To see the other types of publications on this topic, follow the link: Semismooth.

Journal articles on the topic 'Semismooth'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Semismooth.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sun, Defeng, and Jie Sun. "Semismooth Matrix-Valued Functions." Mathematics of Operations Research 27, no. 1 (February 2002): 150–69. http://dx.doi.org/10.1287/moor.27.1.150.342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Farrell, Patrick E., Matteo Croci, and Thomas M. Surowiec. "Deflation for semismooth equations." Optimization Methods and Software 35, no. 6 (May 16, 2019): 1248–71. http://dx.doi.org/10.1080/10556788.2019.1613655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bolte, Jérôme, Aris Daniilidis, and Adrian Lewis. "Tame functions are semismooth." Mathematical Programming 117, no. 1-2 (July 21, 2007): 5–19. http://dx.doi.org/10.1007/s10107-007-0166-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yang, Y. F. "A new trust region method for nonsmooth equations." ANZIAM Journal 44, no. 4 (April 2003): 595–607. http://dx.doi.org/10.1017/s1446181100012967.

Full text
Abstract:
AbstractWe propose a new trust region algorithm for solving the system of nonsmooth equations F(x) = 0 by using a smooth function satisfying the Jacobian consistency property to approximate the nonsmooth function F(x). Compared with existing trust region methods for systems of nonsmooth equations, the proposed algorithm possesses some nice convergence properties. Global convergence is established and, in particular, locally superlinear or quadratical convergence is obtained if F is semismooth or strongly semismooth at the solution.
APA, Harvard, Vancouver, ISO, and other styles
5

Izmailov, Alexey F., Alexey S. Kurennoy, and Mikhail V. Solodov. "The Josephy–Newton Method for Semismooth Generalized Equations and Semismooth SQP for Optimization." Set-Valued and Variational Analysis 21, no. 1 (July 18, 2012): 17–45. http://dx.doi.org/10.1007/s11228-012-0218-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhou, Shui-sheng, Hong-wei Liu, Li-hua Zhou, and Feng Ye. "Semismooth Newton support vector machine." Pattern Recognition Letters 28, no. 15 (November 2007): 2054–62. http://dx.doi.org/10.1016/j.patrec.2007.06.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pickl, Stefan. "Solving the semismooth equivalence problem." European Journal of Operational Research 157, no. 1 (August 2004): 68–73. http://dx.doi.org/10.1016/j.ejor.2003.05.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Potra, Florian A., Liqun Qi, and Defeng Sun. "Secant methods for semismooth equations." Numerische Mathematik 80, no. 2 (August 1, 1998): 305–24. http://dx.doi.org/10.1007/s002110050369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bonettini, Silvia, and Federica Tinti. "A nonmonotone semismooth inexact Newton method." Optimization Methods and Software 22, no. 4 (August 2007): 637–57. http://dx.doi.org/10.1080/10556780601079258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Movahedian, Nooshin. "Nonsmooth Calculus of Semismooth Functions and Maps." Journal of Optimization Theory and Applications 160, no. 2 (September 5, 2013): 415–38. http://dx.doi.org/10.1007/s10957-013-0407-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Tong, Xiaojiao, Dong-Hui Li, and Liqun Qi. "An iterative method for solving semismooth equations." Journal of Computational and Applied Mathematics 146, no. 1 (September 2002): 1–10. http://dx.doi.org/10.1016/s0377-0427(02)00413-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Amstutz, Samuel. "A semismooth Newton method for topology optimization." Nonlinear Analysis: Theory, Methods & Applications 73, no. 6 (September 2010): 1585–95. http://dx.doi.org/10.1016/j.na.2010.04.065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Amat, S., and S. Busquier. "A modified secant method for semismooth equations." Applied Mathematics Letters 16, no. 6 (August 2003): 877–81. http://dx.doi.org/10.1016/s0893-9659(03)90011-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Sun, Zhe, Jinping Zeng, and Hongru Xu. "Generalized Newton-iterative method for semismooth equations." Numerical Algorithms 58, no. 3 (March 26, 2011): 333–49. http://dx.doi.org/10.1007/s11075-011-9458-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Chaney, Robin W. "Second-order necessary conditions in semismooth optimization." Mathematical Programming 40-40, no. 1-3 (January 1988): 95–109. http://dx.doi.org/10.1007/bf01580725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ko, Chun-Hsu, and Jein-Shan Chen. "Optimal Grasping Manipulation for Multifingered Robots Using Semismooth Newton Method." Mathematical Problems in Engineering 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/681710.

