Academic literature on the topic 'Separate Hydrolysis and Fermentation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Separate Hydrolysis and Fermentation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Separate Hydrolysis and Fermentation"
Nguyen, Trung Hau, Chae Hun Ra, In Yung Sunwoo, Pailin Sukwong, Gwi-Taek Jeong, and Sung-Koo Kim. "Bioethanol Production from Soybean Residue via Separate Hydrolysis and Fermentation." Applied Biochemistry and Biotechnology 184, no. 2 (July 29, 2017): 513–23. http://dx.doi.org/10.1007/s12010-017-2565-6.
Full textDrissen, R. E. T., R. H. W. Maas, J. Tramper, and H. H. Beeftink. "Modelling ethanol production from cellulose: separate hydrolysis and fermentation versus simultaneous saccharification and fermentation." Biocatalysis and Biotransformation 27, no. 1 (January 2009): 27–35. http://dx.doi.org/10.1080/10242420802564358.
Full textAulia Rachmayanti, R. Marwita Sari Putri, and Aidil Fadli Ilhamdy. "Separate Saccharification and Fermentation for Bioethanol Production from Raw Seaweed Sargassum sp." Marinade 2, no. 01 (April 30, 2019): 19–28. http://dx.doi.org/10.31629/marinade.v2i01.1253.
Full textSa, Ngo Duy. "COMPARISON OF ETHANOL YIELD BETWEEN SEPARATE AND SIMULTANEOUS HYDROLYSIS AND ETHANOL FERMENTATION OF FORMIC- FRACTIONATED SUGARCANE BAGASSE." Vietnam Journal of Science and Technology 54, no. 2A (March 19, 2018): 222. http://dx.doi.org/10.15625/2525-2518/54/2a/11934.
Full textLin, Long, Ehssan Hosseini Koupaie, Armineh Azizi, Amir Abbas Bazyar Lakeh, Bipro R. Dhar, Hisham Hafez, and Elsayed Elbeshbishy. "Comparison of Two Process Schemes Combining Hydrothermal Treatment and Acidogenic Fermentation of Source-Separated Organics." Molecules 24, no. 8 (April 13, 2019): 1466. http://dx.doi.org/10.3390/molecules24081466.
Full textTavva, S. S. Mohan Dev, Amol Deshpande, Sanjeeva Rao Durbha, V. Arjuna Rao Palakollu, A. Uttam Goparaju, V. Rao Yechuri, V. Rao Bandaru, and V. Subba Rao Muktinutalapati. "Bioethanol production through separate hydrolysis and fermentation of Parthenium hysterophorus biomass." Renewable Energy 86 (February 2016): 1317–23. http://dx.doi.org/10.1016/j.renene.2015.09.074.
Full textAnnamalai, Neelamegam, Huda Al Battashi, S. Nair Anu, Ahlam Al Azkawi, Saif Al Bahry, and Nallusamy Sivakumar. "Enhanced Bioethanol Production from Waste Paper Through Separate Hydrolysis and Fermentation." Waste and Biomass Valorization 11, no. 1 (July 21, 2018): 121–31. http://dx.doi.org/10.1007/s12649-018-0400-0.
Full textTu, Maobing, Xiao Zhang, Mike Paice, Paul McFarlane, and Jack N. Saddler. "Effect of surfactants on separate hydrolysis fermentation and simultaneous saccharification fermentation of pretreated lodgepole pine." Biotechnology Progress 25, no. 4 (July 2009): 1122–29. http://dx.doi.org/10.1002/btpr.198.
Full textKim, Min-Ji, and Sung-Koo Kim. "Ethanol Production by Separate Hydrolysis and Fermentation and Simultaneous Saccharification and Fermentation Using Saccharina japonica." KSBB Journal 27, no. 2 (April 30, 2012): 86–90. http://dx.doi.org/10.7841/ksbbj.2012.27.2.086.
Full textLAI, LISA X., and RENATA BURA. "The sulfite mill as a sugar-flexible future biorefinery." August 2012 11, no. 8 (September 1, 2012): 27–35. http://dx.doi.org/10.32964/tj11.8.27.
Full textDissertations / Theses on the topic "Separate Hydrolysis and Fermentation"
Axelsson, Josefin. "Separate Hydrolysis and Fermentation of Pretreated Spruce." Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-69487.
Full textRodrigues, Tigressa Helena Soares. "The bioconversion of pretreated cashew apple bagasse into ethanol by SHF (Separate Hydrolysis and Fermentation) and SSF (Simultaneous Saccharification and Fermentation) processes." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13575.
Full textCoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior
In this work, the ethanol production from cashew bagasse was studied after acid followed by alkali pretreatment (CAB-OH) using the Separate Hydrolysis and Fermentation (SHF) and Simultaneous Saccharification and Fermentation (SSF) processes. In SHF process, the hydrolysate obtained from enzymatic hydrolysis of CAB-OH was used as carbon source for fermentation with different strains of Saccharomyces (S. cerevisiae CCA008, S. cerevisiae 01, S. cerevisiae 02 and Saccharomyces sp. 1238), Kluyveromyces (K. marxianus CCA510, CE025 and ATCC36907) and Hanseniaspora sp. GPBio03. The bioprocess was conducted at 30 ÂC and 50 g.L-1 initial glucose concentration. The K. marxianus ATCC36907 achieved ethanol concentration of 20 g.L-1 with consumption of all glucose in the hydrolysate. Similar results were obtained with Saccharomyces strains and higher ethanol concentration (23.43 g.L-1) was obtained by Saccharomyces sp. 1238. The maximum ethanol concentration of 24.54 g.L-1 was achieved by Hanseniaspora sp. GPBio03. Focused on further studies using SSF process, it was evaluated the temperature influence of thermotolerant yeast K. marxianus ATCC36907 in glucose and enzymatic hydrolysate from CAB-OH. The results showed that the temperature (30, 35, 40, 45 and 50 ÂC) did not affect the values of YE/G (0.45 to 0.46 gethanol/gglucose) using glucose as substrate. Moreover, the ethanol yields obtained with enzymatic hydrolysate were slightly influenced by temperature, 0.39 and 0.43 gethanol/gglucose were obtained at 30 and 40 ÂC, respectively. Based on this, the SSF of CAB-OH and K. marxianus ATCC36907 was conducted at 40 ÂC with cellulases from Celluclast 1.5L at 15 FPU/gcellulose. The highest ethanol concentration (24.90 Â 0.89 g.L-1) was obtained with 76h of fermentation with 0.33 g.L-1.h-1, 0.34 gethanol/gglucose and 66.3% of productivity, YʹE/G and of ethanol efficiency, respectively. In enzymatic hydrolysis studies, the cellulase NS 22074 at 30 FPU/gcellulose without cellobiases supplementation resulted in glucose yield of 93.77 Â 2.72% which is promising for studies of SSF with this enzyme complex. The temperature (40, 42 , 45 and 50 ÂC) influence in SSF process using microcrystalline cellulose, in contrast with SHF results, higher ethanol concentration, 19.86 Â 0.32 g.L-1, was obtained at 40 ÂC. The SSF using CAB-OH, 30 FPU/gcellulose cellulases NS 22074 at 40 ÂC showed higher ethanol concentration of 37.35 Â 0.64 g.L-1 at 80h, with productivity of 0.46 g.L-1.h-1. In this condition, there was an increase of YʹE/G from 0.34 to 0.49 gethanol/gglucose and the ethanol efficiency from 66.3% to 95.59% when compared to results obtained with SSF using Celluclast 1.5L. Based on the results of efficiency and ethanol yield (YʹE/G), the cashew apple bagasse showed as lignocelulose feedstock promising material for second generation ethanol production by SSF process using the yeast K. marxianus ATCC36907 and NS 22074 cellulases complex.
Nesse trabalho, estudou-se a produÃÃo de etanol de bagaÃo de caju apÃs prÃ-tratamento Ãcido seguido de Ãlcali (CAB-OH) atravÃs dos processos de FermentaÃÃo e HidrÃlise Separadas (SHF) e FermentaÃÃo e HidrÃlise SimultÃneas (SSF). No processo SHF, o hidrolisado obtido da hidrÃlise enzimÃtica de CAB-OH foi submetido à etapa de fermentaÃÃo com diferentes linhagens de Saccharomyces (S. cerevisiae CCA008, Saccharomyces sp. 1238, S. cerevisiae 01, S. cerevisiae 02), Kluyveromyces (K. marxianus CCA510, CE025 e ATCC36907) e Hanseniaspora sp. GPBio03. A fermentaÃÃo do hidrolisado foi conduzida a 30 ÂC com concentraÃÃo inicial de glicose de 50 g.L-1. ApÃs o screening de leveduras, a linhagem de K. marxianus ATCC36907 destacou-se com maior concentraÃÃo de etanol de 20 g.L-1 com consumo de toda glicose no hidrolisado. Resultados similares foram obtidos com Saccharomyces sp. 1238 e com a levedura isolada do caju (Hanseniaspora sp. GPBio03) com maiores concentraÃÃes de etanol de 22,41 g.L-1 e 24,54 g.L-1, respectivamente. Com o propÃsito de estudos posteriores de SSF, avaliou-se a influÃncia da temperatura da levedura termotolerante K. marxianus ATCC36907 em glicose PA e hidrolisado enzimÃtico de CAB-OH. Os resultados mostraram que para a glicose PA, a variaÃÃo da temperatura (30, 35, 40, 45 e 50 ÂC) nÃo influenciou nos valores de conversÃo de glicose em etanol (YE/G) obtendo-se valores na faixa de 0,45-0,46 getanol/gglicose. Por outro lado, os resultados de YE/G em hidrolisado enzimÃtico foram ligeiramente influenciados pela temperatura, obtendo-se 0,39 getanol/gglicose a 30ÂC e 0,43 getanol/gglicose a 40 ÂC. Em seguida, realizou-se a SSF de CAB-OH com K. marxianus ATCC36907 a 40 ÂC e celulases de Celluclast 1.5L a 15 FPU/gcelulose. A maior concentraÃÃo de etanol (24,90  0,89 g.L-1) foi obtida em 76h de fermentaÃÃo com produtividade de 0,33 g.L-1.h-1, conversÃo de glicose em etanol (YʹE/G) de 0,34 e eficiÃncia de produÃÃo de etanol de 66,3%. Contudo, visando aumentar a produÃÃo de etanol em estudos posteriores de SSF, realizou-se o estudo de hidrÃlise enzimÃtica com outros complexos de celulases (NS 22074) e celobiases (NS 50010). Os resultados de hidrÃlise enzimÃtica mostraram que a atividade de celulases NS 22074 a 30 FPU/gcelulose sem suplementaÃÃo de celobiase resultou no rendimento de glicose de 93,77  2,72% sendo resultado promissor para estudos de SSF com esse complexo enzimÃtico. Nos ensaios de SSF com celulases do complexo NS 22074, inicialmente realizou-se o estudo da temperatura (40, 42, 45 e 50 ÂC) com K. marxianus ATCC36907 utilizando celulose microcristalina; e, em contrapartida com os resultados SHF, na temperatura de 40 ÂC foi obtida a maior concentraÃÃo de etanol de 19,86  0,32 g.L-1, em 72h de fermentaÃÃo. Diante desses resultados, realizou-se o processo de SSF de CAB-OH nas seguintes condiÃÃes: 40 ÂC de temperatura e 30 FPU/gcelulose do complexo de celulases NS 22074. A maior concentraÃÃo de etanol (37,35  0,64 g.L-1) foi obtida em 80h de fermentaÃÃo, com produtividade de 0,46 g.L-1.h-1. Diante desses resultados, observa-se que a mudanÃa do complexo enzimÃtico de Celluclast 1.5L para NS 22074 proporcionou o aumento no valor de YʹE/G de 0,34 getanol/gglicose para 0,49 getanol/gglicose e no rendimento de etanol de 66,3% para 95,59%, o que torna o bagaÃo de caju prÃ-tratado promissor como matÃria-prima para produÃÃo de etanol de segunda geraÃÃo por processo SSF utilizando a levedura K. marxianus ATCC36907.
