the existence and uniqueness of almost automorphic solution for semilinear abstract dynamic equations on time scales
Ndao, Mamadou. "Estimation de la vitesse de retour à l'équilibre dans les équations de Fokker-Planck." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLV036/document.
Full textThis thesis is devoted to the Fokker-Planck équation partial_t f =∆f + div(E f).It is divided into two parts. The rst part deals with the linear problem. In this part we consider a vector E(x) depending only on x. It is composed of chapters 3, 4 and 5. In chapter 3 we prove that the linear operator Lf :=∆f + div(Ef ) is an in nitesimal generator of a strong continuous semigroup (SL(t))_{t≥0}. We establish also that (SL(t))_{t≥0} is positive and ultracontractive. In chapter 4 we show how an adequate decomposition of the linear operator L allows us to deduce interesting properties for the semigroup (SL(t))_{t≥0}. Indeed using this decomposition we prove that (SL(t))_{t≥0} is a bounded semigroup. In the last chapter of this part we establish that the linear Fokker-Planck admits a unique steady state. Moreover this stationary solution is asymptotically stable.In the nonlinear part we consider a vector eld of the form E(x, f ) := x +nabla (a *f ), where a and f are regular functions. It is composed of two chapters. In chapter 6 we establish that fora in W^{2,infini}_locthe nonlinear problem has a unique local solution in L^2_{K_alpha}(R^d); . To end this part we prove in chapter 7 that the nonlinear problem has a unique global solution in L^2_k(R^d). This solution depends continuously on the data
Lassoued, Dhaou. "Fonctions presque-périodiques et Équations Différentielles." Phd thesis, Université Panthéon-Sorbonne - Paris I, 2013. http://tel.archives-ouvertes.fr/tel-00942969.
Full textLichtner, Mark. "Exponential dichotomy and smooth invariant center manifolds for semilinear hyperbolic systems." Doctoral thesis, [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=981306659.
Full textLi, Xiaodong. "Observation et commande de quelques systèmes à paramètres distribués." Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00456850.
Full textCaetano, Diogo Loureiro. "Linear stability for differential equations with infinite delay via semigroup theory." Master's thesis, 2018. http://hdl.handle.net/10451/34646.
Full textIn this dissertation, we provide a proof of a Principle of Linearized Stability for a class of autonomous differential equations with infinite delay. This is done via techniques from functional analysis, namely duality theory for semigroups of bounded linear operators, following the approach of O. Diekmann and M. Gyllenberg in [12]. First, we make a detailed study of some aspects of the theory of strongly continuous semigroups (also called C0 semigroups) of linear operators in Banach spaces. In particular, we prove the classical theorem of Hille-Yosida, characterizing infinitesimal generators of C0 semigroups, and define the adjoint of a strongly continuous semigroup. Since the adjoint semigroup is not necessarily strongly continuous, we study whether it can be restricted to some subdomain where strong continuity holds. This is the starting point for the sun-star calculus, of which we make use throughout the remaining chapters. We introduce some elements of the sun-star theory for linear operators and give meaning to an abstract integral equation, for which we prove existence, uniqueness, continuation and regularity of solutions. We then consider, in a suitable (weighted) space of continuous functions on (-∞;0] that vanish at -∞, an initial value problem for a differential equation with infinite delay and prove an equivalence result between solutions of such equation and the solution semigroup of an abstract integral equation. After that, we study the characteristic equation of the linearized problem, and prove that the roots of this equation are precisely the eigenvalues of the infinitesimal generator of the solution semigroup of the linear equation. Moreover, we show that, on a fixed half-space, there are only finitely many such roots. Consequently, the spectral projection of the resolvent operator induces a decomposition of the phase space as the direct sum of two invariant subspaces - one with finite dimension, and the other where the semigroup is exponentially stable -, to which we can apply a theorem by Desch and Schappacher. As a result, we obtain a proof of the Principle of Linearized Stability, generalizing for this case the well-known result for ordinary and finite-delay differential equations.
Eisner, Tatjana [Verfasser]. "Stability of operators and C0-semigroups / Tatjana Eisner." 2007. http://d-nb.info/985524928/34.
Full textChoudhary, Renu. "Convergence of Lyapounov Functions Along Trajectories of Nonexpansive Semigroups: Generic Convergence and Stability." 2005. http://hdl.handle.net/2292/361.
Full text