Academic literature on the topic 'Sensors and actuators'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sensors and actuators.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Sensors and actuators"

1

Lee, C. K., and F. C. Moon. "Modal Sensors/Actuators." Journal of Applied Mechanics 57, no. 2 (June 1, 1990): 434–41. http://dx.doi.org/10.1115/1.2892008.

Full text
Abstract:
A piezoelectric laminate theory that uses the piezoelectric phenomenon to effect distributed control and sensing of structural vibration of a flexible plate has been used to develop a class of distributed sensor/actuators, that of modal sensors/actuators. The one-dimensional modal sensors/actuator equations are first derived theoretically and then examined experimentally. These modal equations indicate that distributed piezoelectric sensors/actuators can be adopted to measure/excite specific modes of one-dimensional plates and beams. If constructed correctly, actuator/observer spillover will not be present in systems adopting these types of sensors/actuators. A mode 1 and a mode 2 sensor for a one-dimensional cantilever plate were constructed and tested to examine the applicability of the modal sensors/actuators. A modal coordinate analyzer which allows us to measure any specific modal coordinate on-line real-time is proposed. Finally, a way to create a special two-dimensional modal sensor is presented.
APA, Harvard, Vancouver, ISO, and other styles
2

Norris, G. A., and R. E. Skelton. "Selection of Dynamic Sensors and Actuators in the Control of Linear Systems." Journal of Dynamic Systems, Measurement, and Control 111, no. 3 (September 1, 1989): 389–97. http://dx.doi.org/10.1115/1.3153066.

Full text
Abstract:
This paper selects sensors and actuators (location, type, and number) from an admissible set. We seek an approximate solution to this integer programming problem. Given the optimal use of the entire admissible set of sensors and actuators, it is possible to decompose the quadratic cost function into contributions from each stochastic input and each weighted output. In the past, these suboptimal cost decomposition methods of sensor and actuator selection have been used to locate perfect (infinite bandwidth) sensors and actuators on large scale systems. This paper extends these ideas to the more practical case of imperfect actuators and sensors with dynamics of their own. Secondly, the old cost decomposition methods are discarded for improved formulas for sensor and actuator deletion (from the admissible set). These results show that there exists an optimal number of actuators (it is possible to use too few and too many). Preliminary attempts to solve this new research question are described. It is also shown that there exists optimal dynamics of the actuators. NASA’s SCOLE example demonstrates the concepts.
APA, Harvard, Vancouver, ISO, and other styles
3

Mitterer, Tobias, Christian Lederer, and Hubert Zangl. "Enabling Modular Robotics with Secure Transducer Identification Based on Extended IEEE 21450 Transducer Electronic Datasheets." Sensors 23, no. 5 (March 6, 2023): 2873. http://dx.doi.org/10.3390/s23052873.

Full text
Abstract:
In robotics, there are many different sensors and actuators mounted onto a robot which may also, in the case of modular robotics, be interchanged during operation. During development of new sensors or actuators, prototypes may also be mounted onto a robot to test functionality, where the new prototypes often have to be integrated manually into the robot environment. Proper, fast and secure identification of new sensor or actuator modules for the robot thus becomes important. In this work, a workflow to add new sensors or actuators to an existing robot environment while establishing trust in an automated manner using electronic datasheets has been developed. The new sensors or actuators are identified via near field communication (NFC) to the system and exchange security information via the same channel. By using electronic datasheets stored on the sensor or actuator, the device can be easily identified and trust can be established by using additional security information contained in the datasheet. In addition, the NFC hardware can simultaneously be used for wireless charging (WLC), thus allowing for wireless sensor and actuator modules. The developed workflow has been tested with prototype tactile sensors mounted onto a robotic gripper.
APA, Harvard, Vancouver, ISO, and other styles
4

Shu, Jing, Junming Wang, Kenneth Chik-Chi Cheng, Ling-Fung Yeung, Zheng Li, and Raymond Kai-yu Tong. "An End-to-End Dynamic Posture Perception Method for Soft Actuators Based on Distributed Thin Flexible Porous Piezoresistive Sensors." Sensors 23, no. 13 (July 6, 2023): 6189. http://dx.doi.org/10.3390/s23136189.

Full text
Abstract:
This paper proposes a method for accurate 3D posture sensing of the soft actuators, which could be applied to the closed-loop control of soft robots. To achieve this, the method employs an array of miniaturized sponge resistive materials along the soft actuator, which uses long short-term memory (LSTM) neural networks to solve the end-to-end 3D posture for the soft actuators. The method takes into account the hysteresis of the soft robot and non-linear sensing signals from the flexible bending sensors. The proposed approach uses a flexible bending sensor made from a thin layer of conductive sponge material designed for posture sensing. The LSTM network is used to model the posture of the soft actuator. The effectiveness of the method has been demonstrated on a finger-size 3 degree of freedom (DOF) pneumatic bellow-shaped actuator, with nine flexible sponge resistive sensors placed on the soft actuator’s outer surface. The sensor-characterizing results show that the maximum bending torque of the sensor installed on the actuator is 4.7 Nm, which has an insignificant impact on the actuator motion based on the working space test of the actuator. Moreover, the sensors exhibit a relatively low error rate in predicting the actuator tip position, with error percentages of 0.37%, 2.38%, and 1.58% along the x-, y-, and z-axes, respectively. This work is expected to contribute to the advancement of soft robot dynamic posture perception by using thin sponge sensors and LSTM or other machine learning methods for control.
APA, Harvard, Vancouver, ISO, and other styles
5

