Dissertations / Theses on the topic 'Séquençage NGS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 35 dissertations / theses for your research on the topic 'Séquençage NGS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Boutte, Julien. "Identification et évolution des séquences orthologues par séquençage massif chez les polyploïdes." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S154/document.
Full textNext generation sequencing (NGS) technologies offer new opportunities to explore polyploid genomes and their corresponding transcriptomes. However, transcriptome assemblies and identification of homoeologous gene copies (duplicated by polyploidy) remain challenging, particularly in the context of recurrent polyploidy and the absence of diploid reference parents. Spartina species (Poaceae, Chloridoideae) represent an excellent system to study the short term consequences of hybridization and polyploidization in natural populations. The European S. maritima (hexaploid) hybridized twice with the American S. alterniflora (hexaploid) following its recent introduction to Europe, which resulted in the formation of two homoploid hybrids (S. x townsendii and S. x neyrautii). Whole genome duplication of S. x townsendii resulted in the fertile new allododecaploid S. anglica species (during the 19th century) that has now invaded saltmarshes on several continents. Identification of duplicated genes in S. anglica and its parental species is critical to understand its evolutionary success but their high ploidy levels require the development of adapted tools. In this context, we developed and validated different bioinformatics tools to detect polymorphisms and identify the different haplotypes from NGS datasets. These approaches enabled the study of the heterogeneity of the highly repeated 45S rDNA in S. maritima. In order to develop transcriptomic resources for these species, 5 new reference transcriptomes (110 423 annotated contigs for the 5 species with 37 867 non-redundant contigs) were assembled and annotated. Co-alignments of parental and hybrid/allopolyploid haplotypes allowed the identification of homoeoSNPs discriminating homoelogs. The divergence between duplicated genes was used to identify and confirm the recent duplication events in Spartina. Phylogenomic approaches on Spartina were also initiated in this thesis in the perspective of exploring the evolutionary history of the duplicated copies
Becmeur-Lefebvre, Mathilde. "Identification de nouveaux genes responsables d'anomalies du développement par séquençage haut débit d'exome." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCK080.
Full textMultiple congenital anomalies (MCA) are often genetic conditions, with a risk of recurrence. The etiologic diagnosis of these conditions in fetuses is mandatory to allow genetic counseling for the future pregnancies. Regarding current diagnostic tests (fetal autopsy, cytogenetic test and targeted molecular tets), the diagnostic rate in MCA fetuses is about 30%, allowing genetic counselling in only one third of families. Exome sequencing (ES) has allowed to identify the molecular basis of many new syndromes.We aimed to assess the contribution of ES solo-based strategy to identify new developmental genes in fetuses presenting with MCA without etiological diagnosis after standard investigations with an original multistep strategy.We performed solo ES in 95 MCA fetuses from 10 prenatal diagnostic centers in France. First, we focused on OMIM related disease genes, with a first step using bioinformatic scores and public databases independently of phenotype, a second step using genotype-phenotype correlation and a third step of research analysis extended to the whole exome. Variant confirmation and parental segregation were done by Sanger sequencing. ES allowed the identification of a causative variants in 23 fetuses (24%), variants of unknown significance (VUS) in 7 fetuses (7%) and variants in new candidate genes in 6 fetuses (6%). Among causative variants, most were from autosomal recessive inheritance (50%), 42% were sporadic and 4% were from autosomal dominant inheritance. The additionnal strategy identified 17/23 causative variants, including 2 new causative variants not identified by the classical approach because of atypical or extreme fetal phenotype, and 2 new VUS. No new candidate gene was identified by this strategy.To conclude, solo ES with classical and additionnal strategy presents a low efficiency to identify new genes implicated in embryonary development but allows the extension of the clinical spectrum of well-known pediatric pathologies to the prenatal period. Trio ES or genome sequencing would be now insteresting strategies to be explored
Rudewicz, Justine. "Méthodes bioinformatiques pour l'analyse de données de séquençage dans le contexte du cancer." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0635/document.
Full textCancer results from the excessive proliferation of cells decending from the same founder cell and following a Darwinian process of diversification and selection. This process is defined by the accumulation of genetic and epigenetic alterations whose characterization is a key element for establishing a therapy that would specifically target tumor cells. The advent of new high-throughput sequencing technologies enables this characterization at the molecular level. This technological revolution has led to the development of numerous bioinformatics methods. In this thesis, we are particularly interested in the development of new computational methods for the analysis of sequencing data of tumor samples allowing precise identification of tumor-specific alterations and an accurate description of tumor subpopulations. In the first chapter, we explore methods for identifying single nucleotide alterations in targeted sequencing data and apply them to a cohort of breast cancer patients. We introduce two new methods of analysis, each tailored to a particular sequencing technology, namely Roche 454 and Pacific Biosciences. In the first case, we adapted existing approaches to the particular case of transcript sequencing. In the second case, when using conventional approaches, we were confronted with a high background noise resulting in a high rate of false positives. We have developed a new method, MICADo, based on the De Bruijn graphs and making possible an effective distinction between patient-specific alterations and alterations common to the cohort, which makes the results usable in a clinical context. Second chapter deals with the identification of copy number alterations. We describe the approach put in place for their efficient identification from very low coverage data. The main contribution of this work is the development of a strategy for statistical analysis in order to emphasise local and global changes in the genome that occurred during the treatment administered to patients with breast cancer. Our method is based on the construction of a linear model to establish scores of differences between samples before and after treatment. In the third chapter, we focus on the problem of clonal reconstruction. This problem has recently gathered a lot of interest, but it still lacks a well-established formal framework. We first propose a formalization of the clonal reconstruction problem. Then we use this formalism to put in place a method based on Gaussian mixture models. Our method uses single nucleotide and copy number alterations - such as those discussed in the previous two chapters - to characterize and quantify different clonal populations present in a tumor sample
Philippe, Julien. "Étude des formes monogéniques de diabète de type 2 et d’obésité par le séquençage de nouvelle génération." Thesis, Lille 2, 2014. http://www.theses.fr/2014LIL2S049/document.