Tomečková, Andrea. "Využití Kluyveromyces marxianus k produkci bioethanolu z odpadního papíru." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2014. http://www.nusl.cz/ntk/nusl-217086.
Full textPetersen, Abdul Muhaymin. "Comparisons of the technical, financial risk and life cycle assessments of various processing options of sugercane bagasse to biofuels in South Africa." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20156.
Full textENGLISH ABSTRACT: Through many years of research, a number of production schemes have been developed for converting lignocellulosic biomass into transport fuels. These technologies have been assessed through a number of techno-economic studies for application in a particular context in terms of the technical and economic feasibility. However, previous studies using these methods have tended to lack vigour in various aspects. Either the energy efficiency of the processes were not maximised through adequate heat integration, or a competing technology which existed was not considered. From an economic perspective, the financial models would often lack the vigour to account for the risk and uncertainty that is inherent in the market prices of the commodities. This phenomenon is especially relevant for the biofuel industry that faces the full fledge of uncertainties experienced by the agricultural sector and the energy sector. Furthermore, from an environmental perspective, the techno-economic studies had often ignored the environmental impacts that are associated with biofuel production. Thus, a comparative study could have favoured an option due to its economic feasibility, while it could have had serious environmental consequences. The aim of this study was to address these issues in a South African context, where biofuels could be produced from sugarcane bagasse. The first step would be to modify an existing simulation model for a bioethanol scenario that operates with a Separate Hydrolysis and Fermentation (SHF process) configuration into a second processing scenario that operates with a Simultaneous Saccharification and Fermentation (SSF process) configuration using reliable experimental data. The second step was to ensure that the maximum energy efficiency of each scenario was realised by carrying out pinch point analysis as a heat integration step. In contrast to these biological models is the thermochemical model that converts bagasse to gasoline and diesel via gasification, Fischer-Tropsch synthesis and refining (GFT process). While there were no significant advances in technology concerning this type of process, the energy efficiency was to be maximised with pinch point analysis. The GFT process obtained the highest energy efficiency of 50.6%. Without the affects of pinch point technology, the efficiency dropped to 46%, which thus emphasises the importance of heat integration. The SSF had an efficiency of 42.8%, which was superior to that of the SHF at 39.3%. This resulted from a higher conversion of biomass to ethanol in the SSF scenario. Comparing the SHF model to an identical model found in literature that did not have pinch point retrofits, this study showed lower efficiency. This arose because the previous study did not account for the energy demands of the cold utility systems such as the cooling tower operation, which has been shown in this study to account for 40% of the electrical energy needs. The economic viability of all three processes was assessed with Monte Carlo Simulations to account for the risks that the fluctuations in commodity prices and financial indices pose. This was accomplished by projecting the fluctuations of these parameters from samples of a historical database that has been transformed into a probability distribution function. The consequences were measured in terms of the Net Present Value (NPV) and Internal Rate of Return (IRR) for a large number of simulations. The results of these variables were aggregated and were then assessed by testing the probability that the NPV<0, and that the IRR recedes below the interest rate of 12.64%. The investment was thus deemed unfeasible if these probabilities were greater than 20%. Both biological models were deemed profitable in terms of this standard. The probabilities were 13% for the SSF and 14% for the SHF. The GFT process however was deemed completely unfeasible because the probability that the NPV<0 was 78%. Given that the GFT process had the highest energy efficiency, this result arises mainly because the capital investment of 140,000USD/MWHHV of biomass energy input is to enormous for any payback to be expected. The environmental footprint of each process was measured using Life Cycle Assessments (LCAs). LCAs are a scientifically intricate way of quantifying and qualifying the effects of a product or process within a specified boundary. The impacts are assessed on a range of environmental issues, such as Global Warming, Acidification, Eutrophication and Human toxicity. Furthermore, if the project under concern has multiple output products, then the impacts are distributed between the output products in proportion to the revenue that each generates. The impacts were either relative to the flow of feedstock, which was 600MW of bagasse, or to the functional unit, which was the amount of fuel required to power a standard vehicle for a distance of 1 kilometre. In either case, the GFT scenario was the least burdening on the environmental. This was expected because the GFT process had the highest energy efficiency and the process itself lacked the use of processing chemicals. Relative to the feedstock flow, the SSF was the most environmentally burdening scenario due to the intensive use of processing chemicals. Relative to the functional unit, the SHF was the most severe due to its low energy efficiency. Thus, the following conclusions were drawn from the study: The GFT is the most energy and environmentally efficient process, but it showed no sign of economic feasibility. iv There is no significant difference in the economic and environmental evaluation of the SSF and SHF process, even though the SSF is considered to be a newer and more efficient process. The major cause of this is because the setup of the SSF model was not optimised.
AFRIKAANSE OPSOMMING: Deur baie jare van navorsing is ‘n aantal produksie-skemas vir die omskakeling van lignosellulose biomassa na vloeibarebrandstof ontwikkel. Hierdie tegnologië is geassesseer ten opsigte van die tegniese en ekonomiese haalbaarheid deur middel van tegno-ekonomiese studies in bepaalde tekste. Tog het hierdie vorige studies besliste beperkings gehad. Of die energie-doeltreffendheid van die proses is nie gemaksimeer deur voldoende hitte-integrasie nie, of 'n mededingende tegnologie wat bestaan is nie oorweeg nie. Vanuit 'n ekonomiese perspektief, was die finansiële modelle dikwels nie die omvattend genoeg om rekening te hou met die risiko en onsekerheid wat inherent is in die markpryse van die kommoditeite nie. Hierdie verskynsel is veral relevant vir die biobrandstof bedryf wat die volle omvang van onsekerhede ervaar waaraan die landbousektor en die energiesektoronderhewig is. Verder het die tegno-ekonomiese studies dikwels die omgewingsimpakte wat verband hou met biobrandstofproduksie geïgnoreer. Dus kon ‘n opsie deur die ekonomiese haalbaarheid bevoordeel word, ten spyte van die ernstige omgewingsimpakte wat dit kon inhou. Die doel van hierdie studie was om hierdie kwessies aan te spreek in 'n Suid-Afrikaanse konteks, waar biobrandstof uit suikerriet bagasse geproduseer kan word. Die eerste stap was om 'n bestaande simulasiemodel vir 'n bio-scenario wat met Afsonderlike Hidroliese en Fermentasie (SHF proses) stappe werk, te modifiseer vir 'n tweede verwerking scenario wat met 'n gelyktydige Versuikering en Fermentasie (SSF proses) konfigurasie werk. Die verandering is gedoen deur die gebruik van betroubare eksperimentele data. Die tweede stap was om te verseker dat elke scenario die maksimum energie-doeltreffendheid het, deur 'n hitte-integrasie stap, wat gebruik maak van “pinch-point” analise. In teenstelling met hierdie biologiese modelle, is daar die thermochemiese roete waar petrol en diesel van bagasse vervaardig word via vergassing, Fischer-Tropsch-sintese en rafinering (GFT proses). Daar was geen betekenisvolle vooruitgang in tegnologie vir hierdie proses nie, maar die energie-doeltreffendheid is gemaksimeer word deur energie-integrasie. Die GFT proses toon die hoogste energie-doeltreffendheid van 50,6%. Sonder die invloed van energie-integrasie het die doeltreffendheid gedaal tot 46%, wat dus die belangrikheid van hitte-integrasie beklemtoon. Die SSF het 'n effektiwiteit van 42,8% gehad, wat beter was as dié 39,3% van die SHF opsie. Hierdie hoër effektiwiteit wasas gevolg van die hoër omskakeling van biomassa na etanol in die SSF scenario. Die energie doeltreffendheid vir die SHF-model was laer as met 'n identiese model (sonder energie-integrasie) wat in die literatuur gevind wat is. Dit het ontstaan omdat die vorige studie nie 'n volledig voorsiening gemaak het met die energie-eise van die verkillingstelselsnie, wat tot 40% van die elektriese energie behoeftes kan uitmaak. Die ekonomiese lewensvatbaarheid van al drie prosesse is bepaal met Monte Carlo simulasies om die risiko's wat die fluktuasies in kommoditeitspryse en finansiële indekse inhou, in berekening te bring. Hierdie is bereik deur die projeksie van die fluktuasies van hierdie parameters aan die hand van 'n historiese databasis wat omskep is in 'n waarskynlikheid verspreiding funksie. Die gevolge is gemeet in terme van die netto huidige waarde (NHW) en Interne Opbrengskoers (IOK) vir 'n groot aantal simulasies. Die resultate van hierdie veranderlikes is saamgevoeg en daarna, deur die toets van die waarskynlikheid dat die NPV <0, en dat die IRR laer as die rentekoers van 12,64% daal, beoordeel. Die belegging is dus nie realiseerbaar geag as die waarskynlikhede meer as 20% was nie. Beide biologieseprosesse kan as winsgewend beskou word in terme van bostaande norme. Die waarskynlikhede was 13% vir die SSF en 14% vir die SHF. Aangesien die NHW van die GFT-proses onder 0 met ‘n waarskynlikheid van 78% is, is die opsie as nie-winsgewend beskou. Gegewe dat die GFT-proses die hoogste energie-doeltreffendheid het, is die resultaat hoofsaaklik omdat die kapitale belegging van 140,000 USD / MWHHV-biomassa energie-inset te groot is, om enige terugbetaling te verwag. Die omgewingsvoetspoor van elke proses is bepaal deur die gebruik van Lewens Siklus Analises (“Life Cycle Assessments”) (LCAS). LCAS is 'n wetenskaplike metodeom die effek van ‘n produk of proses binne bepaalde grense beide kwalitatief en kwantitatief te bepaal. Die impakte word beoordeel vir 'n verskeidenheid van omgewingskwessies, soos aardverwarming, versuring, eutrofikasie en menslike toksisiteit. Voorts, indien die projek onder die saak verskeie afvoer produkte het, word die impakte tussen die afvoer produkte verdeel, in verhouding tot die inkomste wat elkeen genereer. Die impak was met of relatief tot die vloei van roumateriaal (600MW van bagasse), of tot die funksionele eenheid, wat die hoeveelheid van brandstof is om 'n standaard voertuig aan te dryf oor 'n afstand van 1 kilometer. In al die gevalle het die GFT scenario die laagste belading op die omgewing geplaas. Hierdie is te verwagte omdat die GFT proses die hoogste energie-doeltreffendheid het en die proses self nie enige addisionele chemikalieë vereis nie. Relatief tot die roumateriaal vloei, het die SSF die grootse belading op die omgewing geplaas as gevolg van die intensiewe gebruik van verwerkte chemikalieë. Relatief tot die funksionele eenheid, was die SHF die swakste as gevolg van sy lae energie-doeltreffendheid.
Kim, Tae Hyun Lee Yoon Y. "Bioconversion of lignocellulosic material into ethanol pretreatment, enzymatic hydrolysis, and ethanol fermentation /." Auburn, Ala., 2004. http://repo.lib.auburn.edu/EtdRoot/2004/FALL/Chemical_Engineering/Dissertation/KIM_TAE_24.pdf.