Schneider, J., A. Klein, C. Mannweiler, and H. D. Schotten. "An efficient architecture for the integration of sensor and actuator networks into the future internet." Advances in Radio Science 9 (August 1, 2011): 231–35. http://dx.doi.org/10.5194/ars-9-231-2011.

Full text
Abstract:
Abstract. In the future, sensors will enable a large variety of new services in different domains. Important application areas are service adaptations in fixed and mobile environments, ambient assisted living, home automation, traffic management, as well as management of smart grids. All these applications will share a common property, the usage of networked sensors and actuators. To ensure an efficient deployment of such sensor-actuator networks, concepts and frameworks for managing and distributing sensor data as well as for triggering actuators need to be developed. In this paper, we present an architecture for integrating sensors and actuators into the future Internet. In our concept, all sensors and actuators are connected via gateways to the Internet, that will be used as comprehensive transport medium. Additionally, an entity is needed for registering all sensors and actuators, and managing sensor data requests. We decided to use a hierarchical structure, comparable to the Domain Name Service. This approach realizes a cost-efficient architecture disposing of "plug and play" capabilities and accounting for privacy issues.
APA, Harvard, Vancouver, ISO, and other styles
6

Mersch, Johannes, Najmeh Keshtkar, Henriette Grellmann, Carlos Alberto Gomez Cuaran, Mathis Bruns, Andreas Nocke, Chokri Cherif, Klaus Röbenack, and Gerald Gerlach. "Integrated Temperature and Position Sensors in a Shape-Memory Driven Soft Actuator for Closed-Loop Control." Materials 15, no. 2 (January 10, 2022): 520. http://dx.doi.org/10.3390/ma15020520.

Full text
Abstract:
Soft actuators are a promising option for the advancing fields of human-machine interaction and dexterous robots in complex environments. Shape memory alloy wire actuators can be integrated into fiber rubber composites for highly deformable structures. For autonomous, closed-loop control of such systems, additional integrated sensors are necessary. In this work, a soft actuator is presented that incorporates fiber-based actuators and sensors to monitor both deformation and temperature. The soft actuator showed considerable deformation around two solid body joints, which was then compared to the sensor signals, and their correlation was analyzed. Both, the actuator as well as the sensor materials were processed by braiding and tailored fiber placement before molding with silicone rubber. Finally, the novel fiber-rubber composite material was used to implement closed-loop control of the actuator with a maximum error of 0.5°.
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Shiqing, Michael Frey, and Frank Gauterin. "Model-Based Condition Monitoring of the Sensors and Actuators of an Electric and Automated Vehicle." Sensors 23, no. 2 (January 12, 2023): 887. http://dx.doi.org/10.3390/s23020887.

Full text
Abstract:
Constant monitoring of driving conditions and observation of the surrounding area are essential for achieving reliable, high-quality autonomous driving. This requires more reliable sensors and actuators, as there is always the potential that sensors and actuators will fail under real-world conditions. The sensitive condition-monitoring methods of sensors and actuators should be used to improve the reliability of the sensors and actuators. They should be able to detect and isolate the abnormal situations of faulty sensors and actuators. In this paper, a developed model-based method for condition monitoring of the sensors and actuators in an electric vehicle is presented that can determine whether a sensor has a fault and further reconfigure the sensor signal, as well as detect the abnormal behavior of the actuators with the reconfigured sensor signals. Through the simulation data obtained by the vehicle model in complex road conditions, it is proved that the method is effective for the state detection of sensors and actuators.
APA, Harvard, Vancouver, ISO, and other styles
8

Mao, Qi Bo. "Active Control of Sound Transmission Trough a Double Wall Structure." Applied Mechanics and Materials 138-139 (November 2011): 858–63. http://dx.doi.org/10.4028/www.scientific.net/amm.138-139.858.

Full text
Abstract:
Based on coupling structural-acoustic modal model, using piezoelectric materials and loudspeaker/microphones as actuator/sensors, the analytical simulations are presented for the actively controlled the sound transmission through double plate structure. Firstly, the results show the potential for using PVDF sensors to improve sound transmission loss. Secondly, the effects of parameters of actuator/sensor and double plate structure on control performances are discussed. And some useful conclusions are obtained, for example, if volume velocity sensor is applied to radiating plate, transmission loss will improve significantly, no matter what type actuators (i.e. loudspeakers or PZT actuators on either plate) are used; symmetrical rectangular PVDF sensors should be applied on radiating plate; using loudspeaker/microphone configuration should be avoided for the same thickness double plate structure; the increased thickness of cavity leads to the better control performance.
APA, Harvard, Vancouver, ISO, and other styles
9

MARTIN, JAN, SEBASTIAN BECK, ARNE LEHMANN, RALF MIKUT, CHRISTIAN PYLATIUK, STEFAN SCHULZ, and GEORG BRETTHAUER. "SENSORS, IDENTIFICATION, AND LOW LEVEL CONTROL OF A FLEXIBLE ANTHROPOMORPHIC ROBOT HAND." International Journal of Humanoid Robotics 01, no. 03 (September 2004): 517–32. http://dx.doi.org/10.1142/s0219843604000253.

Full text
Abstract:
The successful control of a robot hand with multiple degrees of freedom not only requires sensors to determine the state of the hand but also a thorough understanding of the actuator system and its properties. This article presents a set of sensors and analyzes the actuator properties of an anthropomorphic robot hand driven by flexible fluidic actuators. These flexible and compact actuators are integrated directly into the finger joints, they can be driven either pneumatically or hydraulically. The sensors for the measurement of joint angles, contact forces, and fluid pressure are described; the designs utilize mostly commodity components. Hall sensors and customized half-ring rare-earth magnets are used to integrate the joint angle sensors directly into the actuated joints. A force sensor setup allowing soft finger surfaces is evaluated. Fluid pressure sensors are needed for the model-based computation of joint torques and to limit the actuator pressure. Static and dynamic actuator characteristics are determined in a theoretical process analysis, and suitable parameters are identified in several experiments. The resulting actuator model incorporates the viscoelastic material behavior and describes the relations of joint angle, actuator pressure, and actuator torque. It is used in simulations and for the design of a joint position controller.
APA, Harvard, Vancouver, ISO, and other styles
10

Konishi, Satoshi, Fuminari Mori, Ayano Shimizu, and Akiya Hirata. "Structural Reinforcement Effect of a Flexible Strain Sensor Integrated with Pneumatic Balloon Actuators for Soft Microrobot Fingers." Micromachines 12, no. 4 (April 2, 2021): 395. http://dx.doi.org/10.3390/mi12040395.

Full text
Abstract:
Motion capture of a robot and tactile sensing for a robot require sensors. Strain sensors are used to detect bending deformation of the robot finger and to sense the force from an object. It is important to introduce sensors in effective combination with actuators without affecting the original performance of the robot. We are interested in the improvement of flexible strain sensors integrated into soft microrobot fingers using a pneumatic balloon actuator (PBA). A strain sensor using a microchannel filled with liquid metal was developed for soft PBAs by considering the compatibility of sensors and actuators. Inflatable deformation generated by PBAs, however, was found to affect sensor characteristics. This paper presents structural reinforcement of a liquid metal-based sensor to solve this problem. Parylene C film was deposited into a microchannel to reinforce its structure against the inflatable deformation caused by a PBA. Parylene C deposition into a microchannel suppressed the interference of inflatable deformation. The proposed method enables the effective combination of soft PBAs and a flexible liquid metal strain sensor for use in microrobot fingers.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Sensors and actuators"

1

Mitwalli, Ahmed Hamdi. "Polymer gel actuators and sensors." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/9969.

Full text
Abstract:
Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.
Includes bibliographical references (p. [351]-361).
by Ahmed Hamdi Mitwalli.
Sc.D.
APA, Harvard, Vancouver, ISO, and other styles
2

Scheidl, Rudolf. "Actuators and Sensors for Smart Systems." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-200616.

Full text
Abstract:
Smartness of technical systems relies also on appropriate actuators and sensors. Different to the prevalent definition of smartness to be embedded machine intelligence, in this paper elegance and simplicity of solutions is postulated be a more uniform and useful characterization. This is discussed in view of the current trends towards cyber physical systems and the role of components and subsystems, as well as of models for their effective realization. Current research on actuators and sensing in the fluid power area has some emphasis on simplicity and elegance of solution concepts and sophisticated modeling. This is demonstrated by examples from sensorless positioning, valve actuation, and compact hydraulic power supply.
APA, Harvard, Vancouver, ISO, and other styles
3

MOHAMED, MOHAMED ELSAID ELKHAYAT MOATAZBELLAH. "Interface Circuits for Sensors and Actuators." Doctoral thesis, Università degli studi di Pavia, 2018. http://hdl.handle.net/11571/1214860.

Full text
Abstract:
The research activity described in this Thesis is the result of three different projects, all dealing with interface circuits for sensors and actuators. 1) Capacitive Humidity sensor with temperature controller and heater integrated in CMOS technology The first project deals with the design of the integrated interface circuit for accurately controlling the temperature of a CMOS capacitive humidity sensor, with the final goal of allowing self-dignostics and self-calibration of the sensor. The humidity sensor used is equipped with an integrated resistor and a temperature sensor which allow changing and measuring the actual sensor temperature. This activity concentrated initially on the characterization of the humidity sensor provided by Texas Instruments, with the goal of determining the features and the behavior of the device and identifying the specifications of the integrated interface circuit. A measurement setup based on LabView has been developed to allow controlling the temperature of the sensor with an accuracy of 0.005˚C and measuring both the relative humidity and the temperature. Based on the sensor measurement results we developed a model of the humidity sensor with built-in heater and thermometer in the Cadence framework, to allow the simulation of the complete system. In this sensor model, all the dynamic effects of the heater and relative humidity variation have been considered, to guarantee proper design of the temperature controller integrated circuit. The temperature controller is designed in CMOS technology; it allows a precise adjustment of the temperature with an accuracy better than 0.1˚C. The circuit is based on an analog control loop with PWM modulator. The circuit has been fabricated using a 0.35µm CMOS technology. 2) Scaltech28 (test structures in CMOS 28nm) The second project deals with the design of test structures in CMOS 28nm technology, to evaluate it potential for the implementation of sensor interface circuits in future high-energy physics experiments. This work has been carried out in the frame of project, SCALTECH28, which continues the tradition of other similar studies carried out in previous technology generations for achieving optimal results in IC design for various detectors. This investigation within the selected 28nm technology had to address basic analysis on the single MOS devices (n-MOS and p-MOS), on passive elements like resistors and capacitors, and finally on basic circuits and system building blocks, among the most critical in the sensor interface circuits for different physics experiments. The main purpose of the work is to investigate the performance of the 28nm technology in terms of signal processing quality, power consumption, and radiation hardness with respect to previous technological generations. An additional target is to experimentally evaluate radiation damage effects on single devices and on full circuits to develop rad-models for simulations. A test chip including elementary device arrays and dedicated read-out circuits has been developed and fully characterized. In particular, a capacitance to frequency converter has been integrated to measure the matching between different capacitors of a programmable array.
Experimental measurements showed that the worst-case measurement for the capacitor pair matching is around 0.98% error at 500fF. This value is compliant to the feasibility of A/D converters for sensor readout with resolution better than 10 bits. It is clear from the results that matching performance is comparable to previous technologies, making the 28nm technology eligible for analog signal processing in front-end circuits for physical experiments and related data converters. Samples have been sent to irradiation facility to be exposed to different radiation doses in order to be re-measured and compared in terms of matching and absolute capacitance values with respect to the measurements done before. Based on the results obtained on the basic devices in 28nm technology, we designed a 14-bit 1MS/s extended range incremental A/D converter composed by the cascade of two resettable second-order sigma-delta modulators. The system is designed for reading out detector arrays in particle physics experiments. The two stages, ideally targeting 9 and 6 bits, respectively, are both based on a cascade of integrators with feed-forward (CIFF) architecture to maximize linearity. If necessary, they can work in pipeline to minimize conversion time. When the conversion of each sample by the two stages is completed, a digital recombination filter produces the overall ADC output word with the required resolution (ENOB) of at least 13 bits and a throughput of 1MS/s at the very low over sampling ratio (OSR) of 16. Each stage, implemented with the switched capacitor technique, consists of two integrators followed by a multi-bit quantizer and a capacitive DAC for the feedback. At the start of each conversion cycle, both analog integrators and the digital filter memory elements are reset. The ADC has been sent for fabrication in 28nm technology. Driving circuit for the piezoelectric actuators in ultrasonic washing machines The third project deals with the design of the driving circuit for the piezoelectric actuators in ultrasonic washing machines. The object of this project concerns the study and design of a driving and control system for an ultrasonic cleaning machine, or more commonly called ultrasonic washing machine. These devices are used in several industrial applications. Ultrasonic washing machines consist of a tank filled with a detergent solvent, an electronic interface circuit and one or more piezoelectric transducers, which are mechanically connected to the tank and electrically to the driving circuit. The driving system is connected from the AC mains and consists of three cascaded stages: a rectifier followed by a boost converter, to regulate the power factor and produce an intermediate DC voltage; a buck converter, to adjust the amplitude of the supply voltage for the piezoelectric transducers; an inverter, to drive the actuators with a square wave at their resonance frequency between 30kHz and 40kHz. A flyback converter has also been designed for generating the auxiliary power supply voltage for all the integrated components in the system. A control system based on an Arduino microcontroller has been developed to adjust the frequency of the square wave to the resonance frequency of the transducer, control the output voltage of the buck converter and read data from a current sensor. The system is designed and implemented on a PCB board of 10cm×15cm. The system has been tested on machined with two different tank sizes.
APA, Harvard, Vancouver, ISO, and other styles
4

Johnson, David Gary. "Integrating sensors and actuators for robotic assembly." Thesis, University of Hull, 1986. http://hydra.hull.ac.uk/resources/hull:11276.

Full text
Abstract:
This thesis addresses the problem of integrating sensors and actuators for closed-loop control of a robotic assembly cell. In addition to the problems of interfacing the physical components of the work-cell, the difficulties of representing sensory feedback at a high level within the robot control program are investigated. A new level of robot programming, called sensor-level programming, is introduced. In this, the movements of the actuators are not given explicitly, but rather are inferred by the programming system to achieve new sensor conditions given by the programmer. Control of each sensor and actuator is distributed through a master-slave hierarchy, with each sensor and actuator having its own slave controller. A protocol for information interchange between each controller and the master is defined. If possible, the control of the kinematics of a robot arm is achieved through the manufacturer's existing control system. Under these circumstances, the actuator slave would be acting as an interface between the generic command codes issued from the central controller, and the syntax of the corresponding control instructions required by the commercial system. Sensor information is preprocessed in the sensor slaves and a set of high-level descriptors, called attributes, are sent to the central controller. Closed-loop control is achieved on the basis of these attributes. The processing of sensor information which is corrupted by noise is investigated. Sources of sensor noise are identified and new algorithms are developed to quantify the noise based on information obtained from the closed-loop servoing. Once the relative magnitudes of the system and measurement noise have been estimated, a Kalman filter is used to weight the sensor information and hence reduce the credibility given to noisy sensors; in the limit ignoring the information completely. The improvements in system performance by processing the sensor information in this way are demonstrated. The sensor-level representation and automatic error processing are embedded in a software control system, which can be used to interface commercial systems as well as purpose-built devices. An'industrial research project associated with the lay-up of carbon-fibre provides an example of its operation. A list of publications resulting from the work in this thesis is given in Appendix E.
APA, Harvard, Vancouver, ISO, and other styles
5

Dogramadzi, Sanja. "Sensors and actuators in computer controlled colonoscopy." Thesis, University of Newcastle Upon Tyne, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ehresman, Jonathan David. "Integration of actuators and sensors into composite structures." Thesis, Montana State University, 2009. http://etd.lib.montana.edu/etd/2009/ehresman/EhresmanJ0809.pdf.

Full text
Abstract:
The need for more efficient wind turbine blades is growing in our society. One step in accomplishing this task would be to make wind turbines blades into smart structures. A smart structure is one that incorporates sensors, complete control systems, and active control devices, in order to shed, or redistribute the load placed on the structure. For wind turbine blades this means changing the shape of the blade profile as it encounters different wind conditions. In order to have active control surfaces functioning on wind turbine blades, the existing blades would have to be retrofitted, and the new blades being manufactured would have to be redesigned. There are different control surfaces to consider: gurney flaps and false wall flaps are two that can perturb the boundary layer across the low pressure side of the wing. A flat plate and blade section test bed will be manufactured in order to gather empirical data from wind tunnel testing. For actuation of the control surface there are many choices: electrical, hydraulic, pneumatic, and electro-hydrostatic. These actuator types will be investigated under a set of criterion to determine the best one for turbine blade application. Sensors will be investigated with respect to their use in sensing strain, temperature, acceleration, humidity, and delamination. Sensors are also used for health monitoring. This helps engineers design under a damage tolerant philosophy as opposed to a safe life structure philosophy. These sensors will be placed into laminates and different surface treatments will be reviewed to find the best configuration for each sensor. The sensor will be cleaned with isopropyl alcohol, dipped in a 20% by mass solution of nitric acid, and submerged in a 20% by mass solution of nitric acid for 10 seconds. Detailed surface images will be taken of sensors with different surface treatments in order to better understand the bonding between the sensor and laminate. These images indicate that submerging the sensors into 20% by mass solution of nitric acid is the best surface treatment.
APA, Harvard, Vancouver, ISO, and other styles
7

Song, Changsik. "Design and synthesis of molecular actuators and sensors." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/41554.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2007.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references.
To date, the most successful conducting polymer actuators are based on polypyrrole, which operates through incorporating and expelling counterions and solvent molecules to balance the charges generated by electrochemical stimuli (swelling mechanism). Although significant progress has been made, there still exists a need for developing new materials that would overcome the intrinsic limitations in the swelling mechanism, such as slow diffusion rate, limited expansion volume, etc. Our group has contributed this area with a different approach -- lecular mechanisms, which utilize a dimensional change of a single polymer chain. We propose two types of molecular mechanisms: contracting and expanding. We proposed earlier a calix[4]arenebased molecular actuator for the contracting mechanism, in which p-dimer formation was proposed as a driving force. In this dissertation, we first confirm by model studies that p-dimer formation can indeed be a driving force for the calix[4]arene-based system. We propose another molecular hinge, binaphthol moiety, for the contracting model. The syntheses of polymers with binaphthols and their characterization, including signatures of oligothiophene interactions, are described. Due to its chirality, we examined the possibilities of the binaphthol polymer as a chiral amine sensor. To create actuators that make use of the expanding model, we propose new conjugated seven-membered ring systems with heteroatoms (thiepin with sulfur and azepine with nitrogen) and their syntheses and characterization will be described. Inspired by the fact that sulfoxide has very low extrusion barrier in the related system, we applied the thiepin molecules to create a peroxide sensor.
(cont.) In addition, during the investigation of phenol functional groups in conducting polymers, we found interesting properties that strategic positioning of phenol groups can render a conjugation-broken meta-linked system just as conductive as a fully conjugated para-linked isomeric system.
by Changsik Song.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
8

Yun, Yeoheung. "Nanotube Sensors and Actuators in Mechanics and Medicine." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1150836513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aphanuphong, Sutha. "Embedded heaters and sensors for micro SMA actuators." Connect to online resource, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1458441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rostain, William. "Engineering of RNA sensors and actuators in living cells." Thesis, University of Warwick, 2017. http://wrap.warwick.ac.uk/95177/.

Full text
Abstract:
The aim of synthetic biology is to create a new discipline of engineering based on biological parts, devices and systems. The availability of predictable, programmable tools to sense and to control gene expression is central to our ability to engineer such systems. Ribonucleic acid (RNA) is an attractive building material to create such programmable tools, as RNA-RNA interactions are predictable and RNA secondary structure prediction software has been developed. Design rules for creating such parts using RNA can be established, based on a standardised approach or on structural design rules into which function is implicitly encoded. In this latter case, RNA folding software can be used to create RNA sequence which satisfy generalisable structural characteristics, but are tailored to a specific application. In this work, new design rules for the creation of RNA-based sensors and actuators are developed. The actuator parts are based on riboregulators, but with a circular topology generated through splicing of a ribozyme. The ability of these circular riboregulators to activate transcription of gene expression in E. coli cells is demonstrated. A method for improving these actuators by directed evolution is then tested. Finally, design rules for creating sensors of RNAs based Clustered Regularly Interspaced Short Palindromic Repeat guide RNAs (CRISPR gRNAs) are developed. These gRNA-based sensors can switch states and repress gene expression through a CRISPR-Cas9 based platform, but only in the presence of an arbitrary "trigger" RNA. The rules developed for creating sensors and actuators are characterised in E. coli, but are based on general principles that could be used in other organisms including eukaryotic cells.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Sensors and actuators"

1

Osada, Yoshihito. Polymer Sensors and Actuators. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vigna, Benedetto, Paolo Ferrari, Flavio Francesco Villa, Ernesto Lasalandra, and Sarah Zerbini, eds. Silicon Sensors and Actuators. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-80135-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Busch-Vishniac, Ilene J. Electromechanical Sensors and Actuators. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1434-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brauer, John R. Magnetic Actuators and Sensors. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/0471777714.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brauer, John R. Magnetic Actuators and Sensors. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118779262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rupitsch, Stefan Johann. Piezoelectric Sensors and Actuators. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-57534-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Osada, Yoshihito, and Danilo E. De Rossi, eds. Polymer Sensors and Actuators. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04068-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gerlach, Gerald, and Karl-Friedrich Arndt, eds. Hydrogel Sensors and Actuators. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-75645-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yoshihito, Osada, and De Rossi Danilo E, eds. Polymer sensors and actuators. Berlin: Springer, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Control sensors and actuators. Englewood Cliffs, N.J: Prentice Hall, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Sensors and actuators"

1

Usher, M. J., and D. A. Keating. "Actuators." In Sensors and Transducers, 131–46. London: Macmillan Education UK, 1996. http://dx.doi.org/10.1007/978-1-349-13345-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gong, J. P., and Y. Osada. "Gel Actuators." In Polymer Sensors and Actuators, 273–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04068-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Katebi, Reza, Michael A. Johnson, and Jacqueline Wilkie. "Sensors and Actuators." In Advances in Industrial Control, 144–65. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0423-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sciavicco, Lorenzo, and Bruno Siciliano. "Actuators and Sensors." In Modelling and Control of Robot Manipulators, 295–320. London: Springer London, 2000. http://dx.doi.org/10.1007/978-1-4471-0449-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aamo, Ole Morten, and Miroslav Krstić. "Sensors and Actuators." In Flow Control by Feedback, 179–83. London: Springer London, 2003. http://dx.doi.org/10.1007/978-1-4471-3805-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Markley, F. Landis, and John L. Crassidis. "Sensors and Actuators." In Fundamentals of Spacecraft Attitude Determination and Control, 123–81. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0802-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Genta, Giancarlo. "Actuators and Sensors." In Introduction to the Mechanics of Space Robots, 427–82. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-1796-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Marçal de Queiroz, Daniel, Domingos Sárvio M. Valente, and Andre Luiz de Freitas Coelho. "Sensors and Actuators." In Digital Agriculture, 123–42. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14533-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sajid, Memoon, and Mazhar Javed. "Sensors and Actuators." In Functional Reverse Engineering of Strategic and Non-Strategic Machine Tools, 59–77. First edition. | Boca Raton : CRC Press, 2021. |: CRC Press, 2021. http://dx.doi.org/10.1201/9780367808235-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Taylor, P. M. "Sensors and Actuators." In Robotic Control, 35–56. London: Macmillan Education UK, 1990. http://dx.doi.org/10.1007/978-1-349-20510-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Sensors and actuators"

1

Kameyama, Masaki, and Hisao Fukunaga. "Optimal Placement of Sensors and Actuators for Modal Measurement/Control of CFRP Laminated Plates." In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-416.