Full text
Abstract:
Multifingered robots play an important role in manipulation applications. They can grasp various shaped objects to perform point-to-point movement. It is important to plan the motion path of the object and appropriately control the grasping forces for multifingered robot manipulation. In this paper, we perform the optimal grasping control to find both optimal motion path of the object and minimum grasping forces in the manipulation. The rigid body dynamics of the object and the grasping forces subjected to the second-order cone (SOC) constraints are considered in optimal control problem. The minimum principle is applied to obtain the system equalities and the SOC complementarity problems. The SOC complementarity problems are further recast as the equations with the Fischer-Burmeister (FB) function. Since the FB function is semismooth, the semismooth Newton method with the generalized Jacobian of FB function is used to solve the nonlinear equations. The 2D and 3D simulations of grasping manipulation are performed to demonstrate the effectiveness of the proposed approach.
APA, Harvard, Vancouver, ISO, and other styles
17

Cao, Xi-Ren. "Semismooth Potentials of Stochastic Systems With Degenerate Diffusions." IEEE Transactions on Automatic Control 63, no. 10 (October 2018): 3566–72. http://dx.doi.org/10.1109/tac.2018.2800528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Munson, Todd S., Francisco Facchinei, Michael C. Ferris, Andreas Fischer, and Christian Kanzow. "The Semismooth Algorithm for Large Scale Complementarity Problems." INFORMS Journal on Computing 13, no. 4 (November 2001): 294–311. http://dx.doi.org/10.1287/ijoc.13.4.294.9734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Pang, J. S. "Frictional contact models with local compliance: semismooth formulation." ZAMM 88, no. 6 (June 5, 2008): 454–71. http://dx.doi.org/10.1002/zamm.200600039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Chaney, Robin W. "Second-Order Necessary Conditions in Constrained Semismooth Optimization." SIAM Journal on Control and Optimization 25, no. 4 (July 1987): 1072–81. http://dx.doi.org/10.1137/0325059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Münnich, Ralf T., Ekkehard W. Sachs, and Matthias Wagner. "Calibration of estimator-weights via semismooth Newton method." Journal of Global Optimization 52, no. 3 (August 4, 2011): 471–85. http://dx.doi.org/10.1007/s10898-011-9759-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lassonde, Marc. "Upper Semismooth Functions and the Subdifferential Determination Property." Set-Valued and Variational Analysis 26, no. 1 (January 3, 2018): 95–109. http://dx.doi.org/10.1007/s11228-017-0467-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ng, Michael K., Liqun Qi, Yu-fei Yang, and Yu-mei Huang. "On Semismooth Newton’s Methods for Total Variation Minimization." Journal of Mathematical Imaging and Vision 27, no. 3 (March 7, 2007): 265–76. http://dx.doi.org/10.1007/s10851-007-0650-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ulbrich, Michael. "A Multigrid Semismooth Newton Method for Semilinear Contact Problems." Journal of Computational Mathematics 35, no. 4 (June 2017): 486–528. http://dx.doi.org/10.4208/jcm.1702-m2016-0679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ding, Liang, and Xueru Zhao. "Shearlet-Wavelet Regularized Semismooth Newton Iteration for Image Restoration." Mathematical Problems in Engineering 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/647254.