Full textDiabetes and obesity have reached such proportions worldwide we are talking about pandemic. Both diseases are a major cause of mortality and multiple complications. Medical and financial issues are for both diseases a major public health problem. Two groups of factors contribute to these two diseases: environment, and genetics on which this thesis is based. This work focused on rare and monogenic forms which are extreme forms of type 2 diabetes and obesity.These forms are far from being fully understood. My project focused on the use of next generation sequencing (NGS) to identify more optimally, compared to conventional Sanger sequencing, mutations in already known genes among new patients in our cohort for diagnostic purposes. The second objective was to use NGS to discover new loci associated with new signaling pathways involved in the pathophysiology of diabetes and obesity.The first approach uses a liquid-phase hybridization technique and focuses on 34 genes associated with monogenic and/or polygenic obesity. The screening was carried out on 201 people in 13 families for which the cause of obesity is unknown. This approach led to the identification of a mutation in a known gene of obesity: PCSK1. This mutation is causal because it leads to a stop codon at the beginning of the protein and is present only in obese individuals. Additionally, functional studies have demonstrated partial inhibition of PC1/3 by the truncated protein and the possible impact on the processing and secretion of this enzyme. This study has been published published in the "International Journal of Obesity" newspaper.The second approach is based on a PCR amplification technique in lipid microdroplets developed by Raindance. The first test is to re-identify the causal mutations of diabetes and/or obesity in 40 patients. This approach has yielded satisfactory results because for a large majority of patients, the causative mutations have been identified again. Only one patient was unable to be reconfirmed because current bioinformatics tools are limited in the detection of complex indels. Of the 39 patients identified, 3 of them are potential carriers of several causative mutations. This technique could be considered in the clinical field because it allows a multigene approach by providing a rapid diagnosis, cheaper and with a quality similar to the gold standard Sanger sequencing. For us, the purpose of this technique is a fast and optimal clinical diagnosis in order to identify unsolved cases, which are candidates for exome sequencing. This second study was published in "Diabetes Care" journal.The third approach involves whole exome sequencing (WES) in 4 individuals where the whole family was previously tested negative for all known genes of diabetes. This approach led to the discovery of a thirteen MODY gene, KCNJ11, and confirms the broad phenotypic spectrum that goes from neonatal diabetes to MODY depending on the mutations. The major difficulty with this technique is filtering variants in order to get a single causal mutation (or possibly several on the same gene) to identify new MODY genes. The strategy we used combined both a bioinformatics filter for example with filters on family cosegregation and on SNP databases and a biological filter, with the use of a technique for high-throughput genotyping. This pioneering study in the use of NGS to identify new genes of MODY has been published in "PLoS ONE".In conclusion, this work took advantage of technological advances such as capture, targeted sequencing and NGS to elucidate and to improve the screening of monogenic forms of diabetes and obesity. This improved understanding of the molecular mechanisms may lead to the development of better treatments like personalized medicine. We hope to see direct improvements for patients in the near future, such as a more accurate, faster and more comprehensive molecular
Lacoste, Deixonne Caroline. "Apport du séquençage haut débit dans l'amélioration de la prise en charge des maladies monogéniques." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM5062/document.
Full textThe diffusion of Next Generation Sequencing (NGS) technologies induces an important change that modifies molecular diagnostics indications and prompts laboratories to re-think their diagnostic strategies, up-to-now based on Sanger sequencing routine. Several high throughput approaches are available from the sequencing of a gene panel, to a whole exome, or even a whole genome. In all cases, a tremendous amount of data are generated, that have to be filtered, interpreted and analyzed by the use of powerful bioinformatics tools.In part 1, existing strategies and the difficulties and challenges of high-throughput sequencing for molecular diagnosis in genetic diseases are discussed. In part 2, the set up and the technical validation of this diagnostic approach in the Molecular Genetics’ Laboratory of the Timone Hospital in Marseille is presented and illustrated by 3 examples of complex diagnostics solved thanks to NGS. NGS promises to shorten significantly the time of analysis and results reporting, and to expand the number of tested genes. It also promises to increase the proportion of positive diagnoses. Finally, the NGS can identify new variants and new genes involved in human pathology, thus will globally improve patient clinical care
Bubien, Virginie. "Identification de nouveaux gènes de prédisposition héréditaire au cancer du sein par génotypage tumoral et séquençage de nouvelle génération." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0393/document.
Full textHereditary breast cancers (BCs) account for 5-10% of all diagnosed BCs, yet only 50% of such tumors arise in the context of a germline mutation in known tumor suppressor genes such as BRCA1 or BRCA2. The vast genetic heterogeneity which characterizes BRCAx families makes grouped studies impossible to perform. Next generation sequencing (NGS) techniques, however, allow individual families to be studied in order to identify private mutations. Single nucleotide polymorphism (SNP) arrays allow the detection of conserved haplotypes within recurrent regions of loss of heterozygosity, common to several familial tumors, therefore identifying genomic loci likely to harbor a germline mutation in cancer predisposition genes. The combination of both exome sequencing and SNP arrays for a series of 17 familial BC did not allow the identification of a novel BC predisposition gene, but revealed a germline ATM mutation associated with a loss of the wild-type allele in a BRCAx family. The analysis of 17 additional breast tumors from ten BC families in which a germline ATM mutation had been identified revealed a high frequency of wild-type allele loss in these tumors (>80% compared to the 20% expected in sporadic BC; p <0.001). This result argues strongly in favor of the involvement of ATM in the carcinogenesis of these tumors as a tumor suppressor gene and suggests that germline ATM mutations are involved in a subset of familial BC
Croville, Guillaume. "Séquençage et PCR à haut débit : application à la détection et la caractérisation d'agents pathogènes respiratoires aviaires et au contrôle de pureté microbiologique des vaccins." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEP028/document.
Full textDetection of pathogens becomes an increasing challenge, since infectious diseases represent major risks for both human and animal health. Globalization of trade and travels, evolution of farming practices and global climatic changes, as well as mass migrations are impacting the biology of pathogens and their emerging potential. This manuscript describes three approaches, based on three innovative technologies of molecular biology applied to the detection of pathogens in three different settings : (i) detection of a list of pathogens using real-time quantitative PCR on a microfluidic platform, (ii) unbiased detection of pathogens in complex matrix, using metagenomics and Illumina (Miseq) sequencing and (iii) genotyping of pathogens without isolation of PCR-enrichment using a 3rd generation NGS (Next Generation Sequencing) platform MinION from Oxford Nanopore Technologies. The three studies shown the contribution of these techniques, each representing distinctive features, suitable for the respective applications. Beyond application of these techniques to the field of microbial diagnostics, their use for the control of veterinary immunological drugs is a priority of this project. Veterinary vaccines are not only submitted to mandatory detection of listed pathogens to be excluded, but also to validation of the genetic identity of vaccine strains. The exponential availability and performances of new PCR or sequencing technologies open cutting-edge perspectives in the field of microbial diagnostic and control
Robitaille, Alexis. "Detection and identification of papillomavirus sequences in NGS data of human DNA samples : a bioinformatic approach." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1358.
Full textHuman Papillomaviruses (HPV) are a family of small double-stranded DNA viruses that have a tropism for the mucosal and cutaneous epithelia. More than 200 types of HPV have been discovered so far and are classified into several genera based on their DNA sequence. Due to the role of some HPV types in human disease, ranging from benign anogenital warts to cancer, methods to detect and characterize HPV population in DNA sample have been developed. These detection methods are needed to clarify the implications of HPV at the various stages of the disease. The detection of HPV from targeted wet-lab approaches has traditionally used PCR- based methods coupled with cloning and Sanger sequencing. With the introduction of next generation sequencing (NGS) these approaches can be improved by integrating the sequencing power of NGS. While computational tools have been developed for metagenomic approaches to search for known or novel viruses in NGS data, no appropriate bioinformatic tool has been available for the classification and identification of novel viral sequences from data produced by amplicon-based methods. In this thesis, we initially describe five fully reconstructed novel HPV genomes detected from skin samples after amplification using degenerate L1 primers. Then, is the second part, we present PVAmpliconFinder, a data analysis workflow designed to rapidly identify and classify known and potentially new Papillomaviridae sequences from NGS amplicon sequencing with degenerate PV primers. This thesis describes the features of PVAmpliconFinder and presents several applications using biological data obtained from amplicon sequencing of human specimens, leading to the identification of new HPV types
Chiarello, Marlène. "Biodiversité du microbiome cutané des organismes marins : variabilité, déterminants et importance dans l’écosystème." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT092/document.
Full textOceans contain thousands of microbial species playing crucial roles for the functioning of the marine ecosystem. These microorganisms are present everywhere in the water column. Some microorganisms also colonize the surface and the digestive tract of marine macro-organisms, forming communities called microbiomes. These microbiomes have positive effects for their host’s fitness. The diversity of these marine animal surface microbiome is still largely understudied, despite recent progress in molecular biology that now permits to fully assess its different facets of biodiversity, i.e. taxonomic, phylogenetic and functional. The goal of this thesis is therefore to describe the diversity of the surface microbiome of marine animals, to assess its variability at different levels, as well as its determinants, and the significance of such diversity at the ecosystem’s scale. Firstly, I have assessed the efficiency of various diversity indices to detect ecological signals in the specific case of microbial communities. Secondly, I have described the surface microbiome of major marine animal clades (teleostean fishes, cetaceans and several classes of invertebrates). I found that these microbiomes are highly distinct from the surrounding planktonic communities. I demonstrated that these microbiomes are variable both between individuals from the same species and between species, but do not show a phylosymbiosis pattern. Last, I assessed the contribution of surface microbiomes to the global microbial community at the scale of a coral reef ecosystem. I demonstrated that marine animal surfaces host almost twenty times more microbial species than the water column, and 75% of the phylogenetic richness present in the ecosystem. In a context of massive erosion of marine macroscopic organisms, it is therefore urgent to exhaustively assess marine microbial biodiversity and its vulnerability facing anthropic pressures
Martin, Guillaume Eric. "Caractérisation des différences de structures chromosomiques dans l'espèce Musa acuminata par re-séquençage NGS : le cas de l'accession "Pahan"." Thesis, Montpellier, SupAgro, 2014. http://www.theses.fr/2014NSAM0058/document.
Full textBanana cultivars are derived from hybridization between Musa acuminata subspecies (A genome) and, for some of them, with the species M. balbisiana (B genome). These hybrids have reduced fertility, disturbed meiosis and strong segregation distortions. These characteristics attributed to chromosomal rearrangements between species and subspecies complicate genetic analyses and breeding programs. In this thesis, we have developed and tested new approaches based on the recent availability of a banana reference genome sequence and high-throughput sequencing technologies, to characterize these differences in chromosomal structures and understand their impact on chromosomal segregation. These approaches needed improvement of the banana reference genome sequence. New bioinformatics tools were developed for this purpose. They are applicable to other genomes and are flexible according to available data. The scaffolds number was divided by 5 and 90% of the assembly is now anchored to the chromosomes. Scaffolds corresponding to the mitochondrial genome were identified and the chloroplast genome was assembled and annotated. Re-sequencing data from the 'Pahang' accession and dense genotyping of its progeny were used to explore the origin of segregation distortion involving chromosomes 1 and 4. Distortion and recombination profiles, chromosomal pairing at meiosis and re-sequencing data direct us to the hypothesis of a reciprocal translocation in inverted orientation between distal portions of chromosomes 1 and 4. We tested our structural variation research tools to compare the A and B genomes of banana, for which structural differences are known. The results showed that our tools detected complete signatures of some structural changes but for others, they only detected partial signatures. The latter can still be informative in addition to other informations derived from genetic mapping and cytogenetic studies
Bisseux, Maxime. "Dynamique de la circulation des Entérovirus de l'homme à l'environnement : Etude par séquençage haut débit." Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAS013.
Full textEnterovirus (EV) are Picornaviruses (non-enveloped, positive-sense RNA viruses), characterized by a large genetic and antigenic diversity (116 types classified within 4 taxonomic species EV-A to D) and rapid evolution. Human infections are frequent, highly contagious from stools and occur as outbreaks. The infections are mainly asymptomatic or benign but severe or fatal cases can be reported in young children. Poliomyelitis is the model EV infection. Combined with clinical and virological surveillance, mass vaccination is closer than ever to achieve the WHO program of the Global Polio Eradication Initiative. However, the detection of wild type polioviruses in polio-free countries and the recent worldwide emergence of non-polio enteroviruses (EV-A71, EV-D68) associated with severe clinical manifestations underscore the importance of surveilling EV circulation in the general population. The aim of the PhD thesis was the detection and identification of EV strains in wastewater treated in the sewage treatment plant at Clermont-Ferrand (France). The viral data were compared with those reported through clinical surveillance to obtain a comprehensive picture of the viral circulation in the local population. A method was developed to concentrate viruses from raw and treated wastewater and molecular assays were used to detect EVs and 6 other human enteric viruses. The viral genomes were detected in all samples from October 2014 to October 2015, with a median of 6 and 4 different viruses in raw and treated wastewater respectively. Phylogenetic analysis of viral sequences (EV, hepatitis A and E viruses) determined in wastewater and reported in patients during the sampling period, showed the efficiency of the method for surveilling enteric viruses in the community. The EV diversity in raw wastewater was analyzed by sequencing of amplicons with the Illumina high throughput technology (metabarcoding). The analysis revealed a large viral diversity and the silent circulation of 25 types not detected from hospital data (in particular 9 EV-C, of which sequences of vaccine poliovirus 1). The phylogenetic analyses of intra-typic variants showed different epidemic patterns in the predominant EV types circulating over the study period. The data demonstrate the feasibility and sensitivity of the strategy developed for the detection and characterization of EV in wastewater and provide a future prospect for the implementation of environmental surveillance of non-polio EV infections in epidemiological studies, epidemic prevention, and for health alert. Combining the surveillance of enteric viruses in the environment and in the clinical setting allows a better understanding of their prevalence. This global approach of virus circulation and ecological health represents an important investment for laboratories, which will require integration in national and international collaboration networks beyond the scope of enterovirus surveillance
Gorgé, Olivier. "Diagénèse de l’ADN bactérien et analyses métagénomiques de pathologies bactériennes du passé." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS572/document.
Full textThe aim of this study was the identification of pathogenic bacterial DNA traces in ancient animal and human samples, and thus improve knowledge of past diseases that affect humankind over time. In parallel, we studied the DNA degradation phenomena in the soil on the buried corpses of mice after being contaminated by non-pathogenic bacteria. This study of taphonomic processes was spread over three years and has shown a rapid disappearance of simulant bacteria, replaced with the DNA of soil bacteria that colonize the body quickly after burial and degrade both the endogenous DNA (murine) that exogenous (bacteria). This quick degradation can explain the high difficulty to detect and identify bacterial pathogens in old samples, with very few exceptions. Despite the fact in our study we were not able to detect specific pathogens in the samples we have studied, we have shown the interest to analyze certain types of remnants to access preserved and informative genetic data. Dental calculus is a good indicator of the oral flora of the host and calcified cysts ensure good preservation of the endogenous DNA, less subject to contamination and digestion by bacteria from the environment. Cysts generally have an endogenous DNA content higher than all other tissues examined
Piorkowski, Geraldine. "Étude des quasi-espèces du virus Ebola en réponse au traitement par favipiravir dans un modèle de primate non-humain par séquençage haut débit." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0216.
Full textEbola virus disease (EVD) is a major public health issue due to the lack of antiviral treatment or candidate vaccine receiving market authorisation. The scope of the recent outbreaks (2014-2016 and 2018) has highlighted the urgent need to develop efficient treatments.The first scope of this thesis concerns the implementation of a non-human model (Mauritian Cynomolgus Macaques) of Ebola virus (EBOV-Gabon 2001 strain) infection. Following intramuscular administration of EBOV, vital parameters and viral genomic evolution (consensus mutations and viral quasi species) over the disease course were observed. Results demonstrated that evolution of EVD, in this model, is closer from human than previously described models (clinical, biological parameters deteriorate later, and death occurs later). Lethality is 100%. Viral variability is low and infectious dose has a limited impact on disease course.The second scope would highlight the antiviral efficacy of different favipiravir (T-705) doses (100, 150, 180mg/kg) administrated intravenously in this model. Clinical, biological parameters and viral variability were evaluated during disease course. The highest favipiravir dose administration (180 mg/kg) was associated with 60% of monkeys’ survival.Next generation sequencing of viral quasi species over disease course has given some insights into the Proposed mechanism of action of favipiravir. Viral quasi specie number was increased by five between treated monkeys and negative controls. Favipiravir is a GTP analogue inhibiting viral polymerase which induces C to T and G to A mutations leading to error catastrophe mechanism
Curk, Franck. "Organisation du complexe d’espèce et décryptage des structures des génomes en mosaïque interspécifiques chez les agrumes cultivés." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20223/document.