Full text
Abstract:
In this paper, based on the optimal placement of sensors and actuators, the vibration control by using a system of modal sensor and modal actuator with a small number of sensors and actuators is realized for a plate structure. The modal sensor consisting of accelerometers as well as the modal actuator of lead zirconate titanate (PZT) is built up for a CFRP cantilevered plate. The structural vibration control is realized by the independent modal space control based on the linear quadratic regulator (LQR) control theory. Sensors and actuators are optimally placed so that the best accuracy of measurement of modal velocity and the maximum control effect can be acquired. From the numerical and experimental results, it is demonstrated that the optimal placement of sensors and actuators is very important to stabilize a control system when the number of sensors/actuators is limited, and the vibration of plate can be suppressed by the state feedback control for each mode using the modal sensor and actuator optimally designed.
APA, Harvard, Vancouver, ISO, and other styles
2

Waterfall, Tyler, Kendall Teichert, and Brian Jensen. "Simultaneous On-Chip Sensing and Actuation Using the Thermomechanical In-Plane Microactuator." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34982.

Full text
Abstract:
Many applications in microelectromechanical systems require physical actuation for implementation or operation. On-chip sensors would allow control of these actuators. This paper presents experimental evidence showing that a certain class of thermal actuators can be used simultaneously as an actuator and a sensor to control the actuator’s force or displacement output. By measuring the current and voltage supplied to the actuator, a one-to-one correspondence is found between a given voltage and current and a measured displacement or force. This truly integrated sensor/actuator combination will lead to efficient, on-chip control of motion for applications including microsurgery, biological cell handling, and optic positioning.
APA, Harvard, Vancouver, ISO, and other styles
3

Seibel, Arthur, and Lars Schiller. "Integrated Curvature Sensing of Soft Bending Actuators Using Inertial Measurement Units." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87104.

Full text
Abstract:
We introduce a sensor concept for an integrated measurement of the curvature angle of soft bending actuators using inertial measurement units (IMUs). In particular, IMUs are placed at both ends of the soft bending actuator, and the integrated magnetic sensors are used for small and the integrated acceleration sensors for medium and large inclination angles of the soft actuator’s bending plane. The experimental results show absolute measurement errors of up to 20° for small and less than 5° for medium and large inclination angles. Furthermore, we investigate experimentally whether the assumption of a constant curvature in our sensor concept is still fulfilled when the soft bending actuator is loaded by an external force at its free end. The results indicate that this is the case for loading masses of up to 30 g at large inclination angles.
APA, Harvard, Vancouver, ISO, and other styles
4

Polcawich, Ronald G., Jeffrey S. Pulskamp, Sarah Bedair, Gabriel Smith, Roger Kaul, Chris Kroninger, Eric Wetzel, Hengky Chandrahalim, and Sunil A. Bhave. "Integrated PiezoMEMS actuators and sensors." In 2010 Ninth IEEE Sensors Conference (SENSORS 2010). IEEE, 2010. http://dx.doi.org/10.1109/icsens.2010.5690603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Sensors and actuators." In 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE). IEEE, 2016. http://dx.doi.org/10.1109/isie.2016.7744963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Actuators and Sensors." In 2020 IEEE 16th International Workshop on Advanced Motion Control (AMC). IEEE, 2020. http://dx.doi.org/10.1109/amc44022.2020.9244346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Sensors and actuators." In 2017 IEEE International Conference on Mechatronics (ICM). IEEE, 2017. http://dx.doi.org/10.1109/icmech.2017.7921112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Sensors and actuators." In Conference on Electron Devices, 2005 Spanish. IEEE, 2005. http://dx.doi.org/10.1109/sced.2005.1504498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Irschik, Hans, Alexander K. Belyaev, Michael Krommer, and Kurt Schlacher. "Non-Uniqueness of Two Inverse Problems of Thermally and Force-Loaded Smart Structures: Sensor Shaping and Actuator Shaping Problem." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0715.

Full text
Abstract:
Abstract Flexural vibrations of smart beams with integrated piezoelectric actuators and sensors are considered. For the case of a spatial variation of the sensor/actuator activity, actuator and sensor equations are derived taking into account the interaction of mechanical, electrical and thermal fields. Self-sensing actuators are included. With respect to the non-uniform spatial distribution of the sensors/actuators, shaping problems are formulated. Possible non-uniqueness of these inverse problems is pointed out. Shape functions responsible for non-uniqueness of the shaping problems are termed nilpotent solutions. Within the context of simplified sensor/actuator equations widely used in the literature, a class of nilpotent shape functions is derived for redundant beams by analogy to an auxiliary quasi-static problem of thermally induced flexure. Nilpotent shape functions of the sensor/actuator shaping problem thus turn out to correspond to bending moments in the auxiliary thermoelastic problem.
APA, Harvard, Vancouver, ISO, and other styles
10

Farooq, Ahmed, Grigori Evreinov, and Roope Raisamo. "Actuators for touchscreen tactile overlay." In 2014 IEEE Sensors. IEEE, 2014. http://dx.doi.org/10.1109/icsens.2014.6985456.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Sensors and actuators"

1

Almeida, Oscar J., Brian G. Dixon, Jill H. Hardin, John P. Sanford, and Myles Walsh. High Temperature Smart Sensors and Actuators. Fort Belvoir, VA: Defense Technical Information Center, August 1992. http://dx.doi.org/10.21236/ada256985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Krulewich, D. A. Handbook of actuators and edge alignment sensors. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/6788910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

MATERIALS SYSTEMS INC CONCORD MA. Cost-Effective Method for Synthesizing Innovative Transducer Materials for Sensors and Actuators. Fort Belvoir, VA: Defense Technical Information Center, June 1994. http://dx.doi.org/10.21236/ada282339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ted Quinn and Jerry Mauck. Digial Technology Qualification Task 2 - Suitability of Digital Alternatives to Analog Sensors and Actuators. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1057681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cline, Joseph I. Surface Absorption Polarization Sensors (SAPS), Final Technical Report, Laser Probing of Immobilized SAPS Actuators Component. Office of Scientific and Technical Information (OSTI), April 2010. http://dx.doi.org/10.2172/977056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Beshouri, Greg. PR-309-14212-R01 Field Demonstration of Fully Integrated NSCR System. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 2019. http://dx.doi.org/10.55274/r0011545.

Full text
Abstract:
Local, state and federal regulations in the United Sates tend to favor NSCR as the emissions control technology of choice for lower output internal combustion (IC) engines. The technology can achieve extremely low emissions levels for NOx, CO and total hydrocarbons (THC). Theoretically an end user can add it on to any rich burn engine at relatively low cost and the technology scales down to the smallest IC engines. While superficially a "simple and proven" technology, NSCR control is in fact extremely complex, far more complex than the control of lean burn engines. The underlying problems with NSCR control are well documented. Using a systems approach an AETC/HOERBIGER team analyzed each component of the system and identified the core problems and possible solutions. Ultimately the team identified the need for a fully integrated system utilizing linear sensors and actuators. The team then theorized such a system could be controlled by an off the shelf PLC with typical PI control loops. Based on this conclusion HOERBIGER developed an integrated NSCR system utilizing linear sensors and actuators and controlled by an off the shelf PLC. Called the Advanced Richburn Control (ARC), HOERBIGER installed the system on six KVG-410 engines operating in pipeline compression and recorded performance for a year. Those results confirmed the system satisfied the performance requirements and validated the design concept. This report has a related webinar.
APA, Harvard, Vancouver, ISO, and other styles
7

Beshouri. PR-309-08208-R01 A Survey of Diagnostics Techniques for Compressor Engines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 2009. http://dx.doi.org/10.55274/r0010730.

Full text
Abstract:
The pipeline workforce faces several challenges over the next few years. Unprecedented numbers of experienced staff are retiring. They are being replaced by a smaller, younger workforce tasked with more responsibilities and therefore unable to develop specific expertise while roving crews fill labor gaps resulting in less experience with each individual engine compressor. To maintain, if not improve reliability and reduce maintenance costs better analysis tools are needed to fill the experience and expertise gap and assist with troubleshooting and diagnosis. Concurrently, regulatory expectations appear to be shifting from Continuous Emissions Monitoring System (CEMS) like quantifying systems to Green-light/Red-light automotive like On Board Diagnostics (OBD). OBD approaches rely on the proper operation of already installed sensors and actuators to maintain emissions compliance and can be very cost effective. This study investigated diagnostic methods to address both opportunities based on experience in related industries.
APA, Harvard, Vancouver, ISO, and other styles
8

Smith. L51970 Integration of Engine and Compressor Controls. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 2002. http://dx.doi.org/10.55274/r0010943.

Full text
Abstract:
An investigation and demonstration was performed to assess the feasibility of integrating the control of power cylinders and compressor cylinders in integral engine compressors through the application of recent advances in electronics, sensors, and actuator technology. Explicitly, the study was undertaken to answer the following questions: Does the compressor loading affect engine performance? Can power cylinders be balanced with parameters other than peak pressure? Can an automotive exhaust NOx/O2 sensor be utilized for closed loop NOx and/or air/fuel ratio control?
APA, Harvard, Vancouver, ISO, and other styles
9

Morris, Kirsten. Computation of Optimal Actuator/Sensor Locations. Fort Belvoir, VA: Defense Technical Information Center, December 2013. http://dx.doi.org/10.21236/ada594613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Muller, R., and R. White. Berkeley Sensor and Actuator Center membership. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/6837430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography