To see the other types of publications on this topic, follow the link: Sensor de radar.

Dissertations / Theses on the topic 'Sensor de radar'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Sensor de radar.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Park, Joongsuk. "Development of microwave and millimeter-wave integrated-circuit stepped-frequency radar sensors for surface and subsurface profiling." Diss., Texas A&M University, 2003. http://hdl.handle.net/1969.1/1588.

Full text
Abstract:
Two new stepped-frequency continuous wave (SFCW) radar sensor prototypes, based on a coherent super-heterodyne scheme, have been developed using Microwave Integrated Circuits (MICs) and Monolithic Millimeter-Wave Integrated Circuits (MMICs) for various surface and subsurface applications, such as profiling the surface and subsurface of pavements, detecting and localizing small buried Anti-Personnel (AP) mines and measuring the liquid level in a tank. These sensors meet the critical requirements for subsurface and surface measurements including small size, light weight, good accuracy, fine resolution and deep penetration. In addition, two novel wideband microstrip quasi-TEM horn antennae that are capable of integration with a seamless connection have also been designed. Finally, a simple signal processing algorithm, aimed to acquire the in-phase (I) and quadrature (Q) components and to compensate for the I/Q errors, was developed using LabView. The first of the two prototype sensors, named as the microwave SFCW radar sensor operating from 0.6-5.6-GHz, is primarily utilized for assessing the subsurface of pavements. The measured thicknesses of the asphalt and base layers of a pavement sample were very much in agreement with the actual data with less than 0.1-inch error. The measured results on the actual roads showed that the sensor accurately detects the 5-inch asphalt layer of the pavement with a minimal error of 0.25 inches. This sensor represents the first SFCW radar sensor operating from 0.6-5.6-GHz. The other sensor, named as the millimeter-wave SFCW radar sensor, operates in the 29.72-35.7-GHz range. Measurements were performed to verify its feasibility as a surface and sub-surface sensor. The measurement results showed that the sensor has a lateral resolution of 1 inch and a good accuracy in the vertical direction with less than  0.04-inch error. The sensor successfully detected and located AP mines of small sizes buried under the surface of sand with less than 0.75 and 0.08 inches of error in the lateral and vertical directions, respectively. In addition, it also verified that the vertical resolution is not greater than 0.75 inches. This sensor is claimed as the first Ka-band millimeter-wave SFCW radar sensor ever developed for surface and subsurface sensing applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Isa, Maryam Binte Mohd. "Microwave radar sensor for solid flow measurement." Thesis, University of Manchester, 2006. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488369.

Full text
Abstract:
Industrial flow measurement is a challenging area and in high demand. Tremendous research has been carried out to improve and solve problems in the flow measurement system. Thus, new techniques are produced and a wider range of flow measurement solutions have become available in market. This study has introduced a new technique that is useful and proves to be applicable in industrial flow measurement system. Microwave Doppler radar sensor was used to extract useful information of the solid flow characteristics. The amplitude level of the Doppler signal is analysed instead of the frequency shift that is normally used in conventional Doppler radar sensor. The relation between the amplitude level and the characteristic of the flow was determined to define the characteristics of the flow. The solids weight and dimension are among the characteristics that are investigated in this study. Microwave sensor circuits based on Doppler radar technique operating at 2.45GHz and 10.58GHz were designed, constructed and tested. The 2.45GHz system was built in the initial study and pre-testing of the Doppler radar sensor system prior to the construction of the 10.58GHz system that was later used for the measurement purposes. The antennas and circuit analyses were carried out in building an optimum sensor system. Two-antenna and two-antenna with copper plate are two new antenna configurations that are applied in single solid flow measurement analysis. The flow measurements were carried out using different types of solids ranges from 4mm to 20mm sizes and 0.02g to 0.63g of weight for single and multiple solids flow. The linear relations of the reflected power and the solids characteristics determined from the analyses are found to be useful in differentiating the type of solids and measuring the total weight of solids flowing.
APA, Harvard, Vancouver, ISO, and other styles
3

Rukezo, Stacey Rutendo. "Design of an L Band Radar Sensor." Master's thesis, University of Cape Town, 2012. http://hdl.handle.net/11427/11931.

Full text
Abstract:
Includes abstract.<br>This dissertation describes the examination of a SAR transceiver, as a prototype L band sensor, to be used in a software defined radar system. This examination includes the evaluation, testing and recommissioning the available hardware. Tests on various subsystems which make up the sensor are carried out and described in detail.
APA, Harvard, Vancouver, ISO, and other styles
4

Chuckpaiwong, Ittichote. "Development of position sensor using phase-based continuous wave radar." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/20505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rouhani, Shahin. "Radar and Thermopile Sensor Fusion for Pedestrian Detection." Thesis, Linköping University, Department of Electrical Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-115.

Full text
Abstract:
<p>During the last decades, great steps have been taken to decrease passenger fatality in cars. Systems such as ABS and airbags have been developed for this purpose alone. But not much effort has been put into pedestrian safety. In traffic today, pedestrians are one of the most endangered participants and in recent years, there has been an increased demand for pedestrian safety from the European Enhanced Vehicle safety Committee and the European New Car Assessment Programme has thereby developed tests where pedestrian safety is rated. With this, detection of pedestrians has arised as a part in the automotive safety research.</p><p>This thesis provides some of this research available in the area and a brief introduction to some of the sensors readily available. The objective of this work is to detect pedestrians in front of a vehicle by using thermoelectric infrared sensors fused with short range radar sensors and also to minimize any missed detections or false alarms. There has already been extensive work performed with the thermoelectric infrared sensors for this sole purpose and this thesis is based on that work.</p><p>Information is provided about the sensors used and an explanation of how they are set up during this work. Methods used for classifying objects are given and the assumptions made about pedestrians in this system. A basic tracking algorithm is used to track radar detected objects in order to provide the fusion system with better data. The approach chosen for the sensor fusion is a central-level fusion where the probabilities for a pedestrian from the radars and the thermoelectric infrared sensors are combined using Dempster-Shafer Theory and accumulated over time in the Occupancy Grid framework. Theories that are extensively used in this thesis are explained in detail and discussed accordingly in different chapters.</p><p>Finally the experiments undertaken and the results attained from the presented system are shown. A comparison is made with the previous detection system, which only uses thermoelectric infrared sensors and of which this work continues on. Conclusions regarding what this system is capable of are drawn with its inherent strengths and weaknesses.</p>
APA, Harvard, Vancouver, ISO, and other styles
6

Niklasson, Johan, and Axel Åström. "Design and Implementation of a Multipurpose Radar Sensor." Thesis, Linköpings universitet, Fysik och elektroteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-158167.

Full text
Abstract:
This thesis presents the design and implementation of a multifunctional radar sensor. Utilising microstrip transmission line technology, a front-end receiver has been designed based upon a six-port architecture. Additionally, digital signal processing has been implemented on a microcontroller, enabling processing and extraction of information from the down converted quadrature signals. Results have show that the sensor is capable of operating as both a continuous wave radar and frequency modulated continuous wave radar. Through measurements, it has been established that the sensor is capable of wireless measurements, such as vital signs and vibrations. Furthermore, a graphical user interface has been design, allowing a way of switching between different radar configurations and the presentation of measured data to the user.
APA, Harvard, Vancouver, ISO, and other styles
7

Mathew, Vineet. "Radar and Vision Sensor Fusion for Vehicle Tracking." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1574441839857988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Frischen, Andreas [Verfasser]. "MIMO radar networks with incoherent sensor nodes / Andreas Frischen." Ulm : Universität Ulm, 2021. http://d-nb.info/1225400929/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Andersson, Naesseth Christian. "Vision and Radar Sensor Fusion for Advanced Driver Assistance Systems." Thesis, Linköpings universitet, Reglerteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-94222.

Full text
Abstract:
The World Health Organization predicts that by the year 2030, road traffic injuries will be one of the top five leading causes of death. Many of these deaths and injuries can be prevented by driving cars properly equipped with state-of-the-art safety and driver assistance systems. Some examples are auto-brake and auto-collision avoidance which are becoming more and more popular on the market today. A recent study by a Swedish insurance company has shown that on roadswith speeds up to 50 km/h an auto-brake system can reduce personal injuries by up to 64 percent. In fact in an estimated 40 percent of crashes, the auto-brake reduced the effects to the degree that no personal injury was sustained. It is imperative that these so called Advanced Driver Assistance Systems, to be really effective, have good situational awareness. It is important that they have adequate information of the vehicle’s immediate surroundings. Where are other cars, pedestrians or motorcycles relative to our own vehicle? How fast are they driving and in which lane? How is our own vehicle driving? Are there objects in the way of our own vehicle’s intended path? These and many more questions can be answered by a properly designed system for situational awareness. In this thesis we design and evaluate, both quantitatively and qualitatively, sensor fusion algorithms for multi-target tracking. We use a combination of camera and radar information to perform fusion and find relevant objects in a cluttered environment. The combination of these two sensors is very interesting because of their complementary attributes. The radar system has high range resolution but poor bearing resolution. The camera system on the other hand has a very high bearing resolution. This is very promising, with the potential to substantially increase the accuracy of the tracking system compared to just using one of the two. We have also designed algorithms for path prediction and a first threat awareness logic which are both qualitively evaluated.
APA, Harvard, Vancouver, ISO, and other styles
10

Romine, Jay Brent. "Fusion of radar and imaging sensor data for target tracking." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/13324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kim, Hyoung-soo. "INFORMATION-THEORETIC OPTIMIZATION OF WIRELESS SENSOR NETWORKS AND RADAR SYSTEMS." Diss., The University of Arizona, 2010. http://hdl.handle.net/10150/193668.

