Journal articles on the topic 'Sensing; Chemoresistive; Electronic nose'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Sensing; Chemoresistive; Electronic nose.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Park, Seo Yun, Yeonhoo Kim, Taehoon Kim, Tae Hoon Eom, Soo Young Kim, and Ho Won Jang. "Chemoresistive materials for electronic nose: Progress, perspectives, and challenges." InfoMat 1, no. 3 (2019): 289–316. http://dx.doi.org/10.1002/inf2.12029.
Full textHobson, R. S., A. Clausi, Thomas Oh, and A. Guiseppi-Elie. "Temperature correction to chemoresistive sensors in an e-NOSE-ANN system." IEEE Sensors Journal 3, no. 4 (2003): 484–89. http://dx.doi.org/10.1109/jsen.2003.816262.
Full textNANTO, Hidehito. "Electronic Nose System for Kansei-sensing." Hyomen Kagaku 27, no. 1 (2006): 39–45. http://dx.doi.org/10.1380/jsssj.27.39.
Full textDjelouat, Hamza, Amine Ait Si Ali, Abbes Amira, and Faycal Bensaali. "Compressive sensing based electronic nose platform." Digital Signal Processing 60 (January 2017): 350–59. http://dx.doi.org/10.1016/j.dsp.2016.10.006.
Full textKılınç, N., D. Atilla, S. Öztürk, A. G. Gürek, Z. Z. Öztürk, and Vefa Ahsen. "Oxidizing gas sensing properties of mesogenic copper octakisalkylthiophthalocyanine chemoresistive sensors." Thin Solid Films 517, no. 22 (2009): 6206–10. http://dx.doi.org/10.1016/j.tsf.2009.04.005.
Full textGaiardo, Andrea, Giulia Zonta, Sandro Gherardi, et al. "Nanostructured SmFeO3 Gas Sensors: Investigation of the Gas Sensing Performance Reproducibility for Colorectal Cancer Screening." Sensors 20, no. 20 (2020): 5910. http://dx.doi.org/10.3390/s20205910.
Full textLanders, Jay. "‘Electronic Nose’ Aims to Improve Chemical Sensing Capabilities." Civil Engineering Magazine Archive 79, no. 1 (2009): 32–34. http://dx.doi.org/10.1061/ciegag.0000597.
Full textZhang, Wenli, Fengchun Tian, An Song, Zhenzhen Zhao, Youwen Hu, and Anyan Jiang. "Continuous wide spectrum odor sensing for electronic nose system." Sensor Review 38, no. 2 (2018): 223–30. http://dx.doi.org/10.1108/sr-04-2017-0067.
Full textFabbri, B., S. Gherardi, A. Giberti, V. Guidi, and C. Malagù. "Sensing of gaseous malodors characteristic of landfills and waste treatment plants." Journal of Sensors and Sensor Systems 3, no. 1 (2014): 61–67. http://dx.doi.org/10.5194/jsss-3-61-2014.
Full textShurmer, H. V., P. Corcoran, and M. K. James. "Sensitivity enhancement for gas sensing and electronic nose applications." Sensors and Actuators B: Chemical 16, no. 1-3 (1993): 256–59. http://dx.doi.org/10.1016/0925-4005(93)85191-c.
Full textCole, Marina, James A. Covington, and Julian W. Gardner. "Combined electronic nose and tongue for a flavour sensing system." Sensors and Actuators B: Chemical 156, no. 2 (2011): 832–39. http://dx.doi.org/10.1016/j.snb.2011.02.049.
Full textDegler, David. "Trends and Advances in the Characterization of Gas Sensing Materials Based on Semiconducting Oxides." Sensors 18, no. 10 (2018): 3544. http://dx.doi.org/10.3390/s18103544.
Full textTung, Tran Thanh, Nguyen Viet Chien, Nguyen Van Duy, et al. "Magnetic iron oxide nanoparticles decorated graphene for chemoresistive gas sensing: The particle size effects." Journal of Colloid and Interface Science 539 (March 2019): 315–25. http://dx.doi.org/10.1016/j.jcis.2018.12.077.