Full textHagelin, Johnny. "Enhancement of hydrolysis from co-fermentation of food waste and primary sludge." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299643.
Full textMer uppmärksamhet riktas till forskning kring resursåtervinning från komplexa avfallsströmmar eftersom värdefulla resurser kan produceras genom mer hållbara biologiska tillvägagångssätt. I anaeroba nedbrytningsprocesser är produkter såsom flyktiga fettsyror (VFAs) och biogas mycket eftertraktade. En av huvudparametrarna som påverkar utbytet av återvunna resurser är den hydrolytiska effektiviteten i avfallsströmmen av hydrolytiska bakterier. Syftet med studien var att undersöka hur bioaugmentering kan implementeras som strategi för att förstärka hydrolys i komplexa avfallsströmmar. Därav utfördes fermentering med tre valda hydrolytiska bakterier, Bacteroides thetaiotaomicron, Bacteroides amylophilus och Bacteroides ruminicola både i renkultur och bioaugmenterat med granulärt slam som mixad kultur i reaktorer. Avfallsströmmen som studerades var matavfall mixat med primärt slam hämtat från Henriksdals vattenreningsverk i Stockholm, Sverige. Högsta hydrolytiska effektivitet (90%) uppnåddes för reaktorn inokulerat med Bacteroides thetaiotaomicron och Bacteroides ruminicola i renkultur. Denna effektivitet uppmättes dag 10 efter reaktorerna sattes upp. För de bioaugmenterade reaktorerna så uppnåddes högsta hydrolytiska effektivitet (66%) dag 10 av reaktorn inokulerat med Bacteroides thetaiotaomicron. Ökningen i hydrolytisk effektivitet var långsammare för de bioaugmenterade reaktorerna jämfört med reaktorerna med renkultur. Den mest sannolika förklaringen till det är tävling om näringsämnen och vitaminer mellan introducerade bakterier och de bakterier som redan existerar i det granulära slammet.
Nongauza, Sinethemba Aubrey. "Optimization of maize starch fermentation by Saccharomyces cerevisiae using pervaporation / Sinethemba Aubrey Nongauza." Thesis, North-West University, 2010. http://hdl.handle.net/10394/4228.
Full textThesis (M.Sc. Engineering Sciences (Chemical and Minerals Engineering))--North-West University, Potchefstroom Campus, 2010.
Odoch, Martin. "Hydrolysis of cassava cell walls through alkaline treatment and fermentation with alkaliphilic bacteria." Thesis, University of Pretoria, 2017. http://hdl.handle.net/2263/65933.
Full textThesis (PhD)--University of Pretoria, 2017.
Food Science
PhD
Unrestricted
Benjamin, Yuda L. "Sugarcane cultivar selection for ethanol production using dilute acid pretreatment, enzymatic hydrolysis and fermentation." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86525.
Full textENGLISH ABSTRACT: The development of ―energycane‖ varieties of sugarcane for ethanol production is underway, targeting the use of both sugar juice (first generation ethanol) and bagasse (second generation ethanol). Nevertheless, identification of the preferred varieties represents the biggest challenge to the development of energycane due to large number of samples produced during breeding. In the present study, dilute acid pretreatment, enzymatic hydrolysis and fermentation processes were used to evaluate the processability of bagasse (fibrous residue generated after juice sugar extraction) from different varieties of sugarcane to select preferred varieties with the properties of improving combined ethanol yield (ethanol from juice and bagasse) per hectare. The impact of variety selection on combined ethanol yield (ethanol from juice and bagasse) per hectare was also assessed. In the first part of this study, 115 varieties of sugarcane originated from classical breeding and precision breeding (genetic engineering) were screened based on agronomic data and experimental data from biochemical processes (dilute acid pretreatment and enzymatic hydrolysis) applied to the bagasse fraction of each variety. The results showed wide variations in the chemical composition of bagasse between the varieties. Structural carbohydrates and lignin content ranged from 66.6 to 77.6% dry matter (DM) and 14.4 to 23.1% DM, respectively. The majority of precision breeding varieties showed higher arabinoxylan, lower lignin and lower ash content than most of classical breeding varieties. Combined sugar yield from the bagasse after pretreatment and enzymatic hydrolysis also varied significantly among the varieties. Up to 27.9 g/100g (dry bagasse) difference in combined sugar yield was observed. Combined sugar yield was inversely correlated with lignin as well as ash content, but it correlated positively with structural carbohydrates content. Total potential ethanol yields per hectare, calculated based on cane yield, soluble and non-soluble sugar content also differed significantly among the varieties (8,602−18,244 L/ha). Potential ethanol from bagasse contributed approximately one third of the total potential ethanol yield. Interestingly, some of the varieties had combined properties of high potential ethanol yield per hectare and improved bagasse convertibility. Thus, six varieties (3 from each breeding technology) were selected as preferred varieties for further investigation. To enhance sugar yield from bagasse, optimisation of pretreatment was conducted on the selected varieties. Industrial bagasse was included for comparison purposes. The pretreatment optimisation was based on maximising combined sugar yield from the combined pretreatment-hydrolysis process. A central composite design (CCD) was applied to investigate the effects of temperature, acid concentration and residence time on the responses and was later used to determine the maximum combined sugar yield. Pretreatment optimisation was conducted at gram scale (22.9 ml reactor) and at bench scale (1000 ml reactor). Significant differences in sugar yields (xylose, glucose, and combined sugar) between the varieties were observed. The combined sugar yields from the best performing varieties and industrial bagasse at optimal pretreatment-hydrolysis conditions differed by up to 34.1% and 33% at gram and bench scale, respectively. A high ratio of carbohydrates to lignin and low ash contents increased the release of sugar from the substrates. At mild pretreatment conditions, the differences in bioconversion efficiency between varieties were greater than at severe conditions. This observation suggests that under less severe conditions the conversion efficiency was largely determined by the properties of the biomass. Furthermore, it was demonstrated that the pretreatment conditions with temperature ranged from 184 to 200 °C and varying residence time to provide a severity factor between 3.51 and 3.96 was observed to be the area in common where 95% of maximum combined sugar yield could be obtained. Simultaneous Saccharification and Fermentation (SSF) was performed on the unwashed pressed-slurry from bagasse pretreatment at conditions for maximum combined sugar yield at bench scale. Batch and fed-batch SSF feeding strategy at different solid loadings and enzyme dosages were used aiming to reach an ethanol concentration of at least 40 g/L. The results revealed significant improvement in overall ethanol yield after SSF for the selected varieties (84.5–85.6%) compared to industrial bagasse (74.8%). The maximum ethanol concentration from the best performing varieties was 48.6−51.3 g/l and for poor performing varieties was 37.1−38.3 g/l. Ethanol concentration in the fermentation broth was inversely correlated with lignin content and the ratio of xylose to arabinose, but it showed positive correlation with glucose yield from pretreatment-enzymatic hydrolysis. The overall assessment of the varieties showed greater improvement in combined ethanol yields per hectare (71.1–90.7%) for the best performing varieties with respect to industrial sugarcane. The performance in terms of ethanol yields of selected varieties from a number harvest years was evaluated. The results showed considerable variations in ethanol yields across harvests. The results showed that the best variety in terms combined ethanol yield was not maintained across harvests. The differences in ethanol yields were greater among the varieties than across the harvests. Prolonged severe drought significantly affected the ethnol yields of all varieties represented by lower and intermediate lignin content for cane yield compared to that which had highest lignin content. However, carbohydrates content in the bagasse and sugar yield/recovery between the harvest years did not change for the most of the varieties. In summary, the present study provides evidence of the impact of cultivar selection and pretreatment optimisation in increasing conversion efficiency of bagasse. The results demonstrate that varieties with lower lignin and ash content, as well as highly substituted xylan resulted in higher sugar and ethanol yields. These results suggest that lower process requirements can be achieved without adversely affecting juice ethanol and cane yield per hectare. Nonetheless, an attempt to reduce lignin content in the bagasse, to reduce processing requirements for ethanol production, can also target the improvement of crop tolerance toward severe drought conditions.
AFRIKAANSE OPSOMMING: Die ontwikkeling van ―energie-riet‖ rasse vir etanol produksie is goed op dreef, waar beide die sap (eerste generasie etanol) en die bagasse (tweede generasie etanol) geteiken word. Die groot aantal monsters wat tydens teling geproduseer word, bied egter die grootste uitdaging vir die identifisering van nuwe rasse ten einde energie-riet te ontwikkel. In die huidige studie is verdunde suurvoorbehandeling, ensiematiese hidrolise en fermentasie-prosesse gebruik om die verwerkbaarheid van bagasse (veselagtige residu gegenereer na sap suiker ekstraksie) van verskillende suikerrietrasse te evalueer om nuwe variëteite te selekteer wat eienskappe van verbeterde gekombineerde etanolopbrengs (etanol van sap en bagasse) per hektaar toon. Die impak van variëteit-seleksie op gekombineerde etanol opbrengs (etanol van sap en bagasse) per hektaar is ook beoordeel. In die eerste deel van hierdie studie het uit ‗n siftingsproses van 115 suikerriet rasse bestaan wat deur klassieke en presisie (geneties gemodifiseerde) teling gegenereer is. Die sifting was op agronomiese data gebaseer, asook op data van verdunde suur voorafbehandeling en ensimatiese hidrolise eksperimente wat op die bagasse fraksie van elke ras uitgevoer is. Die resultate het op groot variasie in die chemiese samestelling van die bagasse van verskillende rasse gedui. Die strukturele koolhidrate het tussen 66.6 en 77.6% droë massa (DM) gewissel, terwyl die lignien inhoud ‗n variasie van 14.4 en 23.1% DM getoon het. Verder het meeste van die presisie-teling variëteite ‗n hoër arabinoxilaan, maar ‗n laer lignien en as-inhoud as meeste van die klassieke teling rasse gehad. Die gekombineerde suikeropbrengs (GSO) van die bagasse na voorafbehandeling en ensimatiese hidrolise het ook beduidend tussen rasse gewissel, waar ‗n verskil van tot 27.9 g/100g (droë bagasse) waargeneem is. Daar was ‗n omgekeerde korrelasie tussen die gekombineerde suikeropbrengs en die lignien en as-inhoud gewees, maar die opbrengs het ‗n sterk positiewe korrelasie met die strukturele koolhidrate getoon. Die totale potensiële etanol opbrengs per hektaar wat vanaf die suikerriet se oplosbare en nie-oplosbare suikerinhoud bereken is, het ook beduidend tussen rasse verskil (8,602−18,244 L/ha), waar die potensiële etanol opbrengs van die bagasse gedeelte ongeveer een derde van die totale potensiële etanol opbrengs beslaan het. Interessante bevindinge het op sommige rasse met gekombineerde eienskappe van hoë potensiële opbrengs per hektaar asook ‗n hoë omskakelingsvermoë gedui. Derhalwe is ses variëteite (drie van elke telingstegnologie) as voorkeurvariëteite vir verdere studie gekies. Om die etanol opbrengs vanaf die bagasse te verbeter was voorafbehandeling van die voorkeurvariëteite geoptimeer, en waar