Full text
Abstract:
Three information measures are discussed and used as objective functions for optimization of wireless sensor networks (WSNs) and radar systems. In addition, a long-term system performance measure is developed for evaluating the performance of slow-fading WSNs. Three system applications are considered: a distributed detection system, a distributed multiple hypothesis system, and a radar target recognition system.First, we consider sensor power optimization for distributed binary detection systems. The system communicates over slow-fading orthogonal multiple access channels. In earlier work, it was demonstrated that system performance could be improved by adjusting transmit power to maximize the J-divergence measure of a binary detection system. We define outage probability for slow-fading system as a long-term performance measure, and analytically develop the detection outage with the given system model.Based on the analytical result of the outage probability, diversity gain is derived and shown to be proportional to the number of the sensor nodes. Then, we extend the optimized power control strategy to a distributed multiple hypothesis system, and enhance the power optimization by exploiting a priori probabilities and local sensor statistics. We also extend outage probability to the distributed multiple-hypotheses problem. The third application is radar waveform design with a new performance measure: Task-Specific Information (TSI). TSI is an information-theoretic measure formulated for one or more specific sensor tasks by encoding the task(s) directly into the signal model via source variables. For example, we consider the problem of correctly classifying a linear system from a set of known alternatives, and the source variable takes the form of an indicator vector that selects the transfer function of the true hypothesis. We then compare the performance of TSI with conventional waveforms and other information-theoretic waveform designs via simulation. We apply radar-specific constraints and signal models to the waveform optimization.
APA, Harvard, Vancouver, ISO, and other styles
12

Radford, Darren Lee James. "Fusion-based impairment modelling for an intelligent radar sensor architecture." Thesis, Cardiff University, 2009. http://orca.cf.ac.uk/54820/.

Full text
Abstract:
An intelligent radar sensor concept has been developed using a modelling approach for prediction of sensor performance, based on application of sensor and environment models. Land clutter significantly impacts on the operation of radar sensors operating at low-grazing angles. The clutter modelling technique developed in this thesis for the prediction of land clutter forms the clutter model for the intelligent radar sensor. Fusion of remote sensing data is integral to the clutter modelling approach and is addressed by considering fusion of radar remote sensing data, and mitigation of speckle noise and data transmission impairments. The advantages of the intelligent sensor approach for predicting radar performance are demonstrated for several applications using measured data. The problem of predicting site-specific land radar performance is an important task which is complicated by the peculiarities and characteristics of the radar sensor, electromagnetic wave propagation, and the environment in which the radar is deployed. Airborne remote sensing data can provide information about the environment and terrain, which can be used to more accurately predict land radar performance. This thesis investigates how fusion of remote sensing data can be used in conjunction with a sensor modelling approach to enable site-specific prediction of land radar performance. The application of a radar sensor model and a priori information about the environment, gives rise to the notion of an intelligent radar sensor which can adapt to dynamically changing environments through intelligent processing of this a priori knowledge. This thesis advances the field of intelligent radar sensor design, through an approach based on fusion of a priori knowledge provided by remote sensing data, and application of a modelling approach to enable prediction of radar sensor performance. Original contributions are made in the areas of intelligent radar sensor development, improved estimation of land surface clutter intensity for site-specific low-grazing angle radar, and fusion and mitigation of sensor and data transmission impairments in radar remote sensing data.
APA, Harvard, Vancouver, ISO, and other styles
13

Valmori, Filippo. "UWB radar sensor networks: Detection algorithms design and experimental analysis." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10164/.

Full text
Abstract:
In the last years radar sensor networks for localization and tracking in indoor environment have generated more and more interest, especially for anti-intrusion security systems. These networks often use Ultra Wide Band (UWB) technology, which consists in sending very short (few nanoseconds) impulse signals. This approach guarantees high resolution and accuracy and also other advantages such as low price, low power consumption and narrow-band interference (jamming) robustness. In this thesis the overall data processing (done in MATLAB environment) is discussed, starting from experimental measures from sensor devices, ending with the 2D visualization of targets movements over time and focusing mainly on detection and localization algorithms. Moreover, two different scenarios and both single and multiple target tracking are analyzed.
APA, Harvard, Vancouver, ISO, and other styles
14

FREITAS, João Mario Mendes de. "Sensor de nível por micro-ondas e tecnologia RADAR-FMCW." reponame:Repositório Institucional da UNIFEI, 2013. http://repositorio.unifei.edu.br/xmlui/handle/123456789/922.

Full text
Abstract:
Submitted by repositorio repositorio (repositorio@unifei.edu.br) on 2017-08-24T18:19:29Z No. of bitstreams: 1 dissertacao_freitas_2013.pdf: 2164362 bytes, checksum: 8f3b184eb764afb1f5d729705291ebb0 (MD5)<br>Made available in DSpace on 2017-08-24T18:19:29Z (GMT). No. of bitstreams: 1 dissertacao_freitas_2013.pdf: 2164362 bytes, checksum: 8f3b184eb764afb1f5d729705291ebb0 (MD5) Previous issue date: 2013-03<br>Este trabalho apresenta o desenvolvimento de um protótipo de medidor de nível para tanques e silos que utiliza a tecnologia radar na faixa de micro-ondas de 2,5 GHz modulado em frequência FMCW, para melhor entendimento quanto ao funcionamento dos dispositivos comerciais semelhantes. O equipamento foi desenvolvido a partir do estudo das características relacionadas à modulação, amplificação, transmissão, recepção, demodulação, com o objetivo de se conhecer mais profundamente a propagação das ondas eletromagnéticas na faixa de micro-ondas e a influência do meio para o seu funcionamento. Aborda-se a evolução histórica da tecnologia do radar aplicada aos sensores de nível, apresentando dispositivos semelhantes permitindo a visualização das vantagens na medida de nível em cada um deles. O trabalho também descreve a importância da aplicação deste dispositivo em silos, tanques e/ou processos industriais onde a medição deve ser sem contato físico com o produto, observando as exigências de cada meio de propagação. É apresentado o desenvolvimento teórico, com as características de cada módulo do sensor. O desempenho dos módulos do protótipo foi avaliado comparando valores previamente calculados com dados obtidos através de testes práticos em laboratório.
APA, Harvard, Vancouver, ISO, and other styles
15

Elhadad, Anwar. "Utilizing Machine Learning For Respiratory Rate Detection Via Radar Sensor." ScholarWorks @ UVM, 2020. https://scholarworks.uvm.edu/graddis/1178.

Full text
Abstract:
In this research, we investigate a data processing method to capture the respiratory rate of a person by utilizing a doppler radar to monitor their body movement during respiration. We utilize a machine learning algorithm with a radar sensor to capture the chest movement of a person while breathing and determine the respiratory rate according to that movement. We are using a Random Forest classifier to distinguish between different classes of pulses. After that, the algorithm constructs a sinusoidal signal representing the breathing rate of the sample. By applying this technique, we can detect the breathing rate accurately for different subjects by analyzing the evolution of the reflected pulse while breathing. Furthermore, we can detect the change in pulse width ratio between the pulses of the classes across multiple breaths
APA, Harvard, Vancouver, ISO, and other styles
16

Blomqvist, Anneli. "Millimeter Wave Radar as Navigation Sensor on Robotic Vacuum Cleaner." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288146.

Full text
Abstract:
Does millimeter-wave radar have the potential to be the navigational instrument of a robotic vacuum cleaner in a home? Electrolux robotic vacuum cleaner is currently using a light sensor to navigate through the home while cleaning. Recently Texas Instruments released a new mmWave radar sensor, operating in the frequency range 60-64 GHz. This study aims to answer if the mmWave radar sensor is useful for indoor navigation. The study tests the sensor on accuracy and resolution of angles and distances in ranges relevant to indoor navigation. It tests if various objects made out of plastic, fabric, paper, metal, and wood are detectable by the sensor. At last, it tests what the sensor can see when it is moving while measuring. The radar sensor can localize the robot, but the ability to detect objects around the robot is limited. The sensor’s absolute accuracy is within 3° for the majority of angles and around 1dm for most distances above 0.5 m. The resolution for a displacement of one object is 1°, respectively 5 cm, and two objects must be located at least 14° or 15 cm apart from each other to be recognized. Future tasks include removing noise due to antenna coupling to improve reflections from within 0.5 meter and figure out the best way to move around the sensor to improve the resolution.<br>Har radar med millimetervågor förutsättningar att vara navigationsutrustning för en robotdammsugare i ett hem? Electrolux robotdammsugare använder för närvarande en ljussensor för att navigera genom hemmet medan den städar. Nyligen släppte Texas Instruments en ny radarsensor med vågor i frekvensområdet 60-64 GHz. Denna studie syftar till att svara om radarsensorn är användbar för inomhusnavigering. Studien testar sensorn med avseende på noggrannhet och upplösning av vinklar och avstånd i områden som är relevanta för inomhusnavigering. Den testar om olika föremål tillverkade av plast, tyg, papper, metall och trä kan detekteras av sensorn. Slutligen testas vad sensorn kan se om den rör sig medan den mäter. Radarsensorn kan positionera roboten, men hinderdetektering omkring roboten är begränsad. För det mesta ligger sensorns absoluta noggrannhet inom 3° för vinklar och omkring 1dm för avstånd över 0,5 m. Upplösningen för en förflyttning av ett objekt är 1° respektive 5 cm, och två objekt måste placeras minst 14° eller 15 cm ifrån varandra för att båda kunna upptäckas. Kommande utmaningar är att ta bort antennstörningar som ger sämre reflektioner inom 0,5 meter och ta reda på det bästa sättet att förflytta sensorn för att förbättra upplösningen.
APA, Harvard, Vancouver, ISO, and other styles
17

Uphoff, Jan Luca. "Introduction to automotive FMCW Radar Technologies : Using Texas Instruments mmWave AWR sensor series." Thesis, Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-16266.

Full text
Abstract:
The goal of the following thesis is to transfer radar basic theory in a practical work using Texas Instrument’s mmWave radar series. The range of practical applications for FMCW radars has increased, for example in automotive sector. Understanding the basics of radar mathematics in a simplified way, as well as the transfer from theory to practical work is important for any engineer working on radar projects. Even if the theory is known, the way from a theory to a running system can be hard, facing several problems, because the reality is limited. In two experiments, data from the radar is collected while cars are crossing the observation area of the radar.The data is then used to count the number of vehicles passing the observation area and to estimate the movement of the objects in the field of view.
APA, Harvard, Vancouver, ISO, and other styles
18

Bhatta, Abhishek. "GSM based Communication-Sensor (CommSense) System." Doctoral thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/28436.

Full text
Abstract:
Using communication signals for radar applications has been a major area of research in radar engineering. In the recent years, due to the widely available wireless signals, a new area of research called commensal radars has emerged. Commensal radars use available wireless Radio Frequency (RF) signals to detect and track targets of interest. This is achieved by placing two antennas, one towards the transmitting base station and the other towards the surveillance area. The signal received by these two antennas are correlated to determine the location and velocity of the target. When a signal passes through a channel, it reflects off the obstacles within its path. These reflections usually degrade quality of the signal and cause interference to the telecommunication systems. To mitigate the effects of the channel on a signal these systems transmit a known bit sequence within each frame. Our goal, with this thesis, is to design and implement a working prototype of a novel architecture for the commensal radar system, which uses these known bit sequences to extract the channel information and determine events of interest. The major novelties of the system are as follows. Firstly, this system will be built upon existing communication systems using Software Defined Radio (SDR) technology. Secondly, this design eliminates the need for a reference antenna, which reduces the cost of the system and creates an opportunity to make the system portable. We name this system Communication-Sensing (CommSense). Since, our plan is to use Global System for Mobile Communication (GSM) as the parent system for the prototype development, we decide to update the name to GSM based Communication-Sensing (GSM-CommSense) system. This thesis begins with theoretical analysis of the feasibility of the GSM-CommSense system. First of all, we perform a link budget analysis to determine the power requirements for the system. Then we calculate the ambiguity function and Cram´er-Rao Lower Bound (CRLB) for a two-path received signal model. With encouraging theoretical results, we design a prototype of the system that can capture real GSM base station broadcast signals. After the design of the GSMCommSense system, we capture channel data from multiple locations with varying environmental conditions. The aim for this set of experiment is to be able to distinguish between different environmental conditions. Then, we performed statistical analysis on the data by means of Probability Density Function (PDF) fitting, a goodness-of-fit test called chi-square test and a clustering algorithm called Principal Components Analysis (PCA). We have presented the results from each analysis and discussed them in detail. Upon, receiving positive results in each step we have decided to move towards using learning algorithms to categorise the data captured by the system. We have compared two widely accepted supervised learning algorithms, called Support Vector Machines (SVM) and Multi-Layer Perceptron (MLP). The results showed that with the current hardware capabilities of the system and the amount of data available per GSM frame, the performance of SVM is better than MLP. Thus, we have used SVM to classify two events of detection and classification across a wall. We have presented our findings and discussed the results in detail. We conclude our current work and provide scope for future work in development and analysis of the GSM-CommSense system.
APA, Harvard, Vancouver, ISO, and other styles
19

Marchaud, Fabienne Bernadette Therese. "Convex analysis applied to sensor-array signal processing." Thesis, King's College London (University of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Arik, Muharrem. "Collaborative Mobile Target Imaging In Ultra-wideband Wireless Radar Sensor Networks." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12610145/index.pdf.

Full text
Abstract:
Wireless sensor networks (WSN) have thus far been used for detection and tracking of static and mobile targets for surveillance and security applications. However, detection and tracking do not suffice for a complete satisfaction of these applications and an accurate target classification. To address this need, among various target classification methods, imaging of target yields the most valuable information. Nevertheless, imaging of mobile targets moving over an area requires networked and collaborative detection, tracking and imaging capabilities. With this regard, ultra-wideband (UWB) radar technology stands as a promising approach for networked target imaging over an area due to its unique features such as having no line-of-sight (LoS). However, the UWB wireless radar sensor network (WRSN) is yet to be developed for high quality imaging of mobile targets. In this thesis, an architecture for UWB wireless radar sensor network and a new collaborative mobile target imaging (CMTI) algorithm for UWB wireless radar sensor networks (WRSN) are presented. It is intended to accurately and efficiently obtain an image of mobile targets based on the collaborative eort of deployed UWB wireless radar sensor nodes. CMTI enables detection, tracking and imaging of mobile targets with a complete WRSN solution. CMTI exploits mobility of the target in the sensor field to build its own multi-static radar aperture. Performance evaluations reveal that CMTI obtains high quality radar image of mobile targets in WRSN with very low communication overhead and energy expenditure.
APA, Harvard, Vancouver, ISO, and other styles
21

Mateychuk, Duane N. "A wideband aperture-coupled microstrip array for an automotive radar sensor." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq23414.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Xu, Chunyang. "Automatic target detection and speed estimation using forward scatter radar sensor." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/6366/.

Full text
Abstract:
Forward Scatter Radar (FSR) is a subclass of the bistatic radar, where the received target signal occurs mainly due to the direct path signal shadowing by the target body. Employing a separate deployed transmitter and receiver at considerable distance, the FSR can achieve a number of advantages, such as enhanced radar cross section, inherent detection ability of stealth target, reasonably low complexity design of system, more than the conventional monostatic radar. All of these features are attractive to the modern remote sensing systems. This thesis presents the research results of the detection and speed estimation of the ground target in FSR, which is a vital procedure for automatic targets classification. The hardware was designed and assembled by the Microwave Integrated Systems Laboratory (MISL), University of Birmingham. The experimental data used in this thesis have been collected from real field environments at multiple locations and from various targets. The complex automatic target detection and speed estimation algorithm were integrated to achieve higher accuracy. The main problem investigated in this research and the appropriate results are dedicated to automatic target speed estimation in complex FSR operational scenario. The improved and originally proposed algorithms are discussed and shown throughout the chapters in great detail. The measurements are implemented in large load of work and the database is created for the validation of these algorithms.
APA, Harvard, Vancouver, ISO, and other styles
23

Mahmoud, Mohamed. "Parking Map Generation and Tracking Using Radar : Adaptive Inverse Sensor Model." Thesis, Linköpings universitet, Fluida och mekatroniska system, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-167084.

Full text
Abstract:
Radar map generation using binary Bayes filter or what is commonly known as Inverse Sensor Model; which translates the sensor measurements into grid cells occupancy estimation, is a classical problem in different fields. In this work, the focus will be on development of Inverse Sensor Model for parking space using 77 GHz FMCW (Frequency Modulated Continuous Wave) automotive radar, that can handle different environment geometrical complexity in a parking space. There are two main types of Inverse Sensor Models, where each has its own assumption about the sensor noise. One that is fixed and is similar to a lookup table, and constructed based on combination of sensor-specific characteristics, experimental data and empirically-determined parameters. The other one is learned by using ground truth labeling of the grid map cell, to capture the desired Inverse Sensor Model. In this work a new Inverse Sensor Model is proposed, that make use of the computational advantage of using fixed Inverse Sensor Model and capturing desired occupancy estimation based on ground truth labeling. A derivation of the occupancy grid mapping problem using binary Bayes filtering would be performed from the well known SLAM (Simultaneous Localization and Mapping) problem, followed by presenting the Adaptive Inverse Sensor Model, that uses fixed occupancy estimation but with adaptive occupancy shape estimation based on statistical analysis of the radar measurements distribution across the acquisition environment. A prestudy of the noise nature of the radar used in this work is performed, to have a common Inverse Sensor Model as a benchmark. Then the drawbacks of such Inverse Sensor Model would be addressed as sub steps of Adaptive Inverse Sensor Model, to be able to haven an optimal grid map occupancy estimator. Finally a comparison between the generated maps using the benchmark and the adaptive Inverse Sensor Model will take place, to show that under the fulfillment of the assumptions of the Adaptive Inverse Sensor Model, the Adaptive Inverse Sensor Model can offer a better visual appealing map to that of the benchmark.
APA, Harvard, Vancouver, ISO, and other styles
24

Andersson, Anton. "Offline Sensor Fusion for Multitarget Tracking using Radar and Camera Detection." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-208344.

Full text
Abstract:
Autonomous driving systems are rapidly improving and may have the ability to change society in the coming decade. One important part of these systems is the interpretation of sensor information into trajectories of objects. In this master’s thesis, we study an energy minimisation method with radar and camera measurements as inputs. An energy is associated with the trajectories; this takes the measurements, the objects’ dynamics and more factors into consideration. The trajectories are chosen to minimise this energy, using a gradient descent method. The lower the energy, the better the trajectories are expected to match the real world. The processing is performed offline, as opposed to in real time. Offline tracking can be used in the evaluation of the sensors’ and the real time tracker’s performance. Offline processing allows for the use of more computer power. It also gives the possibility to use data that was collected after the considered point in time. A study of the parameters of the used energy minimisation method is presented, along with variations of the initial method. The results of the method is an improvement over the individual inputs, as well as over the real time processing used in the cars currently. In the parameter study it is shown which components of the energy function are improving the results.<br>Mycket resurser läggs på utveckling av självkörande bilsystem. Dessa kan komma att förändra samhället under det kommande decenniet. En viktig del av dessa system är behandling och tolkning av sensordata och skapande av banor för objekt i omgivningen. I detta examensarbete studeras en energiminimeringsmetod tillsammans med radar- och kameramätningar. En energi beräknas för banorna. Denna tar mätningarna, objektets dynamik och fler faktorer i beaktande. Banorna väljs för att minimera denna energi med hjälp av gradientmetoden. Ju lägre energi, desto bättre förväntas banorna att matcha verkligheten. Bearbetning sker offline i motsats till i realtid; offline-bearbetning kan användas då prestandan för sensorer och realtidsbehandlingen utvärderas. Detta möjliggör användning av mer datorkraft och ger möjlighet att använda data som samlats in efter den aktuella tidpunkten. En studie av de ingående parametrarna i den använda energiminimeringsmetoden presenteras, tillsammans med justeringar av den ursprungliga metoden. Metoden ger ett förbättrat resultat jämfört med de enskilda sensormätningarna, och även jämfört med den realtidsmetod som används i bilarna för närvarande. I parameterstudien visas vilka komponenter i energifunktionen som förbättrar metodens prestanda.
APA, Harvard, Vancouver, ISO, and other styles
25

Hayward, Stephen David. "Adaptive sensor array processing in non-stationary signal environments." Thesis, University of Birmingham, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Beale, Gregory Thomas. "Radar and LiDAR Fusion for Scaled Vehicle Sensing." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/102932.

Full text
Abstract:
Scaled test-beds (STBs) are popular tools to develop and physically test algorithms for advanced driving systems, but often lack automotive-grade radars in their sensor suites. To overcome resolution issues when using a radar at small scale, a high-level sensor fusion approach between the radar and automotive-grade LiDAR was proposed. The sensor fusion approach was expected to leverage the higher spatial resolution of the LiDAR effectively. First, multi object radar tracking software (RTS) was developed to track a maneuvering full-scale vehicle using an extended Kalman filter (EKF) and the joint probabilistic data association (JPDA). Second, a 1/5th scaled vehicle performed the same vehicle maneuvers but scaled to approximately 1/5th the distance and speed. When taking the scaling factor into consideration, the RTS' positional error at small scale was, on average, over 5 times higher than in the full-scale trials. Third, LiDAR object sensor tracks were generated for the small-scale trials using a Velodyne PUCK LiDAR, a simplified point cloud clustering algorithm, and a second EKF implementation. Lastly, the radar sensor tracks and LiDAR sensor tracks served as inputs to a high-level track-to-track fuser for the small-scale trials. The fusion software used a third EKF implementation to track fused objects between both sensors and demonstrated a 30% increase in positional accuracy for a majority of the small-scale trials when compared to using just the radar or just the LiDAR to track the vehicle. The proposed track fuser could be used to increase the accuracy of RTS algorithms when operating in small scale and allow STBs to better incorporate automotive radars into their sensor suites.<br>Master of Science<br>Research and development platforms, often supported by robust prototypes, are essential for the development, testing, and validation of automated driving functions. Thousands of hours of safety and performance benchmarks must be met before any advanced driver assistance system (ADAS) is considered production-ready. However, full-scale testbeds are expensive to build, labor-intensive to design, and present inherent safety risks while testing. Scaled prototypes, developed to model system design and vehicle behavior in targeted driving scenarios, can minimize these risks and expenses. Scaled testbeds, more specifically, can improve the ease of safety testing future ADAS systems and help visualize test results and system limitations, better than software simulations, to audiences with varying technical backgrounds. However, these testbeds are not without limitation. Although small-scale vehicles may accommodate similar on-board systems to its full-scale counterparts, as the vehicle scales down the resolution from perception sensors decreases, especially from on board radars. With many automated driving functions relying on radar object detection, the scaled vehicle must host radar sensors that function appropriately at scale to support accurate vehicle and system behavior. However, traditional radar technology is known to have limitations when operating in small-scale environments. Sensor fusion, which is the process of merging data from multiple sensors, may offer a potential solution to this issue. Consequently, a sensor fusion approach is presented that augments the angular resolution of radar data in a scaled environment with a commercially available Light Detection and Ranging (LiDAR) system. With this approach, object tracking software designed to operate in full-scaled vehicles with radars can operate more accurately when used in a scaled environment. Using this improvement, small-scale system tests could confidently and quickly be used to identify safety concerns in ADAS functions, leading to a faster and safer product development cycle.
APA, Harvard, Vancouver, ISO, and other styles
27

Konstantinović, Miodrag. "In soil measuring of sugar beet yield using UWB radar sensor system." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=98500987X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Imran, Muneeb. "Contact-Less High Speed Measurement over Ground with 61 GHz Radar Sensor." Master's thesis, Universitätsbibliothek Chemnitz, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-212611.

Full text
Abstract:
Conventional FMCW radar principle was implemented on Symeo 61 GHz LPR®-1DHP-R radar sensor system. There were few limitations of the FMCW implementation which needed to be removed. First, target separation in multi target environment was not possible for objects at same distance. For example, there are two targets, one is moving and one is static. When the moving target approaches the static target and becomes parallel to static target, which means they are at the same distance. At this point, the system is unable to distinguish between two targets. Second, high resolution in velocity measurement was needed. To overcome these limitations Range Doppler Signal Processing was proposed. For the implementation of the Range Doppler algorithm, first of all proof of concept is needed. Simulations are performed using MATLAB to simulate Range Doppler algorithm using raw data from the sensor. After successful simulation, prototype is developed using python. This also provides the real time visualization of Range Doppler signal processing along with peak detection with distance and velocity measurements. With the Range Doppler implementation, separation between static and moving target becomes possible. Later the algorithm is implemented on Texas Instrument DSP in C considering the resource limitations of the target hardware. To validate the Range Doppler implementation and to determine the measurements accuracy, multiple test setups are created. Two main local testing environments have been setup, linear unit and turntable. The system is tested on these environments for different velocities and distances along with multiple targets and on different surfaces. Furthermore, the system is tested at an industrial site for detecting the fluid speed, which is also possible with the Range Doppler implementation.
APA, Harvard, Vancouver, ISO, and other styles
29

Ahajjam, Younes. "Design and Implementation of a UWB Radar Sensor for Non-Destructive Application." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/124057.

Full text
Abstract:
[ES] Debido a la importancia de los campos de aplicación del sensor de radar de banda ultraancha, y también a los requisitos de cada aplicación específica, existe una demanda creciente de diseño compacto, de bajo coste y alta precisión del sensor de radar de banda ultraancha. Para responder a estas exigencias, esta tesis pretende proponer un sensor de radar UWB avanzado. Este trabajo de investigación se centra en el diseño del sensor de radar de banda ultraancha (UWB) para aplicaciones no destructivas (END). Los detalles de diseño incluyen el diseño de un generador de pulsos ultracorto, de alta potencia con un timbre mínimo. El radar desarrollado fue construido con una configuración biestática. El objetivo de este trabajo es medir el rango de distancia y las propiedades eléctricas de un objetivo, por ejemplo, metales y materiales dieléctricos, como el cloruro de polivinilo (PV C). Para lograr este objetivo, se ha desarrollado un novedoso generador de pulsos de alta potencia ultra-corto (pulsador de radar). El nuevo generador de pulsos consiste en un transistor que funciona en modo de avalancha y un circuito de afilado de pulsos que utiliza un nuevo modelo de diodo de recuperación de paso (SRD). Para convertir el pulso gaussiano en un monociclo, se ha añadido una red de formación de monociclo (MFN). El generador de impulsos desarrollado produce un impulso eléctrico con una amplitud de 12 V, un tiempo de subida de 112 ps y un ancho de impulso (FWHM) de 155 ps. Con el fin de aumentar la amplitud de los pulsos, se han propuesto dos técnicas útiles en este trabajo. El primero consiste en agregar dos generadores en paralelo, en este diseño propuesto se tuvo en cuenta alguna especificación para hacer que este circuito funcione. Sin embargo, la segunda técnica adoptada en este trabajo consiste en dos etapas de generadores, ambas técnicas dan lugar a un buen rendimiento; en lugar de un solo módulo de un generador de impulsos, las técnicas propuestas en este trabajo aumentan la amplitud en torno al doble. Ambas técnicas han sido investigadas en detalle. Para transmitir y recibir los impulsos ultracortos generados, se utilizaron dos tipos diferentes de antenas UWB. En primer lugar, una antena Vivaldi con un ancho de banda de unos 5,5 GHz de 600 MHz a 6 GHz. La segunda es una antena Vivaldi con un ancho de banda de 6 GHz de 400 Mhz a 6,2 GHz. Utilizando el sensor de radar de banda ultraancha desarrollado, se realizaron mediciones de prueba. Esto incluye las propiedades eléctricas, así como la medición de la distancia a las placas de metal, madera y PVC. La incertidumbre del sensor de radar es de 14 mm (datos medidos asustados a + 14 mm para un blanco fijo). El diseño y la implementación real que conduce a lograr un excelente prototipo de rendimiento para una aplicación no destructiva.<br>[CAT] A causa de la rellevància dels camps d'aplicació del sensor de radar d'ultra banda ampla, i també l'exigència de cada aplicació específica, hi ha una demanda creixent de disseny compacte, de baix cost i alta precisió del sensor de radar d'ultra banda ampla. Amb la intenció d'atendre aquestes demandes, aquesta tesi pretén proposar un sensor avançat de radar UWB. Aquest treball de recerca tracta del disseny del sensor de radar d'ultra-banda ampla (UWB) per a aplicacions no destructives (NDT). Els detalls del disseny inclouen el disseny d'un pols de monocicle amb pols de potència d'alta potència i amb un mínim de timbre. El radar desenvolupat va ser construït en configuració bi-estàtica. L'objectiu d'aquest treball és mesurar el rang de distància i les propietats elèctriques d'un objectiu, per exemple, materials metàl·lics i dielèctrics, com el clorur de polivinil (PV C). Per assolir aquest objectiu, s'ha desenvolupat un nou ultrasò, generador de pols d'alta potència (polsador de radar). El nou generador de pols està format per un transistor que funciona en mode d'allaus i un circuit d'afilat de pols mitjançant un nou model de díode de recuperació de pas (SRD). Per a convertir el pols gaussiano en un monocicle, s'ha afegit una xarxa de formació de monocicles (MFN). El generador de polsos desenvolupat produeix un pols elèctric amb una amplitud de 12 V, un temps d'augment de 112 ps i un ample de pols (FWHM) de 155 ps. Amb l'objectiu d'augmentar l'amplitud dels polsos, s'han proposat dues tècniques útils en aquest treball. El primer consisteix a afegir dos generadors de forma paral·lela, en aquest disseny proposat, cal tenir en compte algunes especificacions per a fer la viabilitat d'aquest circuit. No obstant això, la segona tècnica adoptada en aquest treball consisteix en una doble etapa de generadors, ambdues tècniques donen lloc a una bona actuació; en lloc d'un únic mòdul d'un generador de pols, les tècniques proposades en aquest treball augmenten l'amplitud al voltant del doble. Per transmetre i rebre polsos ultra-curts generats, s'han utilitzat dos tipus diferents d'antenes UWB. En primer lloc, una antena de Vivaldi amb un ample de banda d'uns 5,5 GHz de 600 MHz a 6 GHz. Mentre que la segona és una antena Vivaldi amb un ample de banda de 6 GHz de 400 MHz a 6.2 GHz. Mitjançant el sensor de radar ultra-ampla desenvolupat, es va realitzar la mesura de la prova. Incloïen propietats elèctriques i mesures de distància a les plaques metàl·liques, fusta i PVC. S'ha trobat que la incertesa del sensor de radar és de 14 mm (dades mesurades espantades entre + 14 mm per a un objectiu fix). El disseny i la implementació real condueixen a aconseguir un excel·lent prototip de rendiment per a una aplicació no destructiva.<br>[EN] Due to the relevance of application fields of ultra-wideband radar sensor, and also the requirement of each specific application, there is an increasing demand of compact, low cost and high accuracy design of ultra-wideband radar sensor. With a view to addressing these demands, this thesis aims to propose an advanced UWB radar sensor. This research work deals with the design of the ultra-wideband (UWB) radar sensor for non-destructive (NDT) application. The design details include the design of ultra-short, high power pulse generator monocycle pulse with a minimum of ringing. The developed radar was build in bi-static configuration. The goal of this work is to measure the distance range and electrical properties of a target e.g, metal and dielectric materials, such as Polyvinyl chloride (PV C). To achieve this goal, a novel ultrashort, high power pulse generator (radar pulser) has been developed. The new pulse generator consists of a transistor operating in avalanche mode and a pulse sharpening circuit using a new model of step recovery diode (SRD). In order to converts the Gaussian pulse to a monocycle, a monocycle forming network (MFN) has been added. The developed pulse generator produces an electrical pulse with an amplitude of 12 V, a rise-time of 112 ps and pulse width (FWHM) of 155 ps. For the purpose to increase the amplitude of the pulses, two useful techniques have been proposed in this work. The first one consist of adding two generators in parallel, in this proposed design some specification was be taking into account to making the workability of this circuit. However, the second technic adopted in this work consists of a two-stage of generators, both technics give rise to a good performance; instead of a single module of a pulse generator, the techniques proposed in this work increase the amplitude around the double. In order to transmit and receive the generated ultra-short pulses, two different types of UWB antennas have been used. First, a Vivaldi antenna with a bandwidth of about 5.5 GHz from 600 MHz to 6 GHz. While the second is a Vivaldi antenna with a bandwidth of 6 GHz from 400 Mhz to 6,2 GHz. Using the developed ultra-wideband radar sensor, test measurement was performed. These included electrical properties as well as distance measurement towards metal plates, wood, and PVC. The uncertainty of the radar sensor has been found to be 14 mm (measured data scared within + 14 mm for a fixed target). The design and real implementation leading to achieve excellent performance prototype for a non-destructive application.<br>Ahajjam, Y. (2019). Design and Implementation of a UWB Radar Sensor for Non-Destructive Application [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/124057<br>TESIS
APA, Harvard, Vancouver, ISO, and other styles
30

Kazemisaber, Mohammadreza. "Clutter Removal in Single Radar Sensor Reflection Data via Digital Signal Processing." Thesis, Linnéuniversitetet, Institutionen för fysik och elektroteknik (IFE), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-99874.

Full text
Abstract:
Due to recent improvements, robots are more applicable in factories and various production lines where smoke, fog, dust, and steam are inevitable. Despite their advantages, robots introduce new safety requirements when combined with humans. Radars can play a crucial role in this context by providing safe zones where robots are operating in the absence of humans. The goal of this Master’s thesis is to investigate different clutter suppression methods for single radar sensor reflection data via digital signal processing. This was done in collaboration with ABB Jokab AB, Sweden. The calculations and implementation of the digital signal processing algorithms are made with Octave. A critical problem is false detection that could possibly cause irreparable damage. Therefore, a safety system with an extremely low false alarm rate is desired to reduce costs and damages. In this project, we have studied four different digital low pass filters: moving average, multiple-pass moving average, Butterworth, and window-based filters. The results are compared, and it is ascertained that all the results are logically compatible, broadly comparable, and usable in this context.
APA, Harvard, Vancouver, ISO, and other styles
31

Doe, Julien Albert. "Sensor Fusion Algorithm for Airborne Autonomous Vehicle Collision Avoidance Applications." DigitalCommons@CalPoly, 2018. https://digitalcommons.calpoly.edu/theses/2004.

Full text
Abstract:
A critical ability of any aircraft is to be able to detect potential collisions with other airborne objects, and maneuver to avoid these collisions. This can be done by utilizing sensors on the aircraft to monitor the sky for collision threats. However, several problems face a system which aims to use multiple sensors for target tracking. The data collected from sensors needs to be clustered, fused, and otherwise processed such that the flight control system can make accurate decisions based on it. Raw sensor data, while filled with useful information, is tainted with inaccuracies due to limitations and imperfections of the sensor. Combined use of different sensors presents further issues in how to handle disagreements between sensor data. This thesis project tackles the problem of processing data from multiple sensors (in this application, a radar and an infrared sensor) on an airborne platform in order to allow the aircraft to make flight corrections to avoid collisions.
APA, Harvard, Vancouver, ISO, and other styles
32

Eliasson, Emanuel. "Fusing Laser and Radar Data for Enhanced Situation Awareness." Thesis, Linköping University, Fluid and Mechanical Engineering Systems, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57928.

Full text
Abstract:
<p>With an increasing traffic intensity the demands on vehicular safety is higher than ever before. Active safety systems that have been developed recent years are a response to that. In this master thesis Sensor Fusion is used to combine information from a laser scanner and a microwave radar in order to get more information about the surroundings in front of a vehicle. The Extended Kalman Filter method has been used to fuse the information from the sensors. The process model consists partly of a Constant Turn model to describe the motion of the ego vehicle as well as a tracked object. These individual motions are then put together in a framework for spatial relationships to describe the relationship between them. Two measurement models have been used to describe the two sensors. They have been derived from a general sensor model. This filter approach has been used to estimate the position and orientation of an object relative the ego vehicle. Also velocity, yaw rate and the width of the object have been estimated. The filter has been implemented and simulated in Matlab. The data that has been recorded and used in this work is coming from a scenario where the ego vehicle is following an object in a quite straight line. Where the ego vehicle is a truck and the object is a bus. One important conclusion from this work is that the filter is sensitive to the number of laser beams that hits the object of interest. No qualitative validation has been made though.</p>
APA, Harvard, Vancouver, ISO, and other styles
33

Ameri, Ahmed Abbas Hussein [Verfasser]. "Long-Range Ultra-Wideband Radar Sensor for Industrial Applications / Ahmed Abbas Hussein Ameri." Kassel : Kassel University Press, 2013. http://d-nb.info/1056897678/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Han, Jeongwoo. "Development of an electronically tunable ultra-wideband radar imaging sensor and its components." Texas A&M University, 2003. http://hdl.handle.net/1969.1/3904.

Full text
Abstract:
Novel microwave transmitter and receiver circuits have been developed for implementing UWB (Ultra-Wideband) impulse radar imaging sensor operating in frequency band 0.2 to 4 GHz. with tunable operating frequency band. The fundamental system design parameters such as the required transmitting pulse power and the pulse duration were estimated for a presumed specific application, the pavement assessment. The designed transmitter is the tunable monocycle pulse generator with tuning capability for the output pulse duration from 450- to 1200- ps, and has relatively high transmitting pulse power from 200 to 400 mW. Tuning of the pulse duration was implemented by novel PIN diode switch configuration and decoupling circuit, and boosting of transmitting pulse power was made possible by using a high power pulse driving circuit and SRD coupling circuit. The synchronous sampling receiver system was designed by using the integrated sampling mixer and two reference clock oscillators placed in the transmitter and receiver respectively for timing control. A novel integrated CSH (Coupled-Slotline Hybrid)sampling mixer has been developed along with the design of the strobe pulse generator appropriate for the impulse radar system. The integrated sampling mixer has unprecedented conversion loss of 2.5 dB for the pulse signal, bandwidth 5.5 GHz, and dynamic range 50 dB. The introduced UWB LNA (Low Noise Amplifier) design operating up to 4 GHz should be useful for weak signal detection applications. The design of the UWB microstrip quasi-horn antenna was optimized for short pulse transmission with respect to the input return loss and the pulse stretching effect. For signal detection in the signal processing stage, the background subtraction technique and B-scan data format were used. A novel signal monitoring technique was introduced in the signal processing to compensate the frequency modulation effect of the reference clock. The test results for the complete system with respect to some sample multi-layer structures shows good receiving pulse waveform with low distortion, enough pulse penetration depth for 13” pavement sample structure, and minimum 1-in of range resolution.
APA, Harvard, Vancouver, ISO, and other styles
35

Ulrich, Michael [Verfasser]. "Radar Signal Processing and Sensor Fusion with Thermal Infrared for Firefighting / Michael Ulrich." München : Verlag Dr. Hut, 2020. http://d-nb.info/1219474886/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Loke, Yong. "Sensor synchronization, geolocation and wireless communication in a shipboard opportunistic array." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Mar%5FLoke.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Bulur, Hatice Gonca. "Determination Of Buried Circular Cylinder With Ground Penetrating Radar Using An Optical Fiber Sensor." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613702/index.pdf.

Full text
Abstract:
The terms &lsquo<br>ground-probing radar&rsquo<br>, &lsquo<br>ground penetrating radar (GPR)&rsquo<br>, &lsquo<br>sub-surface radar&rsquo<br>or &lsquo<br>surface-penetrating radar (SPR)&rsquo<br>refer to various techniques for detecting and imaging of subsurface objects. Among those terms GPR is preferred and used more often. In this thesis, the depth and the position of the buried circular cylinder are determined by a GPR system which comprises of an optical fiber sensor (OFS). The system is a combination of OFS, GPR and optical communication link. In order to determine the depth and the position, first of all the electric field distribution at the OFS is obtained by integrating the Green&rsquo<br>s function over the induced current distribution. Those distributions are observed for different frequency and depth values. The voltages inside the distribution are measured by OFS. By changing the depth of the cylinder and the frequency of the system, various plots showing x axis displacement versus measured voltages are obtained. Those plots are related to interference fringe patterns. The position and the depth of the cylinder are obtained using interference fringe patterns. All of the studies mentioned are performed in MATLAB R2007b program. The noises of the system due to OFS are extracted using OPTIWAVE OPTISYSTEM 7.0 program. By adding those noises to the measured voltage values, the operating frequency of the system is observed.
APA, Harvard, Vancouver, ISO, and other styles
38

Reinhardt, Alwin [Verfasser]. "A Millimeter Wave Radar Sensor for Monitoring Solid and Liquid Aerosol Streams / Alwin Reinhardt." Düren : Shaker, 2019. http://d-nb.info/1202218806/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Belgiovane, Domenic John Jr. "Advancing Millimeter-Wave Vehicular Radar Test Targets for Automatic Emergency Braking (AEB) Sensor Evaluation." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1511867574425366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

El, Natour Ghina. "Towards 3D reconstruction of outdoor scenes by mmw radar and a vision sensor fusion." Thesis, Clermont-Ferrand 2, 2016. http://www.theses.fr/2016CLF22773/document.

Full text
Abstract:
L’objectif de cette thèse est de développer des méthodes permettant la cartographie d’un environnement tridimensionnel de grande dimension en combinant radar panoramique MMW et caméras optiques. Contrairement aux méthodes existantes de fusion de données multi-capteurs, telles que le SLAM, nous souhaitons réaliser un capteur de type RGB-D fournissant directement des mesures de profondeur enrichies par l’apparence (couleur, texture...). Après avoir modélisé géométriquement le système radar/caméra, nous proposons une méthode de calibrage originale utilisant des correspondances de points. Pour obtenir ces correspondances, des cibles permettant une mesure ponctuelle aussi bien par le radar que la caméra ont été conçues. L’approche proposée a été élaborée pour pouvoir être mise en oeuvre dans un environnement libre et par un opérateur non expert. Deuxièmement, une méthode de reconstruction de points tridimensionnels sur la base de correspondances de points radar et image a été développée. Nous montrons par une analyse théorique des incertitudes combinées des deux capteurs et par des résultats expérimentaux, que la méthode proposée est plus précise que la triangulation stéréoscopique classique pour des points éloignés comme on en trouve dans le cas de cartographie d’environnements extérieurs. Enfin, nous proposons une stratégie efficace de mise en correspondance automatique des données caméra et radar. Cette stratégie utilise deux caméras calibrées. Prenant en compte l’hétérogénéité des données radar et caméras, l’algorithme développé commence par segmenter les données radar en régions polygonales. Grâce au calibrage, l’enveloppe de chaque région est projetée dans deux images afin de définir des régions d’intérêt plus restreintes. Ces régions sont alors segmentées à leur tour en régions polygonales générant ainsi une liste restreinte d’appariement candidats. Un critère basé sur l’inter corrélation et la contrainte épipolaire est appliqué pour valider ou rejeter des paires de régions. Tant que ce critère n’est pas vérifié, les régions sont, elles même, subdivisées par segmentation. Ce processus, favorise l’appariement de régions de grande dimension en premier. L’objectif de cette approche est d’obtenir une cartographie sous forme de patchs localement denses. Les méthodes proposées, ont été testées aussi bien sur des données de synthèse que sur des données expérimentales réelles. Les résultats sont encourageants et montrent, à notre sens, la faisabilité de l’utilisation de ces deux capteurs pour la cartographie d’environnements extérieurs de grande échelle<br>The main goal of this PhD work is to develop 3D mapping methods of large scale environment by combining panoramic radar and cameras. Unlike existing sensor fusion methods, such as SLAM (simultaneous localization and mapping), we want to build a RGB-D sensor which directly provides depth measurement enhanced with texture and color information. After modeling the geometry of the radar/camera system, we propose a novel calibration method using points correspondences. To obtain these points correspondences, we designed special targets allowing accurate point detection by both the radar and the camera. The proposed approach has been developed to be implemented by non-expert operators and in unconstrained environment. Secondly, a 3D reconstruction method is elaborated based on radar data and image point correspondences. A theoretical analysis is done to study the influence of the uncertainty zone of each sensor on the reconstruction method. This theoretical study, together with the experimental results, show that the proposed method outperforms the conventional stereoscopic triangulation for large scale outdoor scenes. Finally, we propose an efficient strategy for automatic data matching. This strategy uses two calibrated cameras. Taking into account the heterogeneity of cameras and radar data, the developed algorithm starts by segmenting the radar data into polygonal regions. The calibration process allows the restriction of the search by defining a region of interest in the pair of images. A similarity criterion based on both cross correlation and epipolar constraint is applied in order to validate or reject region pairs. While the similarity test is not met, the image regions are re-segmented iteratively into polygonal regions, generating thereby a shortlist of candidate matches. This process promotes the matching of large regions first which allows obtaining maps with locally dense patches. The proposed methods were tested on both synthetic and real experimental data. The results are encouraging and prove the feasibility of radar and vision sensor fusion for the 3D mapping of large scale urban environment
APA, Harvard, Vancouver, ISO, and other styles
41

Larsson, Daniel. "ARAVQ for discretization of radar data : An experimental study on real world sensor data." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-11114.

Full text
Abstract:
The aim of this work was to investigate if interesting patterns could be found in time series radar data that had been discretized by the algorithm ARAVQ into symbolic representations and if the ARAVQ thus might be suitable for use in the radar domain. An experimental study was performed where the ARAVQ was used to create symbolic representations of data sets with radar data. Two experiments were carried out that used a Markov model to calculate probabilities used for discovering potentially interesting patterns. Some of the most interesting patterns were then investigated further. Results have shown that the ARAVQ was able to create accurate representations for several time series and that it was possible to discover patterns that were interesting and represented higher level concepts. However, the results also showed that the ARAVQ was not able to create accurate representations for some of the time series.
APA, Harvard, Vancouver, ISO, and other styles
42

Bagnolini, Nicola. "Tracking di target multipli in reti di sensori radar." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7008/.

Full text
Abstract:
Viene proposta una possibile soluzione al problema del tracking multitarget, tramite una rete di sensori radar basata su tecnoligia ultra wide-band. L'area sorvegliata ha una superficie pari a 100 metri quadri e all'interno di essa si vuole tracciare la traiettoria di più persone.
APA, Harvard, Vancouver, ISO, and other styles
43

Alshudukhi, Jalawi. "Fixed chain-based wireless sensor network for intelligent transportation systems." Thesis, Oxford Brookes University, 2016. https://radar.brookes.ac.uk/radar/items/339e8000-1a19-4363-a307-9df2456c2b27/1/.

Full text
Abstract:
Wireless Sensor Networks (WSNs) are distributed and interconnected wirelessly sensors that are used in a variety of fields of our daily life, such as the manufacturing, utility operations and traffic monitoring. Many WSN applications come with some technical weaknesses and issues, especially when they are used in Intelligent Transportation Systems (ITS). For ITS applications that use a fixed chain topology which contains road studs deployed at ground level, there are some challenges related to radio propagation, energy constraints and the Media Access Control (MAC) protocol. This thesis develops a ground level radio propagation model for communication between road studs, and energy efficiency metrics to manage the resources to overcome the energy constraints, as well as a MAC protocol compatible with chain topology and ground level communication. For the challenges of the physical layer, this thesis investigates the use of a WSN for communicating between road-based nodes. These nodes are situated at ground level, and two-way wireless communication is required between the nodes and from the nodes to a roadside control unit. Field measurements have been carried out to examine the propagation close to the ground to determine the maximum distance between road-based nodes as a function of the antenna height. The results show that for a frequency of 2.4 GHz, a range of up to 8m is achievable with 2mW equivalent isotropically radiated power (EIRP). An empirical near-ground level radio propagation model has been derived, and the predicted results from this model are shown to match closely to the measured results. Since wireless sensor networks have power constraints, green energy efficiency metrics have been proposed for low-power wireless sensors operating at ground level. A numerical analysis is carried out to investigate the utilisation of the green energy efficiency metrics for ground level communication in wireless sensor networks. The proposed metrics have been developed to calculate the optimal sensor deployment, antenna height and energy efficiency level for the near ground wireless sensor. As an application of the proposed metrics, the relationship between the energy efficiency and the spacing between the wireless sensor nodes has been studied. The results provide guidance for energy efficient deployment of near ground level wireless sensors. To manage the communication between large numbers of nodes deployed on a chain topology, this research presents a time division multiple access (TDMA) MAC protocol that is specifically designed for applications requiring periodic sensing of the sensor field. Numerical analysis has been conducted to investigate the optimum transmission scheduling based on the signal-to-interference-plus-noise-ratio (SINR) for ground level propagation model applied on wireless chain topology. The optimised transmission schedule considers the SINR value to enable simultaneous transmission from multiple nodes. The most significant advantages of this approach are reduced delay and improved Packet Received Ratio (PRR). Simulation is performed to evaluate the proposed protocol for intelligent transport system applications. The simulation results validate the MAC protocol for a fixed chain topology compared with similar protocols.
APA, Harvard, Vancouver, ISO, and other styles
44

Eroglu, Muammer. "A New Stack Architecture For Sensor Networks." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607590/index.pdf.

Full text
Abstract:
In this thesis, a new stack architecture for sensor networks is proposed. The stack consists of the following layers: application, query, aggregation, network, MAC and physical. Various algorithms are implemented using this stack and it is shown that this stack is modular. Following an overview of sensor networks, the previous protocol stack suggestions for sensor networks are examined. Sensor network algorithms that can be classified as sensor data management systems are surveyed and compared with each other. Four of the surveyed algorithms, namely, TAG, Synopsis Diffusion, Tributary-Delta and Directed Diffusion are implemented using the introduced stack. The implementation is performed using a sensor network model developed with OMNeT++ simulator. The simulation results are compared to the original results of these algorithms. Obtaining similar results, the stack and algorithm implementations are validated, moreover, it is shown that the stack does not induce any performance degradation. Using the implementation details of the algorithms, the modularity of the suggested stack is demonstrated. Finally, additional benefits of the stack are discussed.
APA, Harvard, Vancouver, ISO, and other styles
45

Moritz, Malte, and Anton Pettersson. "Estimation of Local Map from Radar Data." Thesis, Linköpings universitet, Reglerteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-111916.