Full textCitrus fruit, the most important fruit crop in the world, show a wide phenotypic diversity. Previous studies (molecular markers) identified four ancestral taxa (Citrus reticulata Blanco, mandarins; C. maxima (Burm.) Merr., pummelos; C. medica L., citrons; C. micrantha Wester, papedas) as the ancestors of all cultivated Citrus after reticulate evolutions. As a result, modern citrus varieties have complex and highly heterozygous genotypic structures, generally fixed by apomixis, and formed by a mosaic of large chromosomal fragments of different phylogenetic origins. Furthermore, the structuration of the phenotypic variability suggests that the initial differentiation of the basic taxa is the main source of most of the variability of the useful citrus phenotypic diversity. A thorough knowledge of the origin of cultivated citrus and their phylogenomic structure are essential for the management of biological resources and breeding program optimization. This thesis explores different approaches for analyzing genome diversity in order to identify the phylogenetic origins of the various horticultural citrus groups and to decipher their phylogenomic genome's structures. We focused on limes and lemons. This thesis takes advantage of the rapid evolution of NGS and proposes a rational use of available tools, based on research questions. Roche 454 parallel sequencing of amplicons provides multi-loci haplotype information on 500 base fragments. It was used to decipher the interspecific mosaic structure of chromosome 2 for fifty varieties and to identify ancestral taxa diagnostic SNP markers. The genotyping of all limes and lemons of the Inra/Cirad and Ivia germplasms with these markers, in association with SSR and indel markers, allowed to propose new hypothesis on the origins of limes and lemons. Data from Illumina whole genome re-sequencing of 7 varieties of limes and lemons, compared to those of representatives of the ancestral taxa, allowed to infer the interspecific structure of their genomes and to map out, for the first time, their phylogenomic karyotypes. The different approaches led to similar conclusions. Our results confirm previous hypothesis about the evolutionary steps at the origin of sour orange (C. aurantium), sweet orange (C. sinensis) and grapefruit (C. paradisi) involving C. maxima and C. reticulata gene pools. They highlight frequent introgressions of C. maxima in the genome of mandarin varieties despite the fact they were considered as representative of C. reticulata. We were also able to quantify the relative proportions of these two ancestral taxa in the genome of many varieties of small citrus fruit (mandarin hybrids, tangors and tangelos). Our work on limes and lemons demonstrate that C. medica is the male parent of this varietal group at the diploid level. Two groups of lemons are clearly differentiated: one from direct hybridizations between C. reticulata and C. medica, and one from crosses between hybrids (C. maxima × C. reticulata) and C. medica. Sour orange seems to be the female parent of ‘Eureka' type lemons (C. limon). The ‘Mexican' limes (C. aurantifolia) seems to come from a direct hybridization C. micrantha × C. medica. Finally, triploid big fruit limes have two major origins. The ‘Tahiti' type probably results from an ‘Eureka' type lemon (C. limon) ovule fecundated by a diploid gamete of a ‘Mexican' type lime (C. aurantifolia), while the other type would come from a back-cross between C. aurantifolia (diploid gamete) and C. medica. This new insights in genomic structure of secondary species makes to consider possible a reconstruction of these ideotypes from ancestral taxa germplasm. They also open new ways for association genetic studies based on phylogenomics of genes involved in the development of quality, resistance and adaptation traits. Finally, developed specific taxa diagnostic markers will find many applications for the characterization of collections and further genetic studies
Jourdain, Anne-Sophie. "Déterminisme moléculaire du développement des membres : apport des nouvelles technologies d’étude du génome." Thesis, Lille 2, 2019. http://www.theses.fr/2019LIL2S037.
Full textLimbs development is a complex process of which mecanism is today only partially known. Embryological development abnormalities of genetic origins are rare entities. Such abnormalities can be unique or multiple, single or syndromic, sporadic or of family origins.The study of large cohorts of patients carrier of limb extremities malformations is an excellent tool that allows an identification of the genes or regulatory elements involved in their pathology and consenquently, in the development of the limb. In most of the cases, the genetic event involved is a point mutation in the genes coding transcriptionnal factor or regulatory sequence. However, variations in the number of copies are also involved.Today, new technologies of genome study, from high through put sequencing of a target genes panel to a whole exome or genome sequencing, can allow an identification of these new targets. It is thank to these technological advances that we decided to study the moleculary determinism of limbs development. To do so, we analyzed a very large cohort of 684 patients, all carriers of a limb malformation, through different genes panels, of different sizes, but also through a whole exome analysis and a pangenomic CGH array.The results of this work allowed us, in the first part, to establish a genes panel, suitable to a molecular analysis laboratory, to the bioinformatic analysis with an optimized cost, and that can identify the SNVs but also the CNVs in only one analysis.On a second part, we managed to identify 5 genes, not yet described in human pathology, which seemed to have a role in limb development. For one of these genes a promising functional analysis has started
Pichon, Maxime. "Caractérisation du microbiome respiratoire et de la diversité génomique virale au cours des formes de grippes sévères." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1271.
Full textInfluenza is a respiratory infection responsible for respiratory or neurological complications and require rapid and adapted management. The emergence of next-generation sequencing (NGS) allows the study of resident microbial communities as well as an in-depth study of the genome of the pathogens. This thesis aimed to characterize the respiratory microbiome and the viral genomic diversity of influenza virus infected patients, correlating these data to the collected clinical data. After sampling of respiratory specimens from hospitalized children between 2010 and 2014, the sequencing of their respiratory microbiome revealed an increase in microbial diversity and a differential microbial signature between clinical forms. A differential taxon distribution (OTU) allows the prediction of complications in infected children. The study of adult respiratory samples will complete the predictive signature.After validation of the analytical and bioinformatic processes by artificial reconstitution of quasi-species and collection of 125 respiratory clinical specimens, the sequencing of the whole genome by NGS of the influenza viruses allow to differentiate the initial diversities according to the nature of the infecting virus and the complication. Compared to early samples, specimen sampled successively show a differential diversification between the different segments of influenza viruses, whether in immunocompetent patients or in an immunocompromised patient with prolonged excretion
Delhomme, Tiffany. "Using the systematic nature of errors in NGS data to efficiently detect mutations : computational methods and application to early cancer detection." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1098/document.
Full textComprehensive characterization of DNA variations can help to progress in multiple cancer genomics fields. Next Generation Sequencing (NGS) is currently the most efficient technique to determine a DNA sequence, due to low experiment cost and time compared to the traditional Sanger sequencing. Nevertheless, detection of mutations from NGS data is still a difficult problem, in particular for somatic mutations present in very low abundance like when trying to identify tumor subclonal mutations, tumor-derived mutations in cell free DNA, or somatic mutations from histological normal tissue. The main difficulty is to precisely distinguish between true mutations from sequencing artifacts as they reach similar levels. In this thesis we have studied the systematic nature of errors in NGS data to propose efficient methodologies in order to accurately identify mutations potentially in low proportion. In a first chapter, we describe needlestack, a new variant caller based on the modelling of systematic errors across multiple samples to extract candidate mutations. In a second chapter, we propose two post-calling variant filtering methods based on new summary statistics and on machine learning, with the aim of boosting the precision of mutation detection through the identification of non-systematic errors. Finally, in a last chapter we apply these approaches to develop cancer early detection biomarkers using circulating tumor DNA
Ardin, Maude. "Investigating cancer aetiology through the analysis of somatic mutation signatures." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1236/document.
Full textCellular genomes accumulate alterations following exposures to exogenous factors, like environmental agents such as tobacco smoking or UV, or to endogenous mechanisms such as DNA replication errors. Analysing the causes and consequences of these changes allows a better understanding of the mechanisms underlying cancer development and progression. Next-generation sequencing (NGS) technologies provide the opportunity tostudy the nature of the resulting alterations on a genome-wide scale and started to reveal distinct mutational signatures specific to past carcinogenic exposures providing clues on cancer aetiology.The aim of my thesis was to develop user-friendly bioinformatic tools and methods for facilitating the analysis and interpretation of carcinogen-specific mutational signatures from NGS data. Applying these tools and methods to human tumours and experimental models of mutagenesis led to a better characterisation the mutational signature of aristolochic acid (AA), as well as other carcinogens of interest
Rao, Man. "Construction of a duck whole genome radiation hybrid panel : an aid for NGS whole genome assembly and a contribution to avian comparative maps." Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1755/.
Full textDuck is a very important agronomic species in France, especially for fatty liver industry which presents 75% worldwide production. Moreover, duck is also a scientific model for avian influenza research as it is a natural reservoir for avian influenza viruses. The work presented here is part of the international collaboration on duck genome sequencing, including SNP detection and mapping, EST sequencing. Our goal is to provide a genome map allowing for fine mapping QTL and identifying candidate genes involved in expression of agronomic traits. A panel composed of 90 radiation hybrids was produced by fusing irradiated duck donor cells with hamster cells. To avoid large-scale culture of the clones, PCR genotyping involving Whole Genome Amplification (WGA) and/or reduction of reaction volumes were tested and two first maps for duck chromosomes were made. We also used the PCR genotyping method to test for the quality of duck sequence scaffold assemblies, which had been produced by the Beijing Genome Institute (BGI, China). Finally, to cover the whole genome, we performed a low-pass sequencing (0. 1X depth) of hybrids, allowing for rapid map development. These maps allow the detection of chromosomal rearrangements that have taken place between the duck and chicken genomes, which have diverged 80 million years ago
Mandon, Perrine. "Origines et évolution de lignées hydrothermales." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS467.
Full textThe originality of the hydrothermal vents fauna led to the classification of some organisms under new high taxonomic ranks. However, previous molecular studies reassigned them to known lineages, leading to major reductions in such ranking. Classically in phylogenetic studies, optimizing both taxonomic sampling and molecular markers is challenging. This Ph.D project illustrates this limitation, but still provides breakthroughs in the understanding of the origin and evolution of three hydrothermal taxa. In Polynoidae worms, the multigenic approach, led on a large taxonomic and ecological sampling, indicates at least two colonization events of hydrothermal vents. However, the limited resolution of these markers for deep nodes prevented the clear understanding of such events. A similar limitation was previously encountered for Alvinocarididae shrimp and Bythograeidae crabs families in their respective infra-orders (Caridea and Brachyura). Here, two approaches aiming to search and identify markers were tested on these groups. The first one, based on the sequencing of the mitochondrial genome (easily generalizable), resolves deep nodes in Brachyura, and places the available Bythograeidae species near the Xanthidae. The second, based on transcriptome sequencing, allows the identification of molecular markers conserved enough to resolve inter-familial relationships in Caridea. Although this approach is less generalizable, the identified markers could be targeted a posteriori on a wide taxonomic scale using marker-specific probes
Blouin, Yann. "A new scenario for the early evolution of Mycobacterium tuberculosis." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112166/document.
Full textMycobacterium tuberculosis, the causative agent of tuberculosis, is a pathogen of world-wide impact. Since its discovery in 1882 by Robert Koch many studies have been focusing on the characteristics of this bacterium and of the most closely related strains known as the Mycobacterium tuberculosis complex (MTBC). In this work we started by studying the closest neighbor to the MTBC, the "Mycobacterium canettii" taxon, which is only found in one particular region of the world, the Horn of Africa. It t has been first identified in the middle of the XXth century as being able to cause tuberculosis in humans, but having at the same time peculiar phenotypic characteristics. Through the study of some phylogenetic markers we have been able to establish that this bacterium does not belong to the MTBC sensu stricto and can therefore be used as an outgroup in order to root the phylogeny to study the emergence of the MTBC. The next step was to study the genetic diversity of a collection of strains of "M. canettii",using the “next generation sequencing” (NGS) approach.. The analysis of this collection, built along the years by the French Army Health Service (SSA), has permitted to show the rapid emergence of a particular clone, as well as to get information enabling to precise the position of the most recent common ancestor (MRCA) of the MTBC. Because of the restricted geographic location of this species, it was also decided to assess the genetic diversity of strains of M. tuberculosis coming from the same part of the globe. This second part of the study, performed on a collection of strains also gathered by the SSA, has lead to the identification of a new, previously unknown, lineage of the MTBC. This discovery has a profound impact on the comprehension of the emergence of M. tuberculosis, as it permits to develop a new model of appearance by interpreting this lineage as the founder ecotype of the MTBC. The evolution of M. tuberculosis can therefore by understood along a path linking "M. canettii", opportunistic pathogen supposedly environmental, and this new lineage. After this proposal of a new model, we tried to date it by extrapolating
Redin, Claire. "NGS-based approaches for the diagnosis of intellectual disability and other genetically heterogeneous developmental disorders." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAJ129/document.
Full textSome monogenic disorders are characterized by a vast genetic heterogeneity. In individuals with similar clinical phenotype, causative mutations can be found in one gene from a subset described as implicated in the disease. Such genetic heterogeneity limits considerably the diagnostic offer for the patients, and a majority is left without molecular diagnosis. We developed an alternative diagnostic approach by targeted high throughput sequencing (specific to the coding regions of genes of interest by a technique of exon capture) through three genetically heterogeneous disorders: Bardet-Biedl syndrome (19 genes reported), leukodystrophies (50 genes), and intellectual disability (>400 genes). In light of its efficiency, this approach has since been implemented in diagnostic routine for Bardet-Biedl syndrome and intellectual disability (80% and 25% of diagnostic yields respectively, significantly higher than those of previous methods). Beyond diagnosis, this approach allows unbiased means to assess the contribution of each gene in the disease and highlight recurrent genes, and establish new correlations genotype to phenotype, overall providing much insight in the genetics of a particular disease
Lucasson, Aude. "Caractérisation et diversité des mécanismes du syndrome de mortalité affectant les juvéniles de Crassostrea gigas." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTG076/document.
Full textInfectious diseases are very often explored using reductionist approaches, despite repeated evidence showing them to be strongly influenced by numerous interacting host and environmental factors. Many diseases with complex etiology therefore remain misunderstood. In this thesis, by developing a holistic approach to tackle the complexity of the interaction, (i) we deciphered the complex intra-host interactions underlying the Pacific oyster mortality syndrome affecting juveniles of Crassostrea gigas, the main oyster species exploited worldwide and (ii) we validated this mechanism in different infectious environments and oyster genotypes. Using ecologically realistic experimental infections combined with thorough molecular (metabarcoding, transcriptomics, pathogen monitoring) and histological analyses on oyster families with contrasting susceptibilities, we demonstrated that the disease is caused by a multiple infection whose initial and necessary step is the infection of oyster haemocytes by a herpesvirus. Viral replication leads to an immune-compromised state of the host, evolving toward subsequent bacteremia by opportunistic bacteria. By identifying critical intra-host interactions between microorganisms and host immunity, this study cracks the code of the Pacific oyster mortality syndrome and provides important molecular data for the design of prophylactic measures and breeding programs dedicated to the production of oysters resistant to the mortality syndrome. We believe that such a systems biology approach could be applied to decipher other multi-factorial diseases that affect non-model invertebrate species worldwide
Guinoiseau, Thibault. "Etude des propriétés génétiques et fonctionnelles des variants du virus de l'hépatite C lors d'évènements de transmission." Thesis, Tours, 2018. http://www.theses.fr/2018TOUR3301.
Full textIn infected individuals, HCV circulates as a complex mixture of genetically different, but closely related viral variants named quasispecies. In a transmission event, some viral variants are preferentially transmitted. The genetic and functional properties of these variants are still unknown. The aim of our work was to identify molecular determinants of E1E2 associates with a greater capacity of transmission. We also intend to study the functional properties of transmitted and no transmitted variants, as for example sensibility to autologous neutralization. Studied sera samples were obtained from three women and their child infected by the HCV, who were participating in HIV prevention clinical trial for the prevention of perinatal transmission of HIV in Thailand. Quasispecies were studied with single genome amplification (SGA) followed by deep sequencing (Illumina). A decrease in intra-host diversity (genetic bottleneck) was observed in the viral population of child near birth (week 6) compared with that observed in the mother (just before delivery). For 2 pairs, the major variant observed in the mother was the same as the major one identified in the child. Retroviral pseudotypes (HCVpp), bearing each transmitted and non-transmitted envelope glycoproteins were produced. For each one, the level of infectivity on HuH7 cells was measured as well as the neutralizing activity of the autologous sera. For the first pair, the major variant (transmitted) appears resistant to autologous neutralization. For the second pair, the transmitted minor variant appears slightly resistant to autologous neutralization. A non-transmitted major variant is sensitive to autologous neutralization. Complementary studies with HCV derived from cell culture (HCVcc) are in progress We hope that the results of this study may be helpful to better understand early steps of HCV infection, which is of great interest for the development of immunoprophylaxis and vaccine strategies
Lerat, Justine. "Neuropathies Périphériques Génétiques et Surdité : Etude des Relations Génétiques et Mécanistiques." Thesis, Limoges, 2018. http://www.theses.fr/2018LIMO0055.
Full textHereditary Peripheral Neuropathies (PN) are characterized by various phenotypes and great genetic heterogeneity. Charcot-Marie-Tooth disease (CMT) accounts for most sensori-motor peripheral neuropathies. Besides, other symptoms can be associated, such as deafness. No precise estimation of deafness within this population exist and its pathogenicity is uncertain. The aim of this PhD was to better understand the physiopathology of deafness in patients suffering from PN. Various complementary approaches were used; 1) a clinical approach on a French cohort of patients suffering from both PN and hearing loss and molecular genetic tests with NGS sequencing (PN, deafness panels, and/or exomes), 2) a biochemical approach on murine and human cochlear nerve samples and 3) a bioinformatic approach to identify protein hubs implicated in the onset of PN-associated deafness.This has enabled us to characterize the various phenotypes of patients suffering from both hereditary PN and deafness, and then notice that deafness can be endo-, retro- or endo- and retrocochlear. Thirty-six genes were reported to be associated with both PN and hearing impairment. Sixty percent of our patients were genotyped, highlighting seven novel pathogenic variants in five different genes. Our research also suggests that PMP22, the most frequent gene in CMT, is probably not or poorly implicated in deafness onset in PN patients. In two of our patients with PMP22 pathogenic variants, a second involved gene was found with COCH and MYH14 respectively. Genotype-phenotype correlations were found out with the ABHD12, SH3TC2, NEFL and PRPS1 genes. Secondly, the preliminary immunohistochemical study on wild-type rats auditory nerves highlighted the expression of pmp22, mpz, nefl and trpv4 on the cochlear nerve and tracked a different expression in CMTpmp22/+ rats. However, the study on humans was not conclusive. Recently, in silico research of pathways common to the different genes described to be involved in both PN and deafness, has found the direct link between PMP22 and MPZ. Indirect links between several other proteins have been tracked.This thesis also shows that hearing impairment is most probably under-diagnosed in this population of genetic PN sufferers. We suggest regular audiologic follow-up for PN patients and neurological assessment for deaf children
Ishi, Soares de Lima Leandro. "De novo algorithms to identify patterns associated with biological events in de Bruijn graphs built from NGS data." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1055/document.
Full textThe main goal of this thesis is the development, improvement and evaluation of methods to process massively sequenced data, mainly short and long RNA-sequencing reads, to eventually help the community to answer some biological questions, especially in the transcriptomic and alternative splicing contexts. Our initial objective was to develop methods to process second-generation RNA-seq data through de Bruijn graphs to contribute to the literature of alternative splicing, which was explored in the first three works. The first paper (Chapter 3, paper [77]) explored the issue that repeats bring to transcriptome assemblers if not addressed properly. We showed that the sensitivity and the precision of our local alternative splicing assembler increased significantly when repeats were formally modeled. The second (Chapter 4, paper [11]), shows that annotating alternative splicing events with a single approach leads to missing out a large number of candidates, many of which are significant. Thus, to comprehensively explore the alternative splicing events in a sample, we advocate for the combined use of both mapping-first and assembly-first approaches. Given that we have a huge amount of bubbles in de Bruijn graphs built from real RNA-seq data, which are unfeasible to be analysed in practice, in the third work (Chapter 5, papers [1, 2]), we explored theoretically how to efficiently and compactly represent the bubble space through a bubble generator. Exploring and analysing the bubbles in the generator is feasible in practice and can be complementary to state-of-the-art algorithms that analyse a subset of the bubble space. Collaborations and advances on the sequencing technology encouraged us to work in other subareas of bioinformatics, such as: genome-wide association studies, error correction, and hybrid assembly. Our fourth work (Chapter 6, paper [48]) describes an efficient method to find and interpret unitigs highly associated to a phenotype, especially antibiotic resistance, making genome-wide association studies more amenable to bacterial panels, especially plastic ones. In our fifth work (Chapter 7, paper [76]), we evaluate the extent to which existing long-read DNA error correction methods are capable of correcting high-error-rate RNA-seq long reads. We conclude that no tool outperforms all the others across all metrics and is the most suited in all situations, and that the choice should be guided by the downstream analysis. RNA-seq long reads provide a new perspective on how to analyse transcriptomic data, since they are able to describe the full-length sequences of mRNAs, which was not possible with short reads in several cases, even by using state-of-the-art transcriptome assemblers. As such, in our last work (Chapter 8, paper [75]) we explore a hybrid alternative splicing assembly method, which makes use of both short and long reads, in order to list alternative splicing events in a comprehensive manner, thanks to short reads, guided by the full-length context provided by the long reads
Voegele, Catherine. "Development of an integrated Information Technology System for management of laboratory data and next-generation sequencing workflows within a cancer genomics research platform." Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10095/document.
Full textThe aim of my thesis work was to develop bioinformatics tools to improve the traditional scientific information management within a large research centre and especially within a genomics platform. Three tools have been developed: an electronic laboratory notebook, a laboratory information management system for genomics applications including next generation sequencing, as well as a sample management system for large biobanks. This work has been conducted in close collaboration with biologists, epidemiologists and IT specialists. It has also included the setup of interactions between the different tools to make an integrated IT system. The three tools have been rapidly adopted by all the scientists of the research centre and are now daily used for the tracking of all the laboratory’s activities but also more globally for the research centre’s other scientific activities. These tools are transposable in other research institutes
Chen, Shuhui. "Étude des mutations des gènes KRAS, NRAS, BRAF, PIK3CA, MET et de l’expression des protéines P53 et PTEN et leurs implications cliniques dans le carcinome ovarien de haut grade." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0093/document.
Full textObjectives: Despite the great histological and molecular heterogeneity, the clinical management of high-grade ovarian carcinoma remains univo-cal. As a major subgroup of ovarian carcinoma, high-grade ovarian carci-nomas (HGOC) need novel therapy. Additionally to conventional histolog-ical prognostic markers and oncogenetic investigations, molecular diag-nostic was performed using PCR-HRM (Polymerase Chain Reaction High Resolution Melting) and NGS (Next Generation Sequencing) to identify "druggable" targets that could provide access to innovative personalized therapy. Methods: This study was performed in 53 patients (pts) (mean age 58.9 years, range 25-87) with histologically proven HGOC of which 45 pts with serous carcinoma. BRCA1/2 germline mutations had been screened in 19 pts with familial/personal history of breast/ovarian cancer justifying on-cogenetic investigations. P53 and PTEN expression was assessed on for-malin fixed paraffin-embedded tissues using immunohistochemistry. So-matic mutations of KRAS, NRAS, BRAF, PIK3CA and MET were screened using PCR-HRM and then confirmed using NGS on DNA extracts from frozen tumor specimens taken at diagnosis. Results: Seven pts had BRCA1 / 2 germline mutations, all had serous carcinomas. One mutation of KRAS (exon 2), 2 mutations of NRAS (exon 3), 6 mutations of PIK3CA (exon 5, 10 and 21) and 5 mutations of MET (exon 14 and 18) were identified using NGS, of which 2 mutations of NRAS and 2 mutations de PIK3CA detected previously by PCR-HRM, no multiple mutation was detected. P53 overexpression and PTEN loss of expression was detected respectively in 32 of 53 (60%) and 19 of 46 (41%) of all the tumors. Because of the efffective of the study, statistical analyses were restricted to pts with serous carcinoma. With a median follow-up of 38 months (range 6-93), 35 pts had disease progression and 25 pts died during the follow-up. The 2-year progression-free survival (PFS) rate was 28% and 5-year overall survival (OS) rate was 37%. Overexpression of mutant P53 was found to be associated with chemosensitivity and longer PFS and OS. Conclusion: In HGOC, beside P53 and PTEN alterations, somatic genetic abnormalities of PI3K and MAPK signaling pathways can be detected us-ing NGS and provide molecular rationale for targeted therapies, potential-ly offering new therapeutic opportunities to the patients
Bigot, Diane. "Biodiversité et évolution des virus présents dans les métagénomes animaux." Thesis, Tours, 2017. http://www.theses.fr/2017TOUR4019.
Full textViruses are among the most abundant entities on Earth, but the viral diversity remains mostly unknown as currently biased in favour of animals of social, agronomic and economic interest. Next Generation Sequencing technologies provide access to so far inaccessible information. The aim of my PhD thesis was the study of the viral diversity within a large range of non-model animals. To address this question I set up an innovative analytical framework to discover new viruses based on a meta-transcriptomic approach. This work i) shows that this bioinformatics method is efficient and powerful, ii) allows the discovery of new viruses with particular genomic organisations suggesting they belong to new virus genera of families, iii) uncovered new viruses from new hosts in well-known viral families and iv) shows wider viral host range than previously expected based on a particular focus on hymenopteran viral diversity. Overall, my work allows to fill some gaps in the knowledge of viral diversity and shows the importance of studying non-model animal species in virology
Martinez, Palacios Paulina. "Réponse des agents non codants du génome – éléments transposables et petits ARN – à un événement d'allopolyploïdie : le génome du colza (Brassica napus) comme modèle d'étude." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112055/document.
Full textThe evolutionary success of polyploid species is partly due to the dynamic changes in genome organization and gene expression patterns that occur at the onset of the polyploid formation. These changes are promoted by the merging of divergent genomes into a single nucleus (i.e. allopolyploidy) that causes a “genomic shock”; they are thought to provide a rich source of new genetic material upon which selection can act to promote adaptation and evolution. Many studies have thus aimed to uncover molecular mechanisms that are responsible for the evolutionary success of allopolyploid species, most of them focusing on gene expression changes. In the present PhD thesis, my interest has been concentrated on the non-coding components of the genome: transposable elements and small non-coding RNAs. My study involves oilseed rape (Brassica napus, AACC), a relatively young allopolyploid species that originated from hybridizations between B. rapa (AA) and B. oleracea (CC). Specifically, I have used resynthesized B. napus polyploids advanced by self-pollination of single plants for several generations; I have analyzed these plants at different generations for genomic changes accompanying polyploid formation and subsequent evolution. In a first part, sequence-specific amplification polymorphism (SSAP) targeting the C genome-specific transposable element Bot1, was used to evaluate transposition rate of Bot1 in resynthesized B. napus in comparison with the diploid parents. Only a few transposition events were identified. When combined with the results obtained for two other TEs, this work suggests that allopolyploidy has only a moderate impact on TE transposition and restructuring. The changes observed in SSAP profiles led us to hypothesize that some of them resulted from changes in DNA methylation, resulting in rare but highly specific TE activation and transposition. In a second part, I have concentrated on small non-coding RNAs (sRNAs), which are thought to mediate different aspects of the response to the “genomic shock” induced by allopolyploid formation. Comprehensive analyses of sRNA expression in resynthesized B. napus allopolyploids have been carried out by deep sequencing sRNAs from 11 libraries prepared from stems of three allotetraploids (surveyed at the two generations S1 and S5) and the two diploid parents. Characterization of sRNA distributions in these plants indicates that sRNAs show an immediate but transient response to allopolyploidy. The sRNAs derived from transposable elements (down-regulated in the S1) or targeting unknown sequences (no Blast hit against any available public database) were particularly affected. The use of B. napus mRNAseq data revealed that these latest unknown candidates, which are 21-nt long and over-expressed in the earliest generations (F1, S0, S1) were derived from endogenous viral elements (EVE). We confirmed that these EVEs showed the same expression patterns as the 21-nt long sRNAs that specifically target them (over-expression in the F1, S0 and S1). These results suggest that (at least) some EVEs might be reactivated as a response to the merging of divergent genomes (in interspecific hybrids and newly formed allopolyploids). Altogether, our results have demonstrated a succession of sRNA pathways that counteract the reactivation of some specific TEs and/or EVEs at the onset of polyploid formation; reactivated TEs and/or EVEs being immediately repressed at the post-transcriptional level (PTGS), and then fully repressed by transcriptional gene silencing (TGS) in the subsequent generations. Such data lead to hypothesize that sRNAs are essential to overcome interspecific hybrid incompatibilities due to the uncontrolled and deleterious reactivation of TEs / EVEs. Therefore, sRNAs should be considered as the guardians of genome integrity even in newly-formed allopolyploids
Geniez, Sandrine. "Investigation of Wolbachia symbiosis in isopods and filarial nematodes by genomic and interactome studies." Thesis, Poitiers, 2013. http://www.theses.fr/2013POIT2277/document.
Full textBacteria of the genus Wolbachia are gram-negative alpha-proteobacteria present in many arthropods and filarial nematodes. These obligate intracellular bacteria are maternally inherited and induce a large number of phenotypes across the symbiosis continuum from mutualism to parasitism, including feminization (F), cytoplasmic incompatibility (CI) or male killing. Studying Wolbachia symbioses is therefore of particular interest in the investigation of symbiotic relationships.In Brugia malayi and other filarial nematodes, they are obligate leading to a loss of worm fertility, and eventual death upon their depletion with antibiotic. In arthropods, they rather are parasitic. In the isopod crustacean Armadillidium vulgare they cause feminization when present: genetic males develop as functional female leading to female biased sex-ratio progenies.In order to understand the molecular mechanisms of these two symbioses, we set up a new capture procedure to catch Wolbachia DNA and performed whole-genome sequencing on 8 Wolbachia strains, symbionts of isopods (F & CI). Comparative genomics led to the establishment of the Wolbachia pan-genome as well as the identification of phenotype related gene patterns. We identified 2, 5 and 3 genes that are only found in mutualist, feminizing and male killing strains, respectively. Expression of genes potentially involved in feminization and mutualism were also analyzed throughout host post-embryonic development. Host-symbiont interactome approach was then initiated by protein-protein interaction studies using bacterial proteins with eukaryote like motifs as bait in order to identify Wolbachia host targets involved in symbiosis
Beaudoux, Olivia. "Caractérisation anatomo-clinique et moléculaire du mélanome primitif muqueux Prognostic factors and incidence of primary mucosal melanoma: a population-based study in France Massively invasive orbital melanoma: Uveal or conjunctival origin? “Response to imatinib of a patient with double-mutant KIT metastatic penile melanoma." Thesis, Reims, 2020. http://www.theses.fr/2020REIMM201.
Full textPrimary mucosal melanoma (M) (MM) is a rare and serious malignant tumor, including oral and nasopharyngeal, vulvovaginal, conjunctival, anorectal and penile (PM) M. The oncogenes involved are largely unknown. Unresectable and metastatic cases are not very sensitive to current treatments, targeted therapies and immunotherapies. In order to better characterize these orphan cancers, we have: (1) studied, on the basis of incident cases in Champagne-Ardenne between 2004 and 2014 (n = 39): the annual incidence (0.18 / 100,000) and the incidence ratio between MM / cutaneous M (1/50), the relative frequency of different mucosal sites, the diagnosis (late at 77%), the median survival (24 months) and the 5-year specific survival (32%); (2) reported the first case of response to imatinib and long-term survival of a patient with KIT-mutated metastatic PM and discussed the possible mechanisms of this exceptional response; (3) reported a case of GNA11 mutated massively invasive orbital M, and discussed its origin, conjunctival or uveal; (4) carried out a systematic review of the literature (n = 88), in order to establish the frequency of the KIT (13.5%), BRAF (12.9%) and NRAS (12.1%) variants, and triple negative (64.2%), to discuss the mutated genes in more than 5% of cases (including MTOR, TSC1, ATRX, POM121 and DISP3), and, in less than 5% of cases if there was an impact clinic (including POLE); (5) studied, using a panel of 275 genes, on 29 PMM, the mutational frequency of KIT (31%), BRAF (24%), NRAS (14%), TP53 (14%), SF3B1 (10%), NF1 (45%), PIK3CA and KRAS (both at 7%). Our studies indicated that a dedicated NGS custom panel should be useful for clinical practice
Chaaya, Nancy. "Anticorps catalytiques et répertoires immuns murins : analyse génétique, biochimique et bio-informatique." Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2495.
Full textIn the late 80s, catalytic antibodies have been discovered in the serum of patients, especially patients with auto-immune diseases. Some of the catalytic antibodies appear to have a beneficial effect on health while others are deleterious. In order to understand the link between catalytic antibodies and immune system pathologies, previous work leaded to 4 single chain Fragment variable (scFv) libraries exposed on phage surface, representing different genetic backgrounds and immunological states. The scFvs, composed with the variable regions of the heavy (H) and light (L) chains, are encoded by immunoglobulin gene subgroups V(H), D(H), J(H), V(L) and J(L). With the objective to decipher the potential origin of catalytic antibodies, a statistical representation of each subgroup within each repertoire has been done, based on more than 300 000 sequences. The NGS data analysis showed a variable expression of some gene subgroups (comprising “rare” ones) between the 4 libraries showing that the genetic background and/or the immunological state influence immunoglobulin gene subgroup expression. Then, we investigated the presence of antibodies with potent active sites in the libraries by molecular modelling. Libraries express more putative catalytic antibodies than others depending on the genetic background and the immunological state profile. Finally, in the objective to validate this in silico approach, an in vitro approach was considered. 5 scFvs exposed on phage surface have thus been selected during a previous work by iterative process on the basis of their catalytic activity: β-lactamase like activity. Each of them displays a unique primary and tertiary structure. The scFvs exposed on the phage surface must be catalytically active while expressed in soluble form too. One of the selected scFvs, P90C2, was optimized and expressed in E. coli BL21 (DE3) bacteria in the form of inclusion bodies and then solubilized and refolded. Although soluble P90C2 fully retained its binding activity, its catalytic potency was completely lost. Further experiments aimed to i) optimize refolding protocol, ii) study the impact of scFv codon-optimization, and iii) show the influence of the pIII fusion protein on the scFv catalytic activity
Debladis, Emilie. "Etude de l'activité transpositionnelle en condition de stress chez le riz, Oryza sativa." Thesis, Perpignan, 2016. http://www.theses.fr/2016PERP0026/document.
Full textTransposable elements (TEs) are ubiquitous among eukaryotic genomes sometimes overriding in plants. Due to their ability to replicate and transpose, they are potentially mutagenic and recognized as actors of genome evolution. However, the analysis of the transpositional activity of TEs in different plant species have shown that most of them are maintained in a transcriptionally inactive state through powerful and specific epigenetic mechanisms. These silencing processes can nevertheless be allievated under stress conditions, leading to TE reactivation. Are these stress sufficient to activate transposition in natural populations? Are repeated heat stress able to trigger transposition and therefore lead to bursts of transposition? In recent reports, reactivation of retrotransposons has been shown in Arabidopsis thaliana mutants impaired in the RdDM pathway (RNA-directed DNA Methylation) and submitted to heat stress. My PhD works reports the study of of a wild rice and a new rice mutant, affected in the RdDM, cultivated under optimal or heat stress conditions over generations. Here, we propose to determine (1) the impact of the mutation at the different levels leading to the retrotranspositional activation and (2) the retrotranspositional activity in response to heat stress. An important part of this work has been devoted to the development and the comparison of different methods to identify TE movements, and different -omics approaches have been used. The reactivation of 5 new TEs in mutants, suggests that the RdDM pathway is involved in the control of the repression of these TEs. Furthermore, our result confirm that all TEs are not regulated through the same pathways but are under the control of different lock
Jean-Louis, Martineau. "Séquençage d’exomes d’une cohorte de familles caucasiennes simplex dont les patients sont atteints du syndrome d’interruption de la tige hypophysaire." Thèse, 2017. http://hdl.handle.net/1866/21577.
Full text