Academic literature on the topic 'Sensor Classification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sensor Classification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Sensor Classification"
FURTADO, Luiz Felipe de Almeida, Thiago Sanna Freire SILVA, Pedro José Farias FERNANDES, and Evelyn Márcia Leão de Moraes NOVO. "Land cover classification of Lago Grande de Curuai floodplain (Amazon, Brazil) using multi-sensor and image fusion techniques." Acta Amazonica 45, no. 2 (June 2015): 195–202. http://dx.doi.org/10.1590/1809-4392201401439.
Full textLatifah Husni, Nyayu, Ade Silvia, Siti Nurmaini, and Irsyadi Yani. "Metal Oxides Semiconductor Sensors for Odor Classification." International Journal of Reconfigurable and Embedded Systems (IJRES) 6, no. 3 (November 1, 2017): 133. http://dx.doi.org/10.11591/ijres.v6.i3.pp133-149.
Full textAbou Assi, Rawad, and Mohamed K. Watfa. "DEFACTO: Distributed Event ClassiFicATiOn in Wireless Sensor Networks." International Journal of Engineering and Technology 1, no. 1 (2009): 40–44. http://dx.doi.org/10.7763/ijet.2009.v1.7.
Full textGrybas, Heather, and Russell G. Congalton. "A Comparison of Multi-Temporal RGB and Multispectral UAS Imagery for Tree Species Classification in Heterogeneous New Hampshire Forests." Remote Sensing 13, no. 13 (July 4, 2021): 2631. http://dx.doi.org/10.3390/rs13132631.
Full textWhite, R. M. "A Sensor Classification Scheme." IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 34, no. 2 (March 1987): 124–26. http://dx.doi.org/10.1109/t-uffc.1987.26922.
Full textSONG, JIFENG, and YUNJIAN GE. "BINARY TREE BASED CLASSIFICATION METHOD FOR THE MATERIAL LAYER AND MULTILINK CONVERSION MODEL OF SIGNAL PROPAGATION PROCESS OF INFORMATION ACQUISITION." International Journal of Information Acquisition 08, no. 01 (March 2011): 65–74. http://dx.doi.org/10.1142/s0219878911002318.
Full textJayasinghe, Udeni, William S. Harwin, and Faustina Hwang. "Comparing Clothing-Mounted Sensors with Wearable Sensors for Movement Analysis and Activity Classification." Sensors 20, no. 1 (December 21, 2019): 82. http://dx.doi.org/10.3390/s20010082.
Full textCommault, Christian, Jean-Michel Dion, Trong Hieu Do, and Do Hieu Trinh. "Sensor classification for observability preservation under sensor failure." IFAC Proceedings Volumes 42, no. 8 (2009): 408–13. http://dx.doi.org/10.3182/20090630-4-es-2003.00068.
Full textRahmantyo, Wikan Haryo, and Danang Lelono. "Analisis Respons Sensor Electroni Tongue terhadap Sampel Ganja menggunakan Support Vector Machine." IJEIS (Indonesian Journal of Electronics and Instrumentation Systems) 9, no. 2 (October 31, 2019): 141. http://dx.doi.org/10.22146/ijeis.49173.
Full textMori, Taketoshi, Ryo Urushibata, Hiroshi Noguchi, Masamichi Shimosaka, Hiromi Sanada, and Tomomasa Sato. "Sensor Arrangement for Classification of Life Activities with Pyroelectric Sensors - Arrangement to Save Sensors and to Quasi-Maximize Classification Precision." Journal of Robotics and Mechatronics 23, no. 4 (August 20, 2011): 494–504. http://dx.doi.org/10.20965/jrm.2011.p0494.
Full textDissertations / Theses on the topic "Sensor Classification"
Barua, Shaibal. "Multi-sensor Information Fusion for Classification of Driver's Physiological Sensor Data." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-18880.
Full textDennis, Jacob Henry. "On Quaternions and Activity Classification Across Sensor Domains." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/51196.
Full textMaster of Science
Wang, Beng Wei. "Analysis and classification of traffic in wireless sensor networks." Thesis, Monterey, Calif. : Naval Postgraduate School, 2007. http://bosun.nps.edu/uhtbin/hyperion.exe/07Mar%5FWang.pdf.
Full textThesis Advisor(s): John C. McEachen. "March 2007." Includes bibliographical references (p. 61-63). Also available in print.
Sun, Yang. "Intelligent wireless sensor network based vehicle detection and classification /." Full text available from ProQuest UM Digital Dissertations, 2007. http://0-proquest.umi.com.umiss.lib.olemiss.edu/pqdweb?index=1&did=1414125751&SrchMode=1&sid=3&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1219779610&clientId=22256.
Full textAbdelbar, Mahi Othman Helmi Mohamed Helmi Hussein. "Applications of Sensor Fusion to Classification, Localization and Mapping." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/82955.
Full textPh. D.
Hameed, Tariq, Ahsan Ashfaq, and Rabid Mehmood. "Intelligent Sensor." Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-17310.
Full textTyni, Elin, and Johanna Wikberg. "Classification of Wi-Fi Sensor Data for a Smarter City : Probabilistic Classification using Bayesian Statistics." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-159797.
Full textI takt med att städer växer med ökat antal invånare uppståar det problem i trafiken såsom trängsel och utsläpp av partiklar. Trafikplanerare ställs inför utmaningar i form av hur de kan underlätta pendling för invånarna och hur de, i så stor utsträckning som möjligt, kan minska fordon i tätorten. Innan potentiella förbättringar och ombyggnationer kan genomföras måste trafiken kartläggas. Resultatet från en sannolikhetsklassificering på Wi-Fi sensordata insamlat i ett område i södra delen av Stockholm visar att vissa gator är mer trafikerade av cyclister än fotgängare medan andra gator visar på motsatt föhållande. Resultatet ger en indikation på hur proportionen mellan de två grupperna kan se ut. Målet var att klassificera varje observation som antingen fotgängare eller cyklist. För att göra det har Bayesiansk statistik applicerats i form av en sannolikhetsklassifikation. Reslutatet från en klusteranalys genomförd med ”K-means clustering algorithm” användes som prior information till klassificeringsmodellen. För att kunna validera resultatet från detta ”unsupervised statistical learning” -problem, användes olika metoder för modelldiagnostik. Den valda modellen uppfyller alla krav för vad som anses vara rimligt f ̈or en stabil modell och visar tydliga tecken på konvergens. Data samlades in med Wi-Fi sensorer som upptäcker förbipasserande enheter som söker efter potentiella nätverk att koppla upp sig mot. Denna metod har visat sig inte vara den mest optimala, eftersom tillverkare idag producerar nätverkskort som genererar en slumpad adress varje gång en enhet försöker ansluta till ett nätverk. De slumpade adresserna gör det svårt att följa majoriteten av enheterna mellan sensorera, vilket gör denna typ av data olämplig för denna typ av studie. Därf ̈or föreslås att andra metoder för att samla in data används i framtiden.
Finkele, R. "A polarimetric millimetre wave sensor system for road surface classification." Thesis, Cranfield University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284920.
Full textSvanström, Fredrik. "Drone Detection and Classification using Machine Learning and Sensor Fusion." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-42141.
Full textJonsson, Patrik. "Surface Status Classification, Utilizing Image Sensor Technology and Computer Models." Doctoral thesis, Mittuniversitetet, Avdelningen för elektronikkonstruktion, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-24828.
Full textBooks on the topic "Sensor Classification"
Mallick, Mahendra, Vikram Krishnamurthy, and Ba-Ngu Vo, eds. Integrated Tracking, Classification, and Sensor Management. Hoboken, New Jersey: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118450550.
Full textWang, Yue. Search and Classification Using Multiple Autonomous Vehicles: Decision-Making and Sensor Management. 2nd ed. London: Springer London, 2012.
Find full textBrest, France) International Conference on Detection and Classification of Underwater Targets (2012. Proceedings of the 2012 International Conference on Detection and Classification of Underwater Targets. Newcastle upon Tyne, UK: Cambridge Scholars Publishing, 2014.
Find full textAchkasov, Evgeniy, Yuriy Vinnik, and Svetlana Dunaevskaya. Immunopathogenesis of acute pancreatitis. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1089245.
Full textCassiodorus, Senator, ca. 487-ca. 580., Halporn James W, and Vessey Mark, eds. Institutions of divine and secular learning: And, On the soul. Liverpool: Liverpool University Press, 2004.
Find full textTaxonomic revision of the Chiliotrichum group sensu stricto (Compositae: Astereae). Washington, D.C: Smithsonian Institution Scholarly Press, 2009.
Find full textKrishnamurthy, Vikram, Ba-Ngu Vo, and Mahendra Mallick. Integrated Tracking, Classification, and Sensor Management: Theory and Applications. Wiley & Sons, Incorporated, John, 2012.
Find full textIntegrated Tracking Classification And Sensor Management Theory And Applications. IEEE Computer Society Press, 2012.
Find full textKrishnamurthy, Vikram, Ba-Ngu Vo, and Mahendra Mallick. Integrated Tracking, Classification, and Sensor Management: Theory and Applications. Wiley & Sons, Incorporated, John, 2012.
Find full textKrishnamurthy, Vikram, Ba-Ngu Vo, and Mahendra Mallick. Integrated Tracking, Classification, and Sensor Management: Theory and Applications. Wiley & Sons, Incorporated, John, 2012.
Find full textBook chapters on the topic "Sensor Classification"
Grattan, K. T. V., and Y. N. Ning. "Classification of optical fiber sensors." In Optical Fiber Sensor Technology, 1–35. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5787-6_1.
Full textWang, Shifeng. "Multiple-Sensor Based Road Terrain Classification." In Road Terrain Classification Technology for Autonomous Vehicle, 79–93. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6155-5_6.
Full textMallick, Mahendra, Mark Morelande, Lyudmila Mihaylova, Sanjeev Arulampalam, and Yanjun Yan. "Angle-Only Filtering in Three Dimensions." In Integrated Tracking, Classification, and Sensor Management, 1–42. Hoboken, New Jersey: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118450550.ch01.
Full textGning, Amadou, Lyudmila Mihaylova, Fahed Abdallah, and Branko Ristic. "Particle Filtering Combined with Interval Methods for Tracking Applications." In Integrated Tracking, Classification, and Sensor Management, 43–74. Hoboken, New Jersey: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118450550.ch02.
Full textVo, Ba-Ngu, Ba-Tuong VO, and Daniel Clark. "Bayesian Multiple Target Filtering Using Random Finite Sets." In Integrated Tracking, Classification, and Sensor Management, 75–126. Hoboken, New Jersey: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118450550.ch03.
Full textBlom, Henk A. P. "The Continuous Time Roots of the Interacting Multiple Model Filter." In Integrated Tracking, Classification, and Sensor Management, 127–62. Hoboken, New Jersey: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118450550.ch04.
Full textMallick, Mahendra, Stefano Coraluppi, and Craig Carthel. "Multitarget Tracking Using Multiple Hypothesis Tracking." In Integrated Tracking, Classification, and Sensor Management, 163–203. Hoboken, New Jersey: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118450550.ch05.
Full textMertens, Michael, Michael Feldmann, Martin Ulmke, and Wolfgang Koch. "Tracking and Data Fusion for Ground Surveillance." In Integrated Tracking, Classification, and Sensor Management, 203–54. Hoboken, New Jersey: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118450550.ch06.
Full textHernandez, Marcel. "Performance Bounds for Target Tracking: Computationally Efficient Formulations and Associated Applications." In Integrated Tracking, Classification, and Sensor Management, 255–310. Hoboken, New Jersey: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118450550.ch07.
Full textDavey, Samuel J., Mark G. Rutten, and Neil J. Gordon. "Track-Before-Detect Techniques." In Integrated Tracking, Classification, and Sensor Management, 311–62. Hoboken, New Jersey: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118450550.ch08.
Full textConference papers on the topic "Sensor Classification"
Tamilselvan, Prasanna, Pingfeng Wang, and Byeng D. Youn. "Multi-Sensor Health Diagnosis Using Deep Belief Network Based State Classification." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48352.
Full textXue, Xin, V. Sundararajan, and Luis Gonzalez. "Gear Condition Monitoring and Classification Using Wireless Sensor Networks." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14895.
Full textManservigi, Lucrezia, Mauro Venturini, Giuseppe Fabio Ceschini, Giovanni Bechini, and Enzo Losi. "A General Diagnostic Methodology for Sensor Fault Detection, Classification and Overall Health State Assessment." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-90055.