Full textGaiardo, Andrea, David Novel, Elia Scattolo, et al. "Optimization of a Low-Power Chemoresistive Gas Sensor: Predictive Thermal Modelling and Mechanical Failure Analysis." Sensors 21, no. 3 (2021): 783. http://dx.doi.org/10.3390/s21030783.
Full textSysoev, Victor V., Joachim Goschnick, Thomas Schneider, Evghenii Strelcov, and Andrei Kolmakov. "A Gradient Microarray Electronic Nose Based on Percolating SnO2Nanowire Sensing Elements." Nano Letters 7, no. 10 (2007): 3182–88. http://dx.doi.org/10.1021/nl071815+.
Full textGan, H. L., Y. B. Che Man, C. P. Tan, I. NorAini, and S. A. H. Nazimah. "Characterisation of vegetable oils by surface acoustic wave sensing electronic nose." Food Chemistry 89, no. 4 (2005): 507–18. http://dx.doi.org/10.1016/j.foodchem.2004.03.005.
Full textOgorodnik, V., J. Kleperis, I. Taivans, N. Jurka, and M. Bukovskis. "Electronic Nose for Identification of Lung Diseases." Latvian Journal of Physics and Technical Sciences 45, no. 5 (2008): 60–67. http://dx.doi.org/10.2478/v10047-008-0026-2.
Full textLozano, Jesús. "Towards the Miniaturization of Electronic Nose as Personal Measurement Systems." Proceedings 14, no. 1 (2019): 30. http://dx.doi.org/10.3390/proceedings2019014030.
Full textStolarczyk, Agnieszka, Tomasz Jarosz, and Marcin Procek. "Room Temperature Hydrogen Gas Sensing via Reversible Hydrogenation of Electrochemically Deposited Polycarbazole on Interdigitated Pt Transducers." Sensors 19, no. 5 (2019): 1098. http://dx.doi.org/10.3390/s19051098.
Full textStuetz, R. M., G. Engin, and R. A. Fenner. "Sewage odour measurements using a sensory panel and an electronic nose." Water Science and Technology 38, no. 3 (1998): 331–35. http://dx.doi.org/10.2166/wst.1998.0228.
Full textMao, Zhenghao, Jianchao Wang, Youjin Gong, Heng Yang, and Shunping Zhang. "A Set of Platforms with Combinatorial and High-Throughput Technique for Gas Sensing, from Material to Device and to System." Micromachines 9, no. 11 (2018): 606. http://dx.doi.org/10.3390/mi9110606.
Full textGongora, Andres, Javier Monroy, and Javier Gonzalez-Jimenez. "An Electronic Architecture for Multipurpose Artificial Noses." Journal of Sensors 2018 (2018): 1–9. http://dx.doi.org/10.1155/2018/5427693.
Full textAlvarado, Miriam, Silvia De La Flor, Eduard Llobet, Alfonso Romero, and José Luis Ramírez. "Performance of Flexible Chemoresistive Gas Sensors after Having Undergone Automated Bending Tests." Sensors 19, no. 23 (2019): 5190. http://dx.doi.org/10.3390/s19235190.
Full textZhang, Wenli, Fengchun Tian, An Song, and Youwen Hu. "Research on electronic nose system based on continuous wide spectral gas sensing." Microchemical Journal 140 (July 2018): 1–7. http://dx.doi.org/10.1016/j.microc.2018.03.030.
Full textZhao, Zhenzhen, Fengchun Tian, Hailin Liao, Xin Yin, Yan Liu, and Bin Yu. "A novel spectrum analysis technique for odor sensing in optical electronic nose." Sensors and Actuators B: Chemical 222 (January 2016): 769–79. http://dx.doi.org/10.1016/j.snb.2015.08.128.
Full textRusso, Daniel V., Michael J. Burek, Ryan M. Iutzi, James A. Mracek, and Thorsten Hesjedal. "Development of an electronic nose sensing platform for undergraduate education in nanotechnology." European Journal of Physics 32, no. 3 (2011): 675–86. http://dx.doi.org/10.1088/0143-0807/32/3/004.
Full textEsfahani, Siavash, Akira Tiele, Samuel O. Agbroko, and James A. Covington. "Development of a Tuneable NDIR Optical Electronic Nose." Sensors 20, no. 23 (2020): 6875. http://dx.doi.org/10.3390/s20236875.