industriële bagasse vir vergelykingsdoeleindes ingesluit was. Vir die optimering was dit ten doel gestel om die gekombineerde suikeropbrengs van die gekombineerde voorafbehandeling-hidrolise proses te maksimeer. ‗n Sentrale saamgestelde ontwerp (SSO) is gebruik om die effek van temperatuur, suurkonsentrasie en residensietyd op die responsveranderlikes vas te stel wat uiteindelik gebruik is om die maksimum gekombineerde suikeropbrengs te bepaal. Die optimering van die voorafbehandeling is op gram-skaal in ‗n 22.9 ml reaktor, asook op bank-skaal in ‗n 1000 ml reaktor uitgevoer. Beduidende verskille in die suikeropbrengs (xilose, glukose en gekombineerde suiker) is tussen die voorkeurrasse waargeneem. Tussen die rasse wat die beste gevaar het, asook die industriële bagasse, het die gekombineerde suikeropbrengs by optimale voorafbehandeling-hidrolise toestande onderskeidelik met tot 34.1% en 33% op gram-skaal en bank-skaal gevarieer. ‗n Hoë verhouding van koolhidrate tot lignien, asook ‗n lae as-inhoud het tot ‗n toename in die vrystelling van suiker uit die substraat gelei. By matige voorafbehandelingstoestande was die verskille in omskakelingseffektiwiteit tussen rasse groter as onder hewige toestande, wat daarop gedui het dat omskakelingseffektiwiteit grotendeels deur die eienskappe van die biomassa bepaal is. Verder is daar ook gedemonstreer dat die voorbehandelingsomstandighede met temperatuur tussen 184 en 200ºC en verandering van die residensietyd om 'n hewigheidsfaktor van tussen 3.51 en 3.96 te verskaf, 'n gemeenskaplike area gelewer het waar 95% van maksimum gekombineer suiker opbrengs (GSO) verkry kon word. Gelyktydige versuikering en fermentasie (GVF) is na voorafbehandeling op ongewaste, gepersde bagasse substraat by toestande vir die maksimum gekombineerde suikeropbrengs op bank-skaal uitgevoer. Bondel en voerbondel SSF voerstrategie by verskillende vaste ladings en ensiemdoserings is gebruik om 'n etanol konsentrasie van ten minste 40 g/L te bereik. Ná GVF was die algehele etanol opbrengs vir die voorkeurvariëteite (84.5–85.6%) beduidend beter relatief tot die industriële bagasse (74.8%). Die maksimum etanol opbrengs na SSF van die rasse met die beste prestasie was 48.6-51.3 g/L en 37.1-38.3 g/L vir rasse wat swak presteer het. Die etanol konsentrasie in die fermentasiesop was omgekeerd met lignien en die verhouding van xilose tot arabinose gekorreleer, maar was duidelik positief met die glukose opbrengs vanaf voorafbehandeling-hidrolise gekorreleer. ‗n Algemene assessering het op ‗n duidelike verbetering van die voorkeurvariëteite in terme van gekombineerde etanol opbrengs per hektaar gedui (71.1–90.7%), relatief tot die industriële suikerriet. Die prestasie in terme van etanol opbrengs van geselekteerde variëteite is oor 'n reeks oesjare ge-evalueer. Die resultate het aansienlike variasies in etanol opbrengs oor oesjare getoon. Die resultate het gewys dat die beste variëteite in terme van gekombineerde etanol opbrengs nie volhou is oor oeste nie. Die verskille in etanol opbrengste tussen variëteite was groter as die verskille oor oesjare. Verlengde ernstige droogte het die etanol opbrengs van alle variëteite met laer en intermediere lignien inhoud vir rietopbrengs aansienlik beinvloed, in vergelyking met dié wat die hoogste lignien inhoud gehad het. Die koolhidraatinhoud in die bagasse en suiker opbrengs/lewering tussen die oesjare het vir die meeste variëteite egter nie gewissel nie. Ter opsomming, die huidige studie verskaf bewyse van die impak van kultivarseleksie en voorbehandelings optimisering op die verhoging van die omskakelings-doeltreffendheid van bagasse. Die resultate wys dat variëteite met laer lignien- en asinhoud, en hoogs-gesubstitueerde xilaan hoër suiker- en etanol opbrengs gelewer het. Hierdie resultate stel voor dat verminderde voorbehandelingsvereistes bereik kan word sonder om die sap etanol en rietopbrengs per hektar te benadeel. Nieteenstaande, 'n poging om die lignien inhoud van die bagasse te verminder om die verwerkingsvereistes vir etanolproduksie te verminder, kan ook die verbetering van gewas-toleransie tov ernstige droogte-toestande teiken.
Scholz, Matthew John. "Microbial Cogeneration of Biofuels." Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/145446.
Full textBooks on the topic "Separate Hydrolysis and Fermentation"
Wayman, Morris. Develop a novel biomass catalysed pretreatment and hydrolysis for cosolvent fuel butanol and ethanol fermentation. Toronto: Morris Wayman Limited, 1987.
Find full textLiu, Zhidan. Gas Biofuels from Waste Biomass: Principles and Advances. Nova Science Publishers, Incorporated, 2015.
Find full textCoombs, J. Cellulose Hydrolysis and Fermentation: Proceedings of a CEC Workshop, January 1992 - Brussels. CPL Press, 1992.
Find full textHelms, Doris R. Energetics, Fermentation and Respiration: Separate from Biology in the Laboratory 3e. 3rd ed. W. H. Freeman, 1997.
Find full textKirchman, David L. Processes in anoxic environments. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0011.
Full textBook chapters on the topic "Separate Hydrolysis and Fermentation"
Madhuri Narra, Jisha P. James, and Velmurugan Balasubramanian. "Comparison Between Separate Hydrolysis and Fermentation and Simultaneous Saccharification and Fermentation Using Dilute Acid Pretreated Lignocellulosic Biomass." In Springer Proceedings in Energy, 3–14. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2773-1_1.
Full textXiu, Shuangning, Nana Abayie Boakye-Boaten, and Abolghasem Shahbazi. "Separate Hydrolysis and Fermentation of Untreated and Pretreated Alfalfa Cake to Produce Ethanol." In Proceedings of the 2013 National Conference on Advances in Environmental Science and Technology, 233–40. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19923-8_24.
Full textHenze, Mogens. "Hydrolysis/fermentation and Anaerobic Wastewater Treatment." In Wastewater Treatment, 299–326. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04806-1_9.
Full textXiros, Charilaos, Evangelos Topakas, and Paul Christakopoulos. "Hydrolysis and Fermentation for Cellulosic Ethanol Production." In Advances in Bioenergy, 11–31. Oxford, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118957844.ch2.
Full textWood, D., and T. O’Rourke. "Glucose syrups in the fermentation industries." In Handbook of Starch Hydrolysis Products and their Derivatives, 230–44. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2159-4_8.
Full textPaul, Manish, Sonali Mohapatra, and Hrudayanath Thatoi. "Enzymatic Hydrolysis of Lignocellulosic Biomass Using Engineered Microorganisms and In Silico Approaches for Enhanced Enzyme Production." In Microbial Fermentation and Enzyme Technology, 299–317. Boca Raton : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429061257-19.
Full textClausen, E. C., and J. L. Gaddy. "Production of Ethanol from Wood by Acid Hydrolysis and Fermentation." In Biomass Energy Development, 551–60. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-0590-4_44.
Full textVásquez, Mariana Peñuela, Juliana Nascimento C. da Silva, Maurício Bezerra de Souza, and Nei Pereira. "Enzymatic Hydrolysis Optimization to Ethanol Production by Simultaneous Saccharification and Fermentation." In Applied Biochemistry and Biotecnology, 141–53. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-60327-181-3_13.
Full textHossain, Zabed, J. N. Sahu, and Akter Suely. "Bioethanol Production from Lignocellulosic Biomass: An Overview of Pretreatment, Hydrolysis, and Fermentation." In Sustainable Utilization of Natural Resources, 145–86. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, [2017]: CRC Press, 2017. http://dx.doi.org/10.1201/9781315153292-6.
Full textZuo, Z. Q., M. Zheng, H. L. Xiong, Y. C. Liu, and H. C. Shi. "Thermophilic Hydrolysis and Fermentation to Produce Short-Chain Fatty Acids from Waste Sludge." In Lecture Notes in Civil Engineering, 230–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58421-8_36.
Full textConference papers on the topic "Separate Hydrolysis and Fermentation"
Zhu, Mingjun, Wanxia Xu, and Xuhui Li. "Bioconversion of different paper sludge to ethanol by yeast using separate hydrolysis and fermentation." In 2012 International Conference on Biobase Material Science and Engineering (BMSE). IEEE, 2012. http://dx.doi.org/10.1109/bmse.2012.6466199.
Full textAndersone, Anna, Alexander Arshanitsa, Lilija Jashina, Māris Lauberts, Tatiana Dizhbite, and Galina Telysheva. "EFFECTS OF CONTENTS AND COMPONENT COMPOSITION OF ASH AND ORGANIC CONSTITUENTS ON FUEL CHARACTERISTICS OF SOFTWOOD AND WHEAT STRAW HYDROLYTIC PROCESSING RESIDUES." In RURAL DEVELOPMENT. Aleksandras Stulginskis University, 2018. http://dx.doi.org/10.15544/rd.2017.087.
Full textRachel Elizabeth Rorick, Nurun Nahar, and Scott Pryor. "Enzymatic Hydrolysis and Fermentation of Sugar Beet Pulp." In 2009 Reno, Nevada, June 21 - June 24, 2009. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2009. http://dx.doi.org/10.13031/2013.27447.
Full textKaretkin, Boris. "OPTIMIZATION OF WHEAT FLOUR ENZYMATIC HYDROLYSIS FOR LACTOBACILLUS RHAMNOSUS SUBMERGED FERMENTATION." In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017h/63/s25.039.
Full textPan, C. M., Y. T. Fan, H. W. Hou, Liejin Guo, D. D. Joseph, Y. Matsumoto, Y. Sommerfeld, and Yueshe Wang. "Enzymatic hydrolysis and fermentation of dilute acid pretreated cornstalk to biohydrogen." In THE 6TH INTERNATIONAL SYMPOSIUM ON MULTIPHASE FLOW, HEAT MASS TRANSFER AND ENERGY CONVERSION. AIP, 2010. http://dx.doi.org/10.1063/1.3366350.
Full textNurun Nahar and Scott W Pryor. "Enzymatic Hydrolysis and Fermentation of Whole Sugar Beets for Ethanol Production." In 2012 Dallas, Texas, July 29 - August 1, 2012. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2012. http://dx.doi.org/10.13031/2013.42184.
Full textLin Wei, Lester O Pordesimo, and Willam D Batchelor. "Ethanol Production from Wood: Comparison of Hydrolysis Fermentation and Gasification Biosynthesis." In 2007 Minneapolis, Minnesota, June 17-20, 2007. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2007. http://dx.doi.org/10.13031/2013.23658.
Full textSari, Ni Ketut, Intan Yuniar Purbasari, and Jariyah. "Bioethanol Optimization in Hydrolysis and Fermentation Process with Surface Response Method." In 2020 6th Information Technology International Seminar (ITIS). IEEE, 2020. http://dx.doi.org/10.1109/itis50118.2020.9320981.
Full textGuo, Changhui, Yefu Chen, Dongsheng Wang, and Xuewu Guo. "Research on the dilute acid hydrolysis of corncob and the fermentation of 2,3-butanediol." In 2013 International Conference on Materials for Renewable Energy and Environment (ICMREE). IEEE, 2013. http://dx.doi.org/10.1109/icmree.2013.6893639.
Full textYang, Ping, Qian Yang, Zhong Xu, and QiuJing Wang. "Dynamics of Enzymatic Hydrolysis Solution from Soybean Straw Fermentation the Making L-Lactic Acid by Immobile Lactobacillus." In 2008 2nd International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2008. http://dx.doi.org/10.1109/icbbe.2008.313.
Full textReports on the topic "Separate Hydrolysis and Fermentation"
Tao, L., D. Schell, R. Davis, E. Tan, R. Elander, and A. Bratis. NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1129271.
Full text