Full textPetchartee, Somrak, and Gareth Monkman. "Contact Classification using Tactile Arrays." In 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information. IEEE, 2007. http://dx.doi.org/10.1109/issnip.2007.4496848.
Full textRooks, Tyler F., Andrea S. Dargie, and Valeta Carol Chancey. "Machine Learning Classification of Head Impact Sensor Data." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-12173.
Full textKay, Steven, Quan Ding, and Muralidhar Rangaswamy. "Sensor integration for classification." In 2010 44th Asilomar Conference on Signals, Systems and Computers. IEEE, 2010. http://dx.doi.org/10.1109/acssc.2010.5757820.
Full textToh, Kar-Ann. "Stretchy multivariate polynomial classification." In 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP). IEEE, 2015. http://dx.doi.org/10.1109/issnip.2015.7106898.
Full textFaiz, Farina. "Multilabel classification in human activity recognition." In SenSys '20: The 18th ACM Conference on Embedded Networked Sensor Systems. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3384419.3430578.
Full textToh, Kar-Ann. "Pattern classification adopting multivariate polynomials." In 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP). IEEE, 2014. http://dx.doi.org/10.1109/issnip.2014.6827591.
Full textFox, Maxine R., Raghu G. Raj, and Ram M. Narayanan. "Quantized wavelet scattering networks for signal classification." In Radar Sensor Technology XXIII, edited by Kenneth I. Ranney and Armin Doerry. SPIE, 2019. http://dx.doi.org/10.1117/12.2519659.
Full textReports on the topic "Sensor Classification"
Dasigi, V. R., R. C. Mann, and V. Protopopescu. Multi-sensor text classification experiments -- a comparison. Office of Scientific and Technical Information (OSTI), January 1997. http://dx.doi.org/10.2172/638201.
Full textEverett, Mark E., and Cam Nguyen. Multi-Sensor CSEM Technology for Buried Target Classification. Fort Belvoir, VA: Defense Technical Information Center, April 2006. http://dx.doi.org/10.21236/ada450482.
Full textCarin, Lawrence. Multi-Sensor Physics-Based Classification of Unexploded Ordnance. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada433734.
Full textDasigi, V. R., and R. C. Mann. Toward a multi-sensor-based approach to automatic text classification. Office of Scientific and Technical Information (OSTI), October 1995. http://dx.doi.org/10.2172/130610.
Full textProuty, Mark, David C. George, and Donald D. Snyder. MetalMapper: A Multi-Sensor TEM System for UXO Detection and Classification. Fort Belvoir, VA: Defense Technical Information Center, February 2011. http://dx.doi.org/10.21236/ada578954.
Full textOden, Charles P. Low-Cost Ultra-Wideband EM Sensor for UXO Detection and Classification. Fort Belvoir, VA: Defense Technical Information Center, April 2012. http://dx.doi.org/10.21236/ada579916.
Full textMiyamoto, Robert, David W. Krout, and Jack McLaughlin. Distributed Environmentally-Adaptive Detection, Classification, and Localization Using a Cooperative Sensor Network. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada538746.
Full textGoo, Gee-In. Broadband (Ultra Wideband) Sensor System for Active and Passive Detection and Classification of Targets. Fort Belvoir, VA: Defense Technical Information Center, July 2001. http://dx.doi.org/10.21236/ada388126.
Full textNelson, Carl V., Deborah P. Mendat, Toan B. Huynh, Liane C. Ramac-Thomas, James D. Beaty, and Joseph N. Craig. Three-Dimensional Steerable Magnetic Field (3DSMF) Sensor System for Classification of Buried Metal Targets. Fort Belvoir, VA: Defense Technical Information Center, July 2006. http://dx.doi.org/10.21236/ada476165.
Full textNelson, Carl V., Deborah P. Mendat, Toan B. Huynh, Liane C. Ramac-Thomas, James D. Beaty, and Joseph N. Craig. Three-Dimensional Steerable Magnetic Field (3DSMF)Sensor System for Classification of Buried Metal Targets. Fort Belvoir, VA: Defense Technical Information Center, July 2006. http://dx.doi.org/10.21236/ada469950.
Full text