Full text
Abstract:
Image normally has both dots-like and curve structures. But the traditional wavelet or multidirectional wave (ridgelet, contourlet, curvelet, etc.) could only restore one of these structures efficiently so that the restoration results for complex images are unsatisfactory. For the image restoration, this paper adopted a strategy of combined shearlet and wavelet frame and proposed a new restoration method. Theoretically, image sparse representation of dots-like and curve structures could be achieved by shearlet and wavelet, respectively. Under theL1regularization, the two frame-sparse structures could show their respective advantages and efficiently restore the two structures. In order to achieve superlinear convergence, this paper applied semismooth Newton method based on subgradient to solve objective functional without differentiability. Finally, through numerical results, the effectiveness of this strategy was validated, which presented outstanding advantages for any individual frame alone. Some detailed information that could not be restored in individual frame could be clearly demonstrated with this strategy.
APA, Harvard, Vancouver, ISO, and other styles
26

Pieraccini, S., M. G. Gasparo, and A. Pasquali. "Global Newton-type methods and semismooth reformulations for NCP." Applied Numerical Mathematics 44, no. 3 (February 2003): 367–84. http://dx.doi.org/10.1016/s0168-9274(02)00169-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Daryina, A. N., and A. F. Izmailov. "Semismooth Newton method for quadratic programs with bound constraints." Computational Mathematics and Mathematical Physics 49, no. 10 (October 2009): 1706–16. http://dx.doi.org/10.1134/s0965542509100066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Pang, Zhi-Feng, and Yu-Fei Yang. "Semismooth Newton method for minimization of the LLT model." Inverse Problems & Imaging 3, no. 4 (2009): 677–91. http://dx.doi.org/10.3934/ipi.2009.3.677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Tong, Xiaojiao, Felix F. Wu, Yongping Zhang, Zheng Yan, and Yixin Ni. "A semismooth Newton method for solving optimal power flow." Journal of Industrial & Management Optimization 3, no. 3 (2007): 553–67. http://dx.doi.org/10.3934/jimo.2007.3.553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Hager, Corinna, and Barbara I. Wohlmuth. "Semismooth Newton methods for variational problems with inequality constraints." GAMM-Mitteilungen 33, no. 1 (April 2010): 8–24. http://dx.doi.org/10.1002/gamm.201010002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Wang, Changyu, Qian Liu, and Cheng Ma. "Smoothing SQP algorithm for semismooth equations with box constraints." Computational Optimization and Applications 55, no. 2 (December 20, 2012): 399–425. http://dx.doi.org/10.1007/s10589-012-9524-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Chen, Xiaojun, Zuhair Nashed, and Liqun Qi. "Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations." SIAM Journal on Numerical Analysis 38, no. 4 (January 2000): 1200–1216. http://dx.doi.org/10.1137/s0036142999356719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Chu, Dejun, Rui Lu, Jin Li, Xintong Yu, Changshui Zhang, and Qing Tao. "Optimizing Top- $k$ Multiclass SVM via Semismooth Newton Algorithm." IEEE Transactions on Neural Networks and Learning Systems 29, no. 12 (December 2018): 6264–75. http://dx.doi.org/10.1109/tnnls.2018.2826039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Chen, Zhongming, and Liqun Qi. "A semismooth Newton method for tensor eigenvalue complementarity problem." Computational Optimization and Applications 65, no. 1 (March 14, 2016): 109–26. http://dx.doi.org/10.1007/s10589-016-9838-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kanzow, Christian. "Inexact semismooth Newton methods for large-scale complementarity problems." Optimization Methods and Software 19, no. 3-4 (June 2004): 309–25. http://dx.doi.org/10.1080/10556780310001636369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ulbrich, Michael. "Semismooth Newton Methods for Operator Equations in Function Spaces." SIAM Journal on Optimization 13, no. 3 (January 2002): 805–41. http://dx.doi.org/10.1137/s1052623400371569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Facchinei, Francisco, Andreas Fischer, and Christian Kanzow. "Regularity Properties of a Semismooth Reformulation of Variational Inequalities." SIAM Journal on Optimization 8, no. 3 (August 1998): 850–69. http://dx.doi.org/10.1137/s1052623496298194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Milzarek, Andre, Xiantao Xiao, Shicong Cen, Zaiwen Wen, and Michael Ulbrich. "A Stochastic Semismooth Newton Method for Nonsmooth Nonconvex Optimization." SIAM Journal on Optimization 29, no. 4 (January 2019): 2916–48. http://dx.doi.org/10.1137/18m1181249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zhao, Hong-Jie, and Haijian Yang. "Semismooth Newton methods with domain decomposition for American options." Journal of Computational and Applied Mathematics 337 (August 2018): 37–50. http://dx.doi.org/10.1016/j.cam.2017.12.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Studniarski, Marcin, and El Desouky Rahmo. "Approximating Clarke’s subgradients of semismooth functions by divided differences." Numerical Algorithms 43, no. 4 (February 20, 2007): 385–92. http://dx.doi.org/10.1007/s11075-007-9069-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Zeng, Jinping, Zhe Sun, and Hongru Xu. "Semismooth Newton and Newton iterative methods for HJB equation." Journal of Computational and Applied Mathematics 235, no. 13 (May 2011): 3859–69. http://dx.doi.org/10.1016/j.cam.2011.01.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kong, Lingchen, and Qingmin Meng. "A semismooth Newton method for nonlinear symmetric cone programming." Mathematical Methods of Operations Research 76, no. 2 (May 16, 2012): 129–45. http://dx.doi.org/10.1007/s00186-012-0393-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Gfrerer, Helmut, and Jiří V. Outrata. "On a Semismooth* Newton Method for Solving Generalized Equations." SIAM Journal on Optimization 31, no. 1 (January 2021): 489–517. http://dx.doi.org/10.1137/19m1257408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Wu, Jia, and Shougui Zhang. "Boundary Element and Augmented Lagrangian Methods for Contact Problem with Coulomb Friction." Mathematical Problems in Engineering 2020 (July 17, 2020): 1–10. http://dx.doi.org/10.1155/2020/7490736.