Full text
Abstract:
Autonomous features in vehicles is already a big part of the automobile area and now many companies are looking for ways to make vehicles fully autonomous. Autonomous vehicles need to get information about the surrounding environment. The information is extracted from exteroceptive sensors and today vehicles often use laser scanners for this purpose. Laser scanners are very expensive and fragile, it is therefore interesting to investigate if cheaper radar sensors could be used. One big challenge when it comes to autonomous vehicles is to be able to use the exteroceptive sensors and extract a position of the vehicle and at the same time get a map of the environment. The area of Simultaneous Localization and Mapping (SLAM) is a well explored area when using laser scanners but is not that well explored when using radars. It has been investigated if it is possible to use radar sensors on a truck to create a map of the area where the truck drives. The truck has been equipped with ego-motion sensors and radars and the data from them has been fused together to get a position of the truck and to get a map of the surrounding environment, i.e. a SLAM algorithm has been implemented. The map is represented by an Occupancy Grid Map (OGM) which should only consist of static objects. The OGM is updated probabilistically by using a binary Bayes filter. To localize the truck with help of motion sensors an Extended Kalman Filter (EKF) is used together with a map and a scan match method. All these methods are put together to create a SLAM algorithm. A range rate filter method is used to filter out noise and non-static measurements from the radar. The results of this thesis show that it is possible to use radar sensors to create a map of a truck's surroundings. The quality of the map is considered to be good and details such as space between parked trucks, signs and light posts can be distinguished. It has also been proven that methods with low performance on their own can together with other methods work very well in the SLAM algorithm. Overall the SLAM algorithm works well but when driving in unexplored areas with a low number of objects problems with positioning might occur. A real time system has also been implemented and the map can be seen at the same time as the truck is manoeuvred.
APA, Harvard, Vancouver, ISO, and other styles
46

Gale, Nicholas C. "FUSION OF VIDEO AND MULTI-WAVEFORM FMCW RADAR FOR TRAFFIC SURVEILLANCE." Wright State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=wright1315857639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Condict, Nahlah. "EXPERIMENTAL ANALYSIS OF MULTI-PURPOSE UWB RF SYSTEM FOR AD-HOC RADAR SENSOR NETWORK APPLICATIONS." Miami University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=miami1533915320524546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Lundbäck, Kristoffer, and Leonardo Dahn. "Preliminary Evaluation of the Clinical Value of an Ultra-Wideband Radar Sensor for Heart Assessment." Thesis, KTH, Skolan för teknik och hälsa (STH), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199247.

Full text
Abstract:
Heart dysfunction is a worldly widespread problem that currently is one of the leading causes of death. Studies indicate that many deaths related to cardiac dysfunction could have been prevented if discovered early. Contemporarily, ultrasound and electrocardiography are indispensable modalities for diagnostic purposes and analysis of cardiac function. The Ventricorder is an Ultra-Wideband radar sensor manufactured by the Norwegian company Novelda. Ventricorder has been shown to be able detect heart movements and breathing but its actual clinical value remains to be investigated. The Cardiac State Diagram (CSD) is a pre-clinical software tool for visualization of the heart's mechanical function. The CSD is confirmed by pilot studies to be able to constitute a basis for diagnosis and cardiac function assessment. Theoretically, the CSD is well suited to be used with the Ventricorder since the Ventricorder detects small changes over time and information about time events is all that is required for the creation of a CSD. Contemporarily, ultrasound tissue velocity imaging (TVI) is usually used for production of CSDs and in this master thesis we examined if the Ventricorder can be used to produce CSDs. This was done by mainly comparing velocity data from the Ventricorder with velocity data from temporally synchronized apical four-chamber images acquired with ultrasound TVI. The results indicate that there is an apparent correlation between these data sets and the Ventricorder should therefore be able to produce data that could constitute the basis for the production of a CSD. What remain now is to confirm these results statistically with a larger test group and to investigate whether all the time instants needed for the production of a CSD can be identified objectively.<br>Hjärtdysfunktion är ett värdsligt utbrett problem som ligger bakom många dödsfall varje år. Studier har visat att många dödsfall som är relaterade till hjärtdysfunktion hade kunnat förebyggas om de upptäckts i tid. För närvarande är bland annat ultraljud och EKG oumbärliga metoder för diagnostisering och analys av hjärtfunktion. Ventricorder är en typ av radarsensor som utnyttjar ett brett frekvensspektrum, så kallat Ultra Wideband, och är tillverkad av det norska företaget Novelda. Ventricorder har visat sig kunna detektera exempelvis hjärtrörelser och andning men dess kliniska värde har ännu inte undersökts. Cardiac State Diagram (CSD) är ett prekliniskt mjukvaruverktyg för att visualisera hjärtats mekaniska funktion och som har bekräftats genom pilotstudier att kunna användas som underlag för diagnostik och bedömning av hjärtats funktion. Teoretiskt sett är CSD väl lämpat för att användas med Ventricordern eftersom Ventricordern registrerar små rörelser över tid och just ändringar över tid är precis vad som behövs för att skapa ett CSD. I dagsläget används vanligen vävnadsdoppler (TVI) för produktion av CSD och i denna masteruppsats undersöktes huruvida Ventricorder kan användas för att producera CSD. Detta gjordes genom att jämföra mätdata från Ventricorder med temporalt synkroniserade apikala fyrkammar-bilder framställda med vävnadsdoppler. Resultaten indikerar att det finns en påtaglig korrelation mellan dessa data och att mätdatat från en Ventricorder således bör kunna användas för produktion av CSD. Det kvarstår att bekräfta dessa resultat statistiskt med en större testgrupp och att undersöka om samtliga tidsmarkörer som behövs för produktion av ett CSD kan identifieras objektivt.
APA, Harvard, Vancouver, ISO, and other styles
49

Jonsson, Lisa, and Karin Sallhammar. "User Interface Design for Analysis of Sensor Systems." Thesis, Linköping University, Department of Science and Technology, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1670.

Full text
Abstract:
<p>In the future network-based Swedish Defence (NBD), attaining information superiority will be of great importance. This will be achieved by a network of networks where decision-makers, information- and weapon-systems are linked together. As a part of the development of NBD, we have performed a study of user interface design for a future network-based tool package for analysis of sensor systems, referred to as the C2SR-system. </p><p>This thesis was performed at Ericsson Microwave Systems AB, Sensor and Information Networks, during the autumn 2002. A pre-study concerning the requirements of usability, trustworthiness and functionality of a userinterface for the C2SR-system was performed. Officers representing the future users in the NBD played an important role when gathering these requirements. Another important part of the pre-study was the evaluation of software that contains parts of the functionality necessary for the C2SR-system. </p><p>On the basis of the results from the pre-study, we have designed a user interface to the future C2SR-system. To demonstrate the most important conclusions, a prototype was implemented.</p>
APA, Harvard, Vancouver, ISO, and other styles
50

Wilcher, John S. "Algorithms and performance optimization for distributed radar automatic target recognition." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53533.

Full text
Abstract:
This thesis focuses upon automatic target recognition (ATR) with radar sensors. Recent advancements in ATR have included the processing of target signatures from multiple, spatially-diverse perspectives. The advantage of multiple perspectives in target classification results from the angular sensitivity of reflected radar transmissions. By viewing the target at different angles, the classifier has a better opportunity to distinguish between target classes. This dissertation extends recent advances in multi-perspective target classification by: 1) leveraging bistatic target reflectivity signatures observed from multiple, spatially-diverse radar sensors; and, 2) employing a statistical distance measure to identify radar sensor locations yielding improved classification rates. The algorithms provided in this thesis use high resolution range (HRR) profiles – formed by each participating radar sensor – as input to a multi-sensor classification algorithm derived using the fundamentals of statistical signal processing. Improvements to target classification rates are demonstrated for multiple configurations of transmitter, receiver, and target locations. These improvements are shown to emanate from the multi-static characteristics of a target class’ range profile and not merely from non-coherent gain. The significance of dominant scatterer reflections is revealed in both classification performance and the “statistical distance” between target classes. Numerous simulations have been performed to interrogate the robustness of the derived classifier. Errors in target pose angle and the inclusion of camouflage, concealment, and deception (CCD) effects are considered in assessing the validity of the classifier. Consideration of different transmitter and receiver combinations and low signal-to-noise ratios are analyzed in the context of deterministic, Gaussian, and uniform target pose uncertainty models. Performance metrics demonstrate increases in classification rates of up to 30% for multiple-transmit, multiple-receive platform configurations when compared to multi-sensor monostatic configurations. A distance measure between probable target classes is derived using information theoretic techniques pioneered by Kullback and Leibler. The derived measure is shown to suggest radar sensor placements yielding better target classification rates. The predicted placements consider two-platform and three-platform configurations in a single-transmit, multiple-receive environment. Significant improvements in classification rates are observed when compared to ad-hoc sensor placement. In one study, platform placements identified by the distance measure algorithm are shown to produce classification rates exceeding 98.8% of all possible platform placements.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography