Dissertations / Theses on the topic 'Sensor Classification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Sensor Classification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Barua, Shaibal. "Multi-sensor Information Fusion for Classification of Driver's Physiological Sensor Data." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-18880.
Full textDennis, Jacob Henry. "On Quaternions and Activity Classification Across Sensor Domains." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/51196.
Full textMaster of Science
Wang, Beng Wei. "Analysis and classification of traffic in wireless sensor networks." Thesis, Monterey, Calif. : Naval Postgraduate School, 2007. http://bosun.nps.edu/uhtbin/hyperion.exe/07Mar%5FWang.pdf.
Full textThesis Advisor(s): John C. McEachen. "March 2007." Includes bibliographical references (p. 61-63). Also available in print.
Sun, Yang. "Intelligent wireless sensor network based vehicle detection and classification /." Full text available from ProQuest UM Digital Dissertations, 2007. http://0-proquest.umi.com.umiss.lib.olemiss.edu/pqdweb?index=1&did=1414125751&SrchMode=1&sid=3&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1219779610&clientId=22256.
Full textAbdelbar, Mahi Othman Helmi Mohamed Helmi Hussein. "Applications of Sensor Fusion to Classification, Localization and Mapping." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/82955.
Full textPh. D.
Hameed, Tariq, Ahsan Ashfaq, and Rabid Mehmood. "Intelligent Sensor." Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-17310.
Full textTyni, Elin, and Johanna Wikberg. "Classification of Wi-Fi Sensor Data for a Smarter City : Probabilistic Classification using Bayesian Statistics." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-159797.
Full textI takt med att städer växer med ökat antal invånare uppståar det problem i trafiken såsom trängsel och utsläpp av partiklar. Trafikplanerare ställs inför utmaningar i form av hur de kan underlätta pendling för invånarna och hur de, i så stor utsträckning som möjligt, kan minska fordon i tätorten. Innan potentiella förbättringar och ombyggnationer kan genomföras måste trafiken kartläggas. Resultatet från en sannolikhetsklassificering på Wi-Fi sensordata insamlat i ett område i södra delen av Stockholm visar att vissa gator är mer trafikerade av cyclister än fotgängare medan andra gator visar på motsatt föhållande. Resultatet ger en indikation på hur proportionen mellan de två grupperna kan se ut. Målet var att klassificera varje observation som antingen fotgängare eller cyklist. För att göra det har Bayesiansk statistik applicerats i form av en sannolikhetsklassifikation. Reslutatet från en klusteranalys genomförd med ”K-means clustering algorithm” användes som prior information till klassificeringsmodellen. För att kunna validera resultatet från detta ”unsupervised statistical learning” -problem, användes olika metoder för modelldiagnostik. Den valda modellen uppfyller alla krav för vad som anses vara rimligt f ̈or en stabil modell och visar tydliga tecken på konvergens. Data samlades in med Wi-Fi sensorer som upptäcker förbipasserande enheter som söker efter potentiella nätverk att koppla upp sig mot. Denna metod har visat sig inte vara den mest optimala, eftersom tillverkare idag producerar nätverkskort som genererar en slumpad adress varje gång en enhet försöker ansluta till ett nätverk. De slumpade adresserna gör det svårt att följa majoriteten av enheterna mellan sensorera, vilket gör denna typ av data olämplig för denna typ av studie. Därf ̈or föreslås att andra metoder för att samla in data används i framtiden.
Finkele, R. "A polarimetric millimetre wave sensor system for road surface classification." Thesis, Cranfield University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284920.
Full textSvanström, Fredrik. "Drone Detection and Classification using Machine Learning and Sensor Fusion." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-42141.
Full textJonsson, Patrik. "Surface Status Classification, Utilizing Image Sensor Technology and Computer Models." Doctoral thesis, Mittuniversitetet, Avdelningen för elektronikkonstruktion, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-24828.
Full textPeng, Yingqi. "Japanese Black Cattle Behavior Pattern Classification Based on Neural Networks Using Inertial Sensors and Magnetic Direction Sensor." Kyoto University, 2019. http://hdl.handle.net/2433/244558.
Full textGok, Sercan. "Fuzzy Decision Fusion For Single Target Classification In Wireless Sensor Networks." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12611296/index.pdf.
Full textOlsson, Isak, and André Lindgren. "LiDAR-Equipped Wireless Sensor Network for Speed Detection on Classification Yards." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301053.
Full textEvery day, thousands of train wagons are coupled on the multiple classification yards in Sweden. To be able to automatically brake the wagons a sufficient amount, it is a necessity to determine the speed of the wagons. A technology that has been on the rise recently is Light Detection and Ranging (LiDAR) that emits light to determine the distance to objects. This report discusses the design and implementation of a wireless sensor network consisting of a LiDAR-equipped sensor node. The design process provided insight into how LiDAR sensors may be placed for maximum utilization. The sensor node was programmed to determine the speed of an object by first using Random Sample Consensus (RANSAC) for outlier removal and then linear regression on the inliers. The implementation was evaluated by building a small track with an object sliding over it and placing the sensor node at an angle to the side of the track. The results showed that the implementation could both detect objects on the track and also track the speed of the objects. A simulation was also made using a 3D model of a wagon to see how the algorithm performs on non-smooth surfaces. The simulated LiDAR sensor had a beam divergence of 0_. 30% of the simulated measurements were turned into outliers to replicate bad weather conditions. The results showed that RANSAC was efficient at removing the outliers but that the rough surface of the wagon resulted in some incorrect speed measurements. A conclusion was made that a sensor with some beam divergence could be beneficial. Future work includes testing the implementation in real-world scenarios, finding optimal parameters for the proposed algorithm, and to evaluate algorithms that can filter rough geometry data.
Petersson, Henrik. "Multivariate Exploration and Processing of Sensor Data-applications with multidimensional sensor systems." Doctoral thesis, Linköpings universitet, Tillämpad Fysik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-14879.
Full textEn sensor är en komponent som överför en fysikalisk, kemisk, eller biologisk storhet eller kvalitet till en utläsbar signal. Sensorer utgör idag en viktig del i flertalet högteknologiska produkter och sensorforskning är ett aktivt område. Komplexiteten på sensorbaserade system ökar och det blir möjligt att registrera allt er olika typer av mätsignaler. Mätsignalerna är inte alltid direkt tydbara, varvid signalbehandling blir ett väsentligt verktyg för att vaska fram den viktiga information som sökes. Signalbehandling av sensorsignaler är dessvärre inte en okomplicerad procedur och det finns många aspekter att beakta. Av denna anledning har signalbehandling och analys av sensorsignaler utvecklats till ett eget forskningsområde. Denna avhandling avhandlar metoder för att analysera komplexa multidimensionella sensorsignaler. En introduktion ges till metoder för att, utifrån mätningar, klassificera och kvantifiera egenskaper hos mätobjekt. En överblick ges av de effekter som kan uppstå på grund av imperfektioner hos sensorerna och en diskussion föres kring metoder för att undvika eller lindra de problem som dessa imperfektioner kan ge uppkomst till. Speciell vikt lägges vid sådana metoder som medför en direkt applicerbarhet och nytta för system av kemiska sensorer. I avhandlingen ingår fyra artiklar, som vart och en belyser hur de metoder som beskrivits kan användas i praktiska situationer.
Sensor,
Roberts, Matthew Simon. "Tracking and classification with wireless sensor networks and the transferable belief model." Thesis, Cardiff University, 2010. http://orca.cf.ac.uk/55134/.
Full textAplin, Paul. "Fine spatial resolution satellite sensor imagery for pre-field land cover classification." Thesis, University of Southampton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297413.
Full textVerner, Alexander. "LSTM Networks for Detection and Classification of Anomalies in Raw Sensor Data." Diss., NSUWorks, 2019. https://nsuworks.nova.edu/gscis_etd/1074.
Full textRamakrishnan, Naveen. "Distributed Learning Algorithms for Sensor Networks." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1284991632.
Full textAlirezaei, Gholamreza [Verfasser]. "Optimizing power allocation in sensor networks with application in target classification / Gholamreza Alirezaei." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2014. http://d-nb.info/1059650142/34.
Full textLi, Sichu. "Application of Machine Learning Techniques for Real-time Classification of Sensor Array Data." ScholarWorks@UNO, 2009. http://scholarworks.uno.edu/td/913.
Full textSher, Rabnawaz Jan. "Classification of a Sensor Signal Attained By Exposure to a Complex Gas Mixture." Thesis, Linköpings universitet, Statistik och maskininlärning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-172769.
Full textThis work is done with DANSiC AB in collaboration with Linkoping University.
Symanzik, Horst-G. "Interface-Elektronik für mikromechanische Sensor- und Aktorarrays." Doctoral thesis, Universitätsbibliothek Chemnitz, 2003. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200301571.
Full textDie Dissertation behandelt Schaltungen der Mikrosystemelektronik in ihrer Funktion als Schnittstelle zwischen mikromechanischen Komponenten und signalverarbeitender Digitalelektronik. Hierbei werden die für Sensor- und Aktorarrays besonderen Probleme Signalübersprechen und Aufwandsvervielfachung berücksichtigt. Als Entwurfsgrundlage werden die Modellierung von DMOS-Transistoren und Systemaspekte der Sensorsignalauswertung besprochen. Vorgestellt wird der Entwurf und die Realisierung eines Hochvolt-Ansteuerverstärkers, eines Modulators zur Sensorauswertung, eines Korrelator-ICs zur Arraysauswertung und eines mikromechanischen Resonators mit monolithisch integriertem Ausleseverstärker
Feitosa, Allan Eduardo. "Classification techniques for adaptive distributed networks and aeronautical structures." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3142/tde-05022019-104746/.
Full textEsta dissertação de mestrado é o resultado de um trabalho colaborativo entre a EMBRAER e a Escola Politécnica da USP no estudo de técnicas de monitoramento do estado de saúde de estruturas (Structural Health Monitoring - SHM) utilizando sensores em estruturas aeronáuticas. O objetivo foi desenvolver técnicas de classificação para discriminar entre diferentes eventos que surgem em estruturas aeronáuticas durante testes; para o curto prazo, aperfeiçoando o atual sistema de SHM utilizado pela EMBRAER, baseado em emissão acústica e, no longo prazo, fomentando o desenvolvimento de um sistema completamente distribuído. Como resultado do estudo de métodos de classificação para uso imediato, desenvolvemos duas técnicas: a Similaridade Espectral e um classificador que utiliza Support Vector Machines (SMV). Ambas as técnicas são soluções não-supervisionadas, devido a natureza não rotulada dos dados fornecidos. As duas soluções foram entregues como um produto final para a EMBRAER para pronta utilização em seu atual sistema de SHM. Ao estudar soluções completamente distribuídas para futuras implementações, desenvolvemos um algoritmo de detecção baseado em técnicas adaptativas. O principal resultado foi uma inicialização especial para um detector de máxima verossimilhança (maximum likelihood - ML) que possui uma taxa de decaimento exponencial na probabilidade de erro até um valor não nulo em regime estacionário, utilizando estimação adaptativa em uma rede distribuída. Os nós que compõem a rede devem decidir, localmente, entre duas hipóteses concorrentes com relação ao estado do ambiente onde eles estão inseridos, utilizando medidas locais e estimativas compartilhadas vindas de nós vizinhos. O desempenho exponencial não depende do valor do passo de adaptação, se este for suficientemente pequeno. Os resultas referentes a este detector distribuído foram publicados na revista internacional IEEE Signal Processing Letters.
Ollander, Simon. "Wearable Sensor Data Fusion for Human Stress Estimation." Thesis, Linköpings universitet, Reglerteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122348.
Full textI syfte att klassificera och modellera stress har olika sensorer, signalegenskaper, maskininlärningsmetoder och stressexperiment jämförts. Två databaser har studerats: MIT:s förarstressdatabas och en ny databas baserad på egna experiment, där stressuppgifter har genomförts av nio försökspersoner: Trier Social Stress Test, Socially Evaluated Cold Pressor Test och d2-testet, av vilka det sistnämnda inte normalt används för att generera stress. Support vector machine-, naive Bayes-, k-nearest neighbour- och probabilistic neural network-algoritmer har jämförts, av vilka support vector machine har uppnått den högsta prestandan i allmänhet (99.5 ± 0.6 % på förardatabasen, 91.4 ± 2.4 % på experimenten). För båda databaserna har signalegenskaper såsom medelvärdet av hjärtrytmen och hudens ledningsförmåga, tillsammans med medelvärdet av beloppet av hudens ledningsförmågas derivata identifierats som relevanta. En ny signalegenskap har också introducerats, med hög prestanda i stressklassificering på förarstressdatabasen. En kontinuerlig modell har också utvecklats, baserad på den upplevda stressnivån angiven av försökspersonerna under experimenten, där support vector regression har uppnått bättre resultat än linjär regression och variational Bayesian regression.
Bales, Dustin Bennett. "Characteristic Classification of Walkers via Underfloor Accelerometer Gait Measurements through Machine Learning." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/81183.
Full textMaster of Science
Subramanian, Chidambaram. "Real-Time Implementation of Road Surface Classification using Intelligent Tires." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/101014.
Full textMaster of Science
Kanoun, Olfa. "Scientific Reports on Measurement and Sensor Technology." Universitätsverlag Chemnitz, 2016. https://monarch.qucosa.de/id/qucosa%3A20552.
Full textScientific series containing dissertations of the Professorship of Measurement and Sensor Technology.
Chavez, Garcia Ricardo Omar. "Multiple sensor fusion for detection, classification and tracking of moving objects in driving environments." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENM034/document.
Full textAdvanced driver assistance systems (ADAS) help drivers to perform complex driving tasks and to avoid or mitigate dangerous situations. The vehicle senses the external world using sensors and then builds and updates an internal model of the environment configuration. Vehicle perception consists of establishing the spatial and temporal relationships between the vehicle and the static and moving obstacles in the environment. Vehicle perception is composed of two main tasks: simultaneous localization and mapping (SLAM) deals with modelling static parts; and detection and tracking moving objects (DATMO) is responsible for modelling moving parts in the environment. In order to perform a good reasoning and control, the system has to correctly model the surrounding environment. The accurate detection and classification of moving objects is a critical aspect of a moving object tracking system. Therefore, many sensors are part of a common intelligent vehicle system. Classification of moving objects is needed to determine the possible behaviour of the objects surrounding the vehicle, and it is usually performed at tracking level. Knowledge about the class of moving objects at detection level can help improve their tracking. Most of the current perception solutions consider classification information only as aggregate information for the final perception output. Also, management of incomplete information is an important requirement for perception systems. Incomplete information can be originated from sensor-related reasons, such as calibration issues and hardware malfunctions; or from scene perturbations, like occlusions, weather issues and object shifting. It is important to manage these situations by taking them into account in the perception process. The main contributions in this dissertation focus on the DATMO stage of the perception problem. Precisely, we believe that including the object's class as a key element of the object's representation and managing the uncertainty from multiple sensors detections, we can improve the results of the perception task, i.e., a more reliable list of moving objects of interest represented by their dynamic state and appearance information. Therefore, we address the problems of sensor data association, and sensor fusion for object detection, classification, and tracking at different levels within the DATMO stage. Although we focus on a set of three main sensors: radar, lidar, and camera, we propose a modifiable architecture to include other type or number of sensors. First, we define a composite object representation to include class information as a part of the object state from early stages to the final output of the perception task. Second, we propose, implement, and compare two different perception architectures to solve the DATMO problem according to the level where object association, fusion, and classification information is included and performed. Our data fusion approaches are based on the evidential framework, which is used to manage and include the uncertainty from sensor detections and object classifications. Third, we propose an evidential data association approach to establish a relationship between two sources of evidence from object detections. We observe how the class information improves the final result of the DATMO component. Fourth, we integrate the proposed fusion approaches as a part of a real-time vehicle application. This integration has been performed in a real vehicle demonstrator from the interactIVe European project. Finally, we analysed and experimentally evaluated the performance of the proposed methods. We compared our evidential fusion approaches against each other and against a state-of-the-art method using real data from different driving scenarios. These comparisons focused on the detection, classification and tracking of different moving objects: pedestrian, bike, car and truck
Cordova, Torres Rodrigo Fernando. "The application of Laser Induced Breakdown Spectroscopy sensor system for real time ore classification." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/60272.
Full textApplied Science, Faculty of
Mining Engineering, Keevil Institute of
Graduate
Yang, Ying. "Routing protocols for wireless sensor networks: A survey." Thesis, Mittuniversitetet, Institutionen för informationsteknologi och medier, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-19700.
Full textAuerswald, Christian. "Mikromechanischer Körperschall-Sensor zur Strukturüberwachung." Doctoral thesis, Universitätsbibliothek Chemnitz, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-205864.
Full textStructural health monitoring is of vital importance in many technical fields. For monitoring of lightweight structures made from fiber reinforced plastics especially acoustic emission testing is used. Commercially available transducers utilize the piezoelectric effect. This thesis introduces a cost efficient alternative in form of micromechanical sensors, in particular sensors using the principle of a mechanical bandpass. The design of electronics and the packaging as well as experimental investigations are provided
Rensfelt, Olof. "Experimental Challenges in Wireless Sensor Networks — Environment, Mobility, and Interference." Doctoral thesis, Uppsala universitet, Avdelningen för datorteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-179807.
Full textWISENET
Abdul, Rahman Hala. "Multi-Sensor Based Activity Recognition˸ Development and Validation in Real-Life context." Thesis, Rennes, École normale supérieure, 2017. http://www.theses.fr/2017ENSR0011/document.
Full textYang, Rong. "Vehicle Detection and Classification from a LIDAR equipped probe vehicle." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1253598183.
Full textGünther, Robert, Martin Abbrent, Thomas Schnicke, and Jan Bumberger. "Vom Sensor zum Forschungsdatensatz: Automatisierte Datenflüsse am UFZ." Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, 2019. https://slub.qucosa.de/id/qucosa%3A39015.
Full textCui, Jin. "Data aggregation in wireless sensor networks." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI065/document.
Full textWireless Sensor Networks (WSNs) have been regarded as an emerging and promising field in both academia and industry. Currently, such networks are deployed due to their unique properties, such as self-organization and ease of deployment. However, there are still some technical challenges needed to be addressed, such as energy and network capacity constraints. Data aggregation, as a fundamental solution, processes information at sensor level as a useful digest, and only transmits the digest to the sink. The energy and capacity consumptions are reduced due to less data packets transmission. As a key category of data aggregation, aggregation function, solving how to aggregate information at sensor level, is investigated in this thesis. We make four main contributions: firstly, we propose two new networking-oriented metrics to evaluate the performance of aggregation function: aggregation ratio and packet size coefficient. Aggregation ratio is used to measure the energy saving by data aggregation, and packet size coefficient allows to evaluate the network capacity change due to data aggregation. Using these metrics, we confirm that data aggregation saves energy and capacity whatever the routing or MAC protocol is used. Secondly, to reduce the impact of sensitive raw data, we propose a data-independent aggregation method which benefits from similar data evolution and achieves better recovered fidelity. Thirdly, a property-independent aggregation function is proposed to adapt the dynamic data variations. Comparing to other functions, our proposal can fit the latest raw data better and achieve real adaptability without assumption about the application and the network topology. Finally, considering a given application, a target accuracy, we classify the forecasting aggregation functions by their performances. The networking-oriented metrics are used to measure the function performance, and a Markov Decision Process is used to compute them. Dataset characterization and classification framework are also presented to guide researcher and engineer to select an appropriate functions under specific requirements
Johnson, Darrell Wesley. "Assessing Resolution Tradeoffs of Remote Sensing Data via Classification Accuracy Cubes for Sensor Selection and Design." MSSTATE, 2006. http://sun.library.msstate.edu/ETD-db/theses/available/etd-04032006-150953/.
Full textHermans, Frederik. "Sensor Networks and Their Radio Environment : On Testbeds, Interference, and Broken Packets." Doctoral thesis, Uppsala universitet, Avdelningen för datorteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-230769.
Full textWISENET
Menglei, Min. "Anomaly detection based on multiple streaming sensor data." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-36275.
Full textLiess, Martin. "Design neuer Sensoren unter Berücksichtigung von Strukturaspekten." Doctoral thesis, Shaker Verlag, 2004. https://monarch.qucosa.de/id/qucosa%3A17283.
Full textVorwort und Zusammenfassung Im Hauptteil der vorliegenden Arbeit (Kapitel 4) werden vier verschiedene neu entwickelte oder wesentlich verbesserte Sensorprinzipien vorgestellt. Die Stärke dieser Sensorprinzipien ist deren Struktur, die zu einer verbesserten Nachweisgrenze oder Stabilität führt. Die Struktur eines Sensors (Kapitel 2) Um die Wirkung der Sensorstruktur algemeingültig zu diskutieren wird im zweiten Kapitel ein Modell entwickelt, das Eigenschaften von Sensoren auf deren Struktur zurückführt. Dabei werden alle Sensoreigenschaften allgemein von einer einfachen Gleichung generiert und daraus Schlussfolgerungen für die Eigenschaften der Sensorstruktur gezogen. Es zeigt sich, wie sich der Effekt struktureller Maßnahmen in der Nachweisgrenze niederschlägt, und sich mit der verbesserten Nachweisgrenze die Messunsicherheit (als Funktion aller Eingangsgrößen) parallel verschiebt. Strukturanalyse eines Sensors am Beispiel der Retina (Kapitel 3) Im dritten Kapitel wird das Modell beispielhaft auf das Auge höherer Säugetiere angewandt. In der Einleitung werden die bekannten biologischen Fakten für Ingenieure und Physiker verständlich eingeführt. Darauf folgt eine mathematischen Strukturanalyse der Retina (und Leiterstrukturen allgemein), die als Sensorsystem betrachtet wird. Es zeigt sich, wie die Schwächen der Komponenten (Nervenzellen) der Retina durch deren Struktur kompensiert werden. Sensoren mit verbesserter Struktur (Kapitel 4) 1. Gasmessung mit Hilfe gasempfindlicher Thermopaare Bekannt ist der Gebrauch von Thermopaaren zur Messung von Temperaturunterschieden. In dieser Arbeit wird eine bisher unbekannt gewesene Methode vorgestellt, mit der bei einem konstanten Temperaturunterschied eine Gaskonzentration gemessen wird. Dabei spielt die Abhängigkeit der differentiellen Thermospannung von der Ladungsträgerdichte in sensitiven Materialien eine Rolle. 2. Elektromigration von chemisorbierten Ionen auf einem halbleitenden Film Sensoren basierend auf Widerstandsänderungen von gasempfindlichen Filmen sind seit längerem im Gebrauch. Neu ist, deren aufgrund von Migration veränderliches Widerstandsprofil in Ort und Zeit zu messen und damit Sensoren zu bauen, die unempfindlicher gegen Alterung sind. 3. Modulation von Ionenbewegungen mit Hilfe eines zusätzlichen Gitters im Photoionisationdetektor Zwar sind sowohl Photoionisationsdetektoren (PID's) als auch das Modulationsprinzip an sich bekannt, jedoch ist bis dahin noch kein modulierter PID vorgestellt worden. Entscheidend an der hier eingeführten Innovation ist die Methode, den Photoionisationsstrom zu modulieren, jedoch dem Leckstrom und den äußeren Photostrom an der Kathode unmoduliert zu lassen. Das führt zu einer 20-fachen Verbesserung der Nachweisgrenze. 4. Laserdiodeneigenmischung zur mehrdimensionalen Bewegungsmessung Die Rückwirkung von in die Quelle zurückgestreutem Laserlicht war bisher als Störeffekt bekannt. Um diesen Effekt in einem Bewegungssensor nutzen zu können, mussten Probleme wie Richtungserkennung und Miniaturisierung gelöst werden. Kapitel 5 befasst sich mit Strukturverbesserungen der im vorherigen Kapitel genannten und weiteren Sensoren. Dazu wird eine Strukturschreibweise vorgestellt. Kapitel 6 enthält eine Zusammenfassung und einen Ausblick.
Khadoor, Nadim Kvernes. "Audio classification with Neural Networks for IoT implementation." Thesis, Mittuniversitetet, Institutionen för elektronikkonstruktion, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-37640.
Full textKulathumani, Vinodkrishnan. "Network Abstractions for Designing Reliable Applications Using Wireless Sensor Networks." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1211560039.
Full textZhu, Feng. "A Novel Fault Detection and Classification Approach in Semiconductor Manufacturing Using Time Series Alignment Kernel." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1592135306729513.
Full textDeng, Kangfa, Gerald Gerlach, and Margarita Guenther. "Force-compensated hydrogel-based pH sensor." SPIE, 2015. https://tud.qucosa.de/id/qucosa%3A35185.
Full textPitt, Luke. "Monitoring thermal comfort in the built environment using a wired sensor network." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/monitoring-thermal-comfort-in-the-built-environment-using-a-wired-sensor-network(88b0f2e2-e1a4-4d59-ba32-43995a5ed13a).html.
Full textM, Loretz, Pezzagna Sébastien, C. L. Degen, and Jan Berend Meijer. "Nanoscale nuclear magnetic resonance with a 1.9-nm-deep nitrogen-vacancy sensor." AIP Publishing, 2014. https://ul.qucosa.de/id/qucosa%3A31857.
Full textDieckman, Eric Allen. "Use of Pattern Classification Algorithms to Interpret Passive and Active Data Streams from a Walking-Speed Robotic Sensor Platform." W&M ScholarWorks, 2014. https://scholarworks.wm.edu/etd/1539623643.
Full textAl-Tarawneh, Mu'ath. "Traffic Monitoring System Using In-Pavement Fiber Bragg Grating Sensors." Diss., North Dakota State University, 2019. https://hdl.handle.net/10365/31539.
Full textBrown, Ryan Charles. "Development of Ground-Level Hyperspectral Image Datasets and Analysis Tools, and their use towards a Feature Selection based Sensor Design Method for Material Classification." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/84944.
Full textPh. D.
Azevedo, Rui Filipe Cabral de. "Sensor fusion of laser and vision in active pedestrian detection." Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/14414.
Full textThis work explores a technique of sensor fusion that aims to equip vehicles with pedestrian fast detection mechanisms in exterior environments. This method restricts image areas of search based on indicators obtained by another sensor (LIDAR). This technique is based on the idea that when having a registration among the involved sensors, one "fast" sensor, but inaccurate, that can indicate regions where potential pedestrian are located on the image, and another sensor, "slower" but more robust that is used to confirm detection more accurately. So, an algorithm was created to merge two algorithms, a LIDAR-based tracking and a vision-based detection algorithm; The LIDAR indicates the precise location and scale of the potential pedestrian on the image, and crop the image relative to the potential pedestrian, being processed afterwards by one pedestrian detection algorithm to validate the classification. The method is tested in two different cases and the results confirm their validity.
Este trabalho explora uma técnica de fusão sensorial que visa dotar veículos de mecanismos rápidos de detecção de peões em ambiente exterior. O método restringe as zonas de procura numa imagem com base em indicadores obtidos por outro sensor (LIDAR). Esta técnica tem como base a idéia de que havendo um registo entre os sensores envolvidos, um sensor "rápido" mas pouco preciso, pode indicar as regiões onde potencialmente há alvos, e outro sensor, "lento" mas mais robusto, é utilizado para fazer a confirmação da deteção. Com vista a explorar essas propriedades, foi criado um algoritmo que utiliza a informação de dois sensores, para primeiro selecionar, de entre muitos objectos, possíveis peões(fase LIDAR) e dada a informação da localização do possível pedestre, uma imagem já à escala e precisa da localização, é recortada da imagem inicial, sendo a mesma enviada a ser processada por um detetor de peões (sensor mais robusto), permitindo a sua rigorosa classificação. O método é testado em dois conjuntos de dados diferentes e os resultados confirmam a sua validade.