Full textZhang, Wen-Li, Zhao-Yu Liu, Heng Wang, et al. "A Novel Type of Feature Extraction Algorithm Based on Multi-Directional Analysis for Visual Optical Electronic Nose." Journal of Nanoelectronics and Optoelectronics 16, no. 3 (2021): 374–79. http://dx.doi.org/10.1166/jno.2021.2981.
Full textRiscica, F., E. Dirani, A. Accardo, and A. I. Chapoval. "An Inexpensive, Portable, and Versatile Electronic Nose for Illness Detect." Izvestiya of Altai State University, no. 1(117) (March 17, 2021): 47–52. http://dx.doi.org/10.14258/izvasu(2021)1-07.
Full textWilson, Alphus Dan. "Applications of Electronic-Nose Technologies for Noninvasive Early Detection of Plant, Animal and Human Diseases." Chemosensors 6, no. 4 (2018): 45. http://dx.doi.org/10.3390/chemosensors6040045.
Full textFazio, Enza, Salvatore Spadaro, Carmelo Corsaro, et al. "Metal-Oxide Based Nanomaterials: Synthesis, Characterization and Their Applications in Electrical and Electrochemical Sensors." Sensors 21, no. 7 (2021): 2494. http://dx.doi.org/10.3390/s21072494.
Full textWedge, David C., Arindam Das, René Dost, et al. "Real-time vapour sensing using an OFET-based electronic nose and genetic programming." Sensors and Actuators B: Chemical 143, no. 1 (2009): 365–72. http://dx.doi.org/10.1016/j.snb.2009.09.030.
Full textLiu, Ke, Jing Zhang, Ling Xu, et al. "Film-based fluorescence sensing: a “chemical nose” for nicotine." Chemical Communications 55, no. 84 (2019): 12679–82. http://dx.doi.org/10.1039/c9cc06771j.
Full textMCCOY, STEPHEN A., TREVOR P. MARTIN, and JAMES F. BALDWIN. "LEARNING RULES FOR ODOUR RECOGNITION IN AN ELECTRONIC NOSE." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 11, no. 05 (2003): 517–43. http://dx.doi.org/10.1142/s0218488503002314.
Full textTriyana, Kuwat, M. Taukhid Subekti, Prasetyo Aji, Shidiq Nur Hidayat, and Abdul Rohman. "Development of Electronic Nose with Low-Cost Dynamic Headspace for Classifying Vegetable Oils and Animal Fats." Applied Mechanics and Materials 771 (July 2015): 50–54. http://dx.doi.org/10.4028/www.scientific.net/amm.771.50.
Full textHirsch, Ofer, Kristina O. Kvashnina, Li Luo, Martin J. Süess, Pieter Glatzel, and Dorota Koziej. "High-energy resolution X-ray absorption and emission spectroscopy reveals insight into unique selectivity of La-based nanoparticles for CO2." Proceedings of the National Academy of Sciences 112, no. 52 (2015): 15803–8. http://dx.doi.org/10.1073/pnas.1516192113.
Full textCasanova-Cháfer, Juan, Carla Bittencourt, and Eduard Llobet. "Hydrophilicity and carbon chain length effects on the gas sensing properties of chemoresistive, self-assembled monolayer carbon nanotube sensors." Beilstein Journal of Nanotechnology 10 (February 27, 2019): 565–77. http://dx.doi.org/10.3762/bjnano.10.58.
Full textWu, Zhiyuan, Hanying Zhang, Wentao Sun, et al. "Development of a Low-Cost Portable Electronic Nose for Cigarette Brands Identification." Sensors 20, no. 15 (2020): 4239. http://dx.doi.org/10.3390/s20154239.
Full textDietrich, Stefan, Mihails Kusnezoff, Uwe Petasch, and Alexander Michaelis. "Evaluation of Indium Tin Oxide for Gas Sensing Applications: Adsorption/Desorption and Electrical Conductivity Studies on Powders and Thick Films." Sensors 21, no. 2 (2021): 497. http://dx.doi.org/10.3390/s21020497.
Full textRadi, Radi, Barokah Barokah, Dwi Noor Rohmah, Eka Wahyudi, Muhammad Danu Adhityamurti, and Joko Purwo Leksono Yuroto Putro. "Implementation of an electronic nose for classification of synthetic flavors." Bulletin of Electrical Engineering and Informatics 10, no. 3 (2021): 1283–90. http://dx.doi.org/10.11591/eei.v10i3.3018.
Full textDOHARE, Punjan, Sudeshna BAGCHI, and Amol P. BHONDEKAR. "Performance optimisation of a sensing chamber using fluid dynamics simulation for electronic nose applications." TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES 28, no. 5 (2020): 3068–78. http://dx.doi.org/10.3906/elk-1903-103.
Full textPalaparthy, Vijay S., Shambhulingayya N. Doddapujar, Gaurav Gupta, et al. "E-Nose: Multichannel Analog Signal Conditioning Circuit With Pattern Recognition for Explosive Sensing." IEEE Sensors Journal 20, no. 3 (2020): 1373–82. http://dx.doi.org/10.1109/jsen.2019.2946253.
Full textKhatoon, Zeenat, H. Fouad, H. K. Seo, Mohamed Hashem, Z. A. Ansari, and S. G. Ansari. "Feasibility study of doped SnO2 nanomaterial for electronic nose towards sensing biomarkers of lung cancer." Journal of Materials Science: Materials in Electronics 31, no. 18 (2020): 15751–63. http://dx.doi.org/10.1007/s10854-020-04137-5.
Full textOrzechowska, Sylwia, Andrzej Mazurek, Renata Świsłocka, and Włodzimierz Lewandowski. "Electronic Nose: Recent Developments in Gas Sensing and Molecular Mechanisms of Graphene Detection and Other Materials." Materials 13, no. 1 (2019): 80. http://dx.doi.org/10.3390/ma13010080.
Full textUmar, Akrajas Ali, Muhamad Mat Salleh, and Muhammad Yahaya. "Optical Electronic Nose Based on Fe (III) Complex of Porphyrins Films for Detection of Volatile Compounds." Key Engineering Materials 495 (November 2011): 75–78. http://dx.doi.org/10.4028/www.scientific.net/kem.495.75.
Full textRasekh, Mansour, Hamed Karami, Alphus Dan Wilson, and Marek Gancarz. "Classification and Identification of Essential Oils from Herbs and Fruits Based on a MOS Electronic-Nose Technology." Chemosensors 9, no. 6 (2021): 142. http://dx.doi.org/10.3390/chemosensors9060142.
Full textFuentes, Sigfredo, Eden Tongson, Ranjith R. Unnithan, and Claudia Gonzalez Viejo. "Early Detection of Aphid Infestation and Insect-Plant Interaction Assessment in Wheat Using a Low-Cost Electronic Nose (E-Nose), Near-Infrared Spectroscopy and Machine Learning Modeling." Sensors 21, no. 17 (2021): 5948. http://dx.doi.org/10.3390/s21175948.
Full textBehi, Syrine, Nadra Bohli, Juan Casanova-Cháfer, Eduard Llobet, and Adnane Abdelghani. "Metal Oxide Nanoparticle-Decorated Few Layer Graphene Nanoflake Chemoresistors for the Detection of Aromatic Volatile Organic Compounds." Sensors 20, no. 12 (2020): 3413. http://dx.doi.org/10.3390/s20123413.
Full textMohapatra, Punyatoya, Suranjan Panigrahi, and Jayendra Amamcharla. "Evaluation of a commercial electronic nose system coupled with universal gas sensing chamber for sensing indicator compounds associated with meat safety." Journal of Food Measurement and Characterization 9, no. 2 (2015): 121–29. http://dx.doi.org/10.1007/s11694-014-9200-9.
Full textBanal, James Earl Patrick L., Rey Alfred G. Rañola, Karen S. Santiago, and Fortunato B. Iii Sevilla. "Electronic Nose Based on Conducting Polymers for the Discrimination of Medicinal Plants." Applied Mechanics and Materials 490-491 (January 2014): 1194–98. http://dx.doi.org/10.4028/www.scientific.net/amm.490-491.1194.
Full text