Full text
Abstract:
In this paper, boundary element and augmented Lagrangian methods for Coulomb friction contact problems are presented. Based on the projection technique, both unilateral contact and Coulomb friction conditions are reformulated as fixed point problems. The original problem is deduced to a variational formulation with boundary integral operators. Then, we propose a new augmented Lagrangian method which can be dealt with the semismooth Newton method. Short theoretical results and the algorithm description are given. Numerical simulations show the performance of the method proposed.
APA, Harvard, Vancouver, ISO, and other styles
45

Pieraccini, S. "Hybrid Newton-Type Method for a Class of Semismooth Equations." Journal of Optimization Theory and Applications 112, no. 2 (February 2002): 381–402. http://dx.doi.org/10.1023/a:1013610108041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Stein, Oliver, and Aysun Tezel. "The Semismooth Approach for Semi-Infinite Programming without Strict Complementarity." SIAM Journal on Optimization 20, no. 2 (January 2009): 1052–72. http://dx.doi.org/10.1137/080719765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Schiela, Anton. "A Simplified Approach to Semismooth Newton Methods in Function Space." SIAM Journal on Optimization 19, no. 3 (January 2008): 1417–32. http://dx.doi.org/10.1137/060674375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Yin, Hongxia, Chen Ling, and Liqun Qi. "Smooth and Semismooth Newton Methods for Constrained Approximation and Estimation." Numerical Functional Analysis and Optimization 33, no. 5 (May 2012): 558–89. http://dx.doi.org/10.1080/01630563.2011.653071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ito, Kazufumi, and Karl Kunisch. "Minimal Effort Problems and Their Treatment by Semismooth Newton Methods." SIAM Journal on Control and Optimization 49, no. 5 (January 2011): 2083–100. http://dx.doi.org/10.1137/100784667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Shi, Yueyong, Jian Huang, Yuling Jiao, and Qinglong Yang. "A Semismooth Newton Algorithm for High-Dimensional Nonconvex Sparse Learning." IEEE Transactions on Neural Networks and Learning Systems 31, no. 8 (August 2020): 2993–3006. http://dx.doi.org/10.1109/tnnls.2019.2935001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography