Dissertations / Theses on the topic 'Sequential Monte Carlo Filter'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Sequential Monte Carlo Filter.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Fearnhead, Paul. "Sequential Monte Carlo methods in filter theory." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299043.
Full textArnold, Andrea. "Sequential Monte Carlo Parameter Estimation for Differential Equations." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1396617699.
Full textGebart, Joakim. "GPU Implementation of the Particle Filter." Thesis, Linköpings universitet, Reglerteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-94190.
Full textTumuluri, Uma. "Nonlinear State Estimation in Polymer Electrolyte Membrane Fuel Cells." Cleveland State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=csu1231961499.
Full textNoh, Seong Jin. "Sequential Monte Carlo methods for probabilistic forecasts and uncertainty assessment in hydrologic modeling." 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/170084.
Full textWoodard, Aaron Jacob, and Aaron Jacob Woodard. "Bayesian Estimation of a Single Mass Concentration Within an Asteroid." Thesis, The University of Arizona, 2017. http://hdl.handle.net/10150/625702.
Full textYildirim, Berkin. "A Comparative Evaluation Of Conventional And Particle Filter Based Radar Target Tracking." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12609043/index.pdf.
Full textAl-Saadony, Muhannad. "Bayesian stochastic differential equation modelling with application to finance." Thesis, University of Plymouth, 2013. http://hdl.handle.net/10026.1/1530.
Full textJohansson, Anders. "Acoustic Sound Source Localisation and Tracking : in Indoor Environments." Doctoral thesis, Blekinge Tekniska Högskola [bth.se], School of Engineering - Dept. of Signal Processing, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-00401.
Full textLee, Anthony. "Towards smooth particle filters for likelihood estimation with multivariate latent variables." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/1547.
Full textLindsten, Fredrik. "Particle filters and Markov chains for learning of dynamical systems." Doctoral thesis, Linköpings universitet, Reglerteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-97692.
Full textCNDM
CADICS
Käll, Viktor, and Erik Piscator. "Particle Filter Bridge Interpolation in GANs." Thesis, KTH, Matematisk statistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301733.
Full textGenerative adversarial networks (GANs) är ett slags generativ modell som har fått mycket uppmärksamhet de senaste åren sedan de upptäcktes för sin potential att återskapa komplexa högdimensionella datafördelningar. Dessa förser en komprimerad representation av datan där enbart de karaktäriserande egenskaperna är bevarade, vilket följdaktligen inducerar ett avståndsmått på datarummet. Detta avståndsmått möjliggör interpolering inom datan vilket har åstadkommits med framgång tidigare. Häri föreslår vi en ny stokastisk interpoleringsmetod för GANs där interpolationen tvingas följa datafördelningen genom att implementera en sekventiell Monte Carlo algoritm för dragning av datapunkter. Resultaten för studien visar att metoden ger bättre interpolationer för datamängden LINES som användes; jämfört med resultaten av tidigare kända interpolationsmetoder syntes en märkbar förbättring genom kvalitativa och kvantitativa utvärderingar. Den framtagna interpolationsmetoden har alltså mött förväntningarna och är lovande, emellertid fordras att den testas på en mer komplex datamängd för att bekräfta att den fungerar väl även under mer generella förhållanden.
Hol, Jeroen D. "Resampling in particle filters." Thesis, Linköping University, Department of Electrical Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2366.
Full textIn this report a comparison is made between four frequently encountered resampling algorithms for particle filters. A theoretical framework is introduced to be able to understand and explain the differences between the resampling algorithms. This facilitates a comparison of the algorithms based on resampling quality and on computational complexity. Using extensive Monte Carlo simulations the theoretical results are verified. It is found that systematic resampling is favourable, both in resampling quality and computational complexity.
Aslan, Serdar. "Nonlinear Estimation Techniques Applied To Econometric." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/12605649/index.pdf.
Full textVelmurugan, Rajbabu. "Implementation Strategies for Particle Filter based Target Tracking." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14611.
Full textOulad, Ameziane Mehdi. "Amélioration de l'exploration de l'espace d'état dans les méthodes de Monte Carlo séquentielles pour le suivi visuel." Thesis, Ecole centrale de Lille, 2017. http://www.theses.fr/2017ECLI0007.
Full textIn computer vision applications, visual tracking is an important and a fundamental task. Solving the tracking problematic based on a statistical formulation in the Bayesian framework has gained great interest in recent years due to the capabilities of the sequential Monte Carlo (SMC) methods to adapt to various tracking schemes and to take into account model uncertainties. In practice, the efficiency of SMC methods strongly depends on the proposal density used to explore the state space, thus the choice of the proposal is essential. In the thesis, our approach to efficiently explore the state space aims to derive a close approximation of the optimal proposal. The proposed near optimal proposal relies on an approximation of the likelihood using a new form of likelihood based on soft detection information which is more trustworthy and requires less calculations than the usual likelihood. In comparison with previous works, our near optimal proposal offers a good compromise between computational complexity and optimality.Improving the exploration of the state space is most required in two visual tracking applications: abrupt motion tracking and multiple object tracking. In the thesis, we focus on the ability of the near optimal SMC methods to deal with abrupt motion situations and we compare them to the state-of-the-art methods proposed in the literature for these situations. Also, we extend the near optimal proposal to multiple object tracking scenarios and show the benefit of using the near optimal SMC algorithms for these scenarios. Moreover, we implemented the Local PF which partition large state spaces into separate smaller subspaces while modelling interactions
Bradley, Justin Mathew. "Particle Filter Based Mosaicking for Forest Fire Tracking." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd2001.pdf.
Full textMaâmatou, Houda. "Apprentissage semi-supervisé pour la détection multi-objets dans des séquences vidéos : Application à l'analyse de flux urbains." Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAC015/document.
Full textSince 2000, a significant progress has been recorded in research work which has proposed to learn object detectors using large manually labeled and publicly available databases. However, when a generic object detector is applied on images of a specific scene, the detection performances will decrease considerably. This decrease may be explained by the differences between the test samples and the learning ones at viewpoints taken by camera(s), resolution, illumination and background images. In addition, the storage capacity evolution of computer systems, the "video surveillance" democratization and the development of automatic video-data analysis tools have encouraged research into the road-traffic domain. The ultimate aims are the management evaluation of current and future trafic requests, the road infrastructures development based on real necessities, the intervention of maintenance task in time and the continuous road surveillance. Moreover, traffic analysis is a problematicness where several scientific locks should be lifted. These latter are due to a great variety of traffic fluidity, various types of users, as well multiple weather and lighting conditions. Thus, developing automatic and real-time tools to analyse road-traffic videos has become an indispensable task. These tools should allow retrieving rich data concerning the traffic from the video sequence and they must be precise and easy to use. This is the context of our thesis work which proposes to use previous knowledges and to combine it with information extracted from the new scene to specialize an object detector to the new situations of the target scene. In this thesis, we propose to automatically specialize a generic object classifier/detector to a road traffic scene surveilled by a fixed camera. We mainly present two contributions. The first one is an original formalization of Transductive Transfer Learning based on a sequential Monte Carlo filter for automatic classifier specialization. This formalization approximates iteratively the previously unknown target distribution as a set of samples composing the specialized dataset of the target scene. The samples of this dataset are selected from both source dataset and target scene further to a weighting step using some prior information on the scene. The obtained specialized dataset allows training a specialized classifier to the target scene without human intervention. The second contribution consists in proposing two observation strategies to be used in the SMC filter’s update step. These strategies are based on a set of specific spatio-temporal cues of the video surveillance scene. They are used to weight the target samples. The different experiments carried out have shown that the proposed specialization approach is efficient and generic. We have been able to integrate multiple observation strategies. It can also be applied to any classifier / detector. In addition, we have implemented into the Logiroad OD SOFT software the loading and utilizing possibilities of a detector provided by our approach. We have also shown the advantages of the specialized detectors by comparing their results to the result of Logiroad’s Vu-meter method
Shahtahmassebi, Golnaz. "Bayesian modelling of ultra high-frequency financial data." Thesis, University of Plymouth, 2011. http://hdl.handle.net/10026.1/894.
Full textDubarry, Cyrille. "Méthodes de lissage et d'estimation dans des modèles à variables latentes par des méthodes de Monte-Carlo séquentielles." Phd thesis, Institut National des Télécommunications, 2012. http://tel.archives-ouvertes.fr/tel-00762243.
Full textDaniyan, Abdullahi. "Advanced signal processing techniques for multi-target tracking." Thesis, Loughborough University, 2018. https://dspace.lboro.ac.uk/2134/35277.
Full textChen, Xi. "Sequential Monte Carlo radio-frequency tomographic tracking." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104844.
Full textSuivi de cible dans la zone à petite échelle en utilisant les réseaux de capteurs sans fil est une technique qui peut être largement utilisé dans des applications telles que le sauvetage d'urgence après un tremblement de terre, ou la protection de la sécurité dans un bâtiment. Beaucoup de systèmes de poursuite de cibles nécessitent un dispositif électrique réalisée par l'objectif de faire rapport de ses localisation instantanée et le statut. L'inconvénient rend ces systèmes ne conviennent pas pour des applications nombreuses interventions d'urgence, dispositif sans systèmes de suivi qui ne les périphériques connectés sur les objectifs sont nécessaires. Radio-Fréquence (RF) suivi tomographique est l'une des techniques dispositif de suivi-libres. Il s'agit d'un processus de suivi des cibles mobiles en analysant l'évolution de l'atténuation dans les transmissions sans fil. La cible peut être suivi dans la zone de réseau de capteurs, tandis que les appareils électriques ne doivent être effectués. Cependant, certaines approches précédentes dispositif de suivi-libre nécessite une phase d'entraînement avant de suivi, ce qui prend beaucoup de temps. Autres effectuer un suivi par scarification partie de précision de l'estimation.Dans cette thèse, nous proposons une nouvelle Monte Carlo séquentielles (SMC) algorithme de suivi RF tomographique. Il peut suivre une cible unique sans formation du système dans un réseau de capteurs sans fil. L'algorithme de filtrage particulaire adopte la méthode pour estimer la position cible et intègre en ligne Expectation Maximization (EM) pour estimer les paramètres du modèle. Sur la base de mesures expérimentales, le travail introduit également un modèle de mesure de roman pour l'atténuation provoquée par une cible pour améliorer la précision d'estimation. La performance de l'algorithme est évaluée par des simulations numériques et expériences sur le terrain avec un réseau de capteurs sans fil banc d'essai. Les deux résultats simulés et expérimentaux démontrent que notre travail surpasse précédente approche RF suivi tomographique pour le suivi de cible unique.
Fallon, M. F. "Acoustic source tracking using sequential Monte Carlo." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598928.
Full textZhou, Yan. "Bayesian model comparison via sequential Monte Carlo." Thesis, University of Warwick, 2014. http://wrap.warwick.ac.uk/62064/.
Full textPunskaya, Elena. "Sequential Monte Carlo methods for digital communications." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620013.
Full textHenderson, Donna. "Sequential Monte Carlo methods for demographic inference." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:a3516e76-ac95-4efc-9d57-53092ca4c8f3.
Full textKostov, Svetoslav. "Hamiltonian sequential Monte Carlo and normalizing constants." Thesis, University of Bristol, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.702941.
Full textMartin, James Stewart. "Some new results in sequential Monte Carlo." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/11655.
Full textLi, Jun Feng. "Sequential Monte Carlo methods for multiple target tracking." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612269.
Full textJewell, Sean William. "Divide and conquer sequential Monte Carlo for phylogenetics." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/54514.
Full textScience, Faculty of
Statistics, Department of
Graduate
Pace, Michele. "Stochastic models and methods for multi-object tracking." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2011. http://tel.archives-ouvertes.fr/tel-00651396.
Full textOzgur, Soner. "Reduced Complexity Sequential Monte Carlo Algorithms for Blind Receivers." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10518.
Full textJonnavithula, Annapoorani. "Composite system reliability evaluation using sequential Monte Carlo simulation." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/nq23941.pdf.
Full textDias, Stiven Schwanz. "Collaborative emitter tracking using distributed sequential Monte Carlo methods." Instituto Tecnológico de Aeronáutica, 2014. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=3137.
Full textAcosta, Argueta Lesly María. "Particle filtering estimation for linear and nonlinear state-space models." Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/134356.
Full textL’estimació seqüencial dels estats (filtratge) i la corresponent estimació simultània dels estats i els paràmetres fixos d’unmodel dinàmic formulat en forma d’espai d’estat –sigui lineal o no– constitueix un problema de rellevada importància enmolts camps, com ser a l’àrea de finances. L’objectiu principal d’aquesta tesi és el d’estimar seqüencialment i de manera eficient –des d’un punt de vista bayesià i usant lametodologia de filtratge de partícules– els estats i/o els paràmetres fixos d’unmodel d’espai d’estat dinàmic no estàndard: possiblement no lineal, no gaussià o no estacionari. El present treball consisteix de 7 capítols i s’organitza en dues parts. El Capítol 1 hi introdueix conceptes bàsics, lamotivació, el propòsit i l’estructura de la tesi. La primera part d’aquesta tesi (capítols 2 a 4) se centra únicament en l’estimació dels estats. El Capítol 2 presenta una revisió exhaustiva dels algorismes més clàssics no basats en simulacions (KF, EKF, UKF2) i els basats en simulacions (SIS, SIR, ASIR, EPF, UPF). Per a aquests filtres, tots esmentats en la literatura, amés de descriure’ls detalladament, s’ha unificat la notació amb l’objectiu que aquesta sigui consistent i comparable entre els diferents algorismes implementats al llarg d’aquest treball. Els capítols 3 i 4 se centren en la realització d’estudis Monte Carlo (MC) extensos que confirmen l’eficiència de la metodologia de filtratge de partícules per estimar els estats latents d’un procés dinàmic formulat en forma d’espai d’estat, sigui lineal o no. Alguns estudis MC complementaris es duen a terme per avaluar diferents aspectes de la metodologia de filtratge de partícules, com ser el problema de la degeneració, l’elecció de l’estratègia de remostreig, el nombre de partícules usades o la grandària de la sèrie temporal. Específicament, el Capítol 3 il·lustra el comportament de la metodologia de filtratge de partícules en un context lineal i gaussià en comparació de l’òptim i exacte filtre de Kalman. La capacitat de filtratge de les quatre variants de filtre de partícules estudiades (SIR, SIRopt, ASIR, KPF; l’últim sent un cas especial de l’algorisme EPF) es va avaluar sobre la base de dos processos de sèries temporals aparentment simples però importants: els anomenats Local Level Model (LLM) i el AR (1) plus noise, que són no estacionari i estacionari, respectivament. Aquest capítol estudia en profunditat temes rellevants dins de l’enfocament adoptat, coml’impacte en l’estimació de la relació entre el senyal i el soroll (SNR: signal-to-noise-ratio, en aquesta tesi), de la longitud de la sèrie temporal i del nombre de partícules. El Capítol 4 avalua i il·lustra el comportament de la metodologia de filtratge de partícules en un context no lineal. En concret, s’utilitza un model d’espai d’estat no lineal, no gaussià i no estacionari pres de la literatura per il·lustrar el comportament de quatre filtres de partícules (SIR, ASIR, EPF, UPF) en contraposició a dos filtres no basats en simulació ben coneguts (EKF, UKF). Aquí es comparen els esquemes de remostreig residual i estratificat i s’avalua l’efecte d’augmentar el nombre de partícules. A la segona part (capítols 5 i 6), es duen a terme també estudis MC extensos, però ara l’objectiu principal és l’estimació simultània dels estats i paràmetres fixos de certsmodels seleccionats. Aquesta àrea de recerca segueix sentmolt activa i és on aquesta tesi hi contribueixmés. El Capítol 5 proveeix una revisió parcial dels mètodes per dur a terme l’estimació simultània dels estats i paràmetres fixos a través de la metodologia de filtratge de partícules. Aquests filtres són una extensió d’aquells adoptats anteriorment només per estimar els estats. Aquí es realitza un estudi MC per estimar l’estat (nivell) i els dos paràmetres de variància del model LLM no estacionari; s’utilitzen quatre variants (LW, SIRJ, SIRoptJ, KPFJ) de filtre de partícules, sis escenaris típics del SNR i dos escenaris per a l’anomenat factor de descompte necessari en el pas de diversificació. En aquest capítol, es proposa la variant de filtre de partícules SIRJ (Sample Importance Resampling with Jittering) com a alternativa al filtre de referència de Liu iWest (LWPF). També es proposa i explora l’ús combinat d’una distribució d’importància basada en el filtre de Kalman i un pas de diversificació (jittering) que dóna lloc a la variant del filtre de partícules anomenada Kalman Particle Filteringwith Jittering (KPFJ). El Capítol 6 se centra en l’estimació dels estats i dels paràmetres fixos delmodel bàsic no estàndard de volatilitat estocàstica denominat Stochastic autoregressive model of order one: SARV (1). Després d’una introducció i descripció detallada de les característiques pròpies de sèries temporals financeres, es demostra mitjançant estudis MC la capacitat d’estimació de dues variants de filtre de partícules (SIRJ vs. LW(Liu iWest)) utilitzant dades simulades. El capítol acaba amb una aplicació a dos conjunts de dades reals dins de l’àrea financera: l’índex de rendiments espanyol IBEX 35 i els preus al comptat (en dòlars) del Brent europeu. La contribució en els capítols 5 i 6 consisteix en proposar noves variants de filtres de partícules, compoden ser el KPFJ, el SIRJ i el SIRoptJ (un cas especial de l’algorisme SIRJ utilitzant una distribució d’importància òptima) que s’han desenvolupat al llarg d’aquest treball. També se suggereix que els anomenats filtres de partícules EPFJ (Extended Particle Filter with Jittering) i UPFJ (Unscented Particle Filter with Jittering) podrien ser opcions raonables quan es tracta de models altament no lineals; el KPFJ sent un cas especial de l’algorisme EPFJ. En aquesta part, també es tracten aspectes rellevants dins de la metodologia de filtratge de partícules, com ser l’impacte potencial en l’estimació de la longitud de la sèrie temporal, el paràmetre de factor de descompte i el nombre de partícules. Al llarg d’aquest treball s’han escrit (i implementat en el llenguatge R) els pseudo-codis per a tots els filtres estudiats. Els resultats presentats s’obtenenmitjançant simulacionsMonte Carlo (MC) extenses, tenint en compte variats escenaris descrits en la tesi. Les característiques intrínseques del model baix estudi van guiar l’elecció dels filtres a comparar en cada situació específica. Amés, la comparació dels filtres es basa en el RMSE (RootMean Square Error), el temps de CPU i el grau de degeneració. Finalment, el Capítol 7 presenta la discussió, les contribucions i les línies futures de recerca. Alguns aspectes teòrics i pràctics complementaris es presenten en els apèndixs.
La estimación secuencial de los estados (filtrado) y la correspondiente estimación simultánea de los estados y los parámetros fijos de un modelo dinámico formulado en forma de espacio de estado –sea lineal o no– constituye un problema de relevada importancia enmuchos campos, como ser en el área de finanzas. El objetivo principal de esta tesis es el de estimar secuencialmente y de manera eficiente –desde un punto de vista bayesiano y usando la metodología de filtrado de partículas– los estados y/o los parámetros fijos de un modelo de espacio de estado dinámico no estándar: posiblemente no lineal, no gaussiano o no estacionario. El presente trabajo consta de 7 capítulos y se organiza en dos partes. El Capítulo 1 introduce conceptos básicos, la motivación, el propósito y la estructura de la tesis. La primera parte de esta tesis (capítulos 2 a 4) se centra únicamente en la estimación de los estados. El Capítulo 2 presenta una revisión exhaustiva de los algoritmos más clásicos no basados en simulaciones (KF, EKF,UKF3) y los basados en simulaciones (SIS, SIR, ASIR, EPF, UPF). Para todos estos filtros, mencionados en la literatura, además de describirlos en detalle, se ha unificado la notación con el objetivo de que ésta sea consistente y comparable entre los diferentes algoritmos implementados a lo largo de este trabajo. Los capítulos 3 y 4 se centran en la realización de estudios Monte Carlo (MC) extensos que confirman la eficiencia de la metodología de filtrado de partículas para estimar los estados latentes de un proceso dinámico formulado en forma de espacio de estado, sea lineal o no. Algunos estudios MC complementarios se llevan a cabo para evaluar varios aspectos de la metodología de filtrado de partículas, como ser el problema de la degeneración, la elección de la estrategia de remuestreo, el número de partículas usadas o el tamaño de la serie temporal. Específicamente, el Capítulo 3 ilustra el comportamiento de lametodología de filtrado de partículas en un contexto lineal y gaussiano en comparación con el óptimo y exacto filtro de Kalman. La capacidad de filtrado de las cuatro variantes de filtro de partículas estudiadas (SIR, SIRopt, ASIR, KPF; el último siendo un caso especial del algoritmo EPF) se evaluó en base a dos procesos de series temporales aparentemente simples pero importantes: los denominados Local Level Model (LLM) y el AR (1) plus noise, que son no estacionario y estacionario, respectivamente. Este capítulo estudia en profundidad temas relevantes dentro del enfoque adoptado, como el impacto en la estimación de la relación entre la señal y el ruido (SNR: signal-to-noise-ratio, en esta tesis), de la longitud de la serie temporal y del número de partículas. El Capítulo 4 evalúa e ilustra el comportamiento de la metodología de filtrado de partículas en un contexto no lineal. En concreto, se utiliza un modelo de espacio de estado no lineal, no gaussiano y no estacionario tomado de la literatura para ilustrar el comportamiento de cuatro filtros de partículas (SIR, ASIR, EPF, UPF) en contraposición a dos filtros no basados en simulación bien conocidos (EKF, UKF). Aquí se comparan los esquemas de remuestreo residual y estratificado y se evalúa el efecto de aumentar el número de partículas. En la segunda parte (capítulos 5 y 6), se llevan a cabo también estudios MC extensos, pero ahora el objetivo principal es la estimación simultánea de los estados y parámetros fijos de ciertos modelos seleccionados. Esta área de investigación sigue siendo muy activa y es donde esta tesis contribuye más. El Capítulo 5 provee una revisión parcial de losmétodos para llevar a cabo la estimación simultánea de los estados y parámetros fijos a través de lametodología de filtrado de partículas. Dichos filtros son una extensión de aquellos adoptados anteriormente sólo para estimar los estados. Aquí se realiza un estudio MC para estimar el estado (nivel) y los dos parámetros de varianza del modelo LLM no estacionario; se utilizan cuatro variantes (LW, SIRJ, SIRoptJ, KPFJ) de filtro de partículas, seis escenarios típicos del SNR y dos escenarios para el llamado factor de descuento necesario en el paso de diversificación. En este capítulo, se propone la variante de filtro de partículas SIRJ (Sample Importance resampling with Jittering) como alternativa al filtro de referencia de Liu y West (LW PF). También se propone y explora el uso combinado de una distribución de importancia basada en el filtro de Kalman y un paso de diversificación (jittering) que da lugar a la variante del filtro de partículas denominada Kalman Particle Filteringwith Jittering (KPFJ). El Capítulo 6 se centra en la estimación de los estados y de los parámetros fijos del modelo básico no estándar de volatilidad estocástica denominado Stochastic autoregressivemodel of order one: SARV (1). Después de una introducción y descripción detallada de las características propias de series temporales financieras, se demuestra mediante estudios MC la capacidad de estimación de dos variantes de filtro de partículas (SIRJ vs. LW (Liu y West)) utilizando datos simulados. El capítulo termina con una aplicación a dos conjuntos de datos reales dentro del área financiera: el índice de rendimientos español IBEX 35 y los precios al contado (en dólares) del Brent europeo. La contribución en los capítulos 5 y 6 consiste en proponer nuevas variantes de filtros de partículas, como pueden ser el KPFJ, el SIRJ y el SIRoptJ (Caso especial del algoritmo SIRJ utilizando una distribución de importancia óptima) que se han desarrollado a lo largo de este trabajo. También se sugiere que los llamados filtros de partículas EPFJ (Extended Particle Filter with Jittering) y UPFJ (Unscented Particle Filter with Jittering) podrían ser opciones razonables cuando se trata de modelos altamente no lineales; el KPFJ siendo un caso especial del algoritmo EPFJ. En esta parte, también se tratan aspectos relevantes dentro de lametodología de filtrado de partículas, como ser el impacto potencial en la estimación de la longitud de la serie temporal, el parámetro de factor de descuento y el número de partículas. A lo largo de este trabajo se han escrito (e implementado en el lenguaje R) los pseudo-códigos para todos los filtros estudiados. Los resultados presentados se obtienen mediante simulaciones Monte Carlo (MC) extensas, teniendo en cuenta variados escenarios descritos en la tesis. Las características intrínsecas del modelo bajo estudio guiaron la elección de los filtros a comparar en cada situación específica. Además, la comparación de los filtros se basa en el RMSE (Root Mean Square Error), el tiempo de CPU y el grado de degeneración. Finalmente, el Capítulo 7 presenta la discusión, las contribuciones y las líneas futuras de investigación. Algunos aspectos teóricos y prácticos complementarios se presentan en los apéndices.
Creal, Drew D. "Essays in sequential Monte Carlo methods for economics and finance /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/7444.
Full textPetrov, Nikolay. "Sequential Monte Carlo methods for extended and group object tracking." Thesis, Lancaster University, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.658087.
Full textHuggins, Jonathan H. (Jonathan Hunter). "An information-theoretic analysis of resampling in Sequential Monte Carlo." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/91033.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
29
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (pages 56-57).
Sequential Monte Carlo (SMC) methods form a popular class of Bayesian inference algorithms. While originally applied primarily to state-space models, SMC is increasingly being used as a general-purpose Bayesian inference tool. Traditional analyses of SMC algorithms focus on their usage for approximating expectations with respect to the posterior of a Bayesian model. However, these algorithms can also be used to obtain approximate samples from the posterior distribution of interest. We investigate the asymptotic and non-asymptotic properties of SMC from this sampling viewpoint. Let P be a distribution of interest, such as a Bayesian posterior, and let P be a random estimator of P generated by an SMC algorithm. We study ... i.e., the law of a sample drawn from P, as the number of particles tends to infinity. We give convergence rates of the Kullback-Leibler divergence KL ... as well as necessary and sufficient conditions for the resampled version of P to asymptotically dominate the non-resampled version from this KL divergence perspective. Versions of these results are given for both the full joint and the filtering settings. In the filtering case we also provide time-uniform bounds under a natural mixing condition. Our results open up the possibility of extending recent analyses of adaptive SMC algorithms for expectation approximation to the sampling setting.
by Jonathan H. Huggins.
S.M.
Johansen, Adam Michael. "Some non-standard sequential Monte Carlo methods and their applications." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612877.
Full textYU, LIJUN. "Sequential Monte Carlo for Estimating Brain Activity from MEG Data." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1459528441.
Full textWigren, Anna. "Exploiting conjugacy in state-space models with sequential Monte Carlo." Licentiate thesis, Uppsala universitet, Avdelningen för systemteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-429236.
Full textNguyen, Thi Le Thu. "Sequential Monte-Carlo sampler for Bayesian inference in complex systems." Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10058/document.
Full textIn many problems, complex non-Gaussian and/or nonlinear models are required to accurately describe a physical system of interest. In such cases, Monte Carlo algorithms are remarkably flexible and extremely powerful to solve such inference problems. However, in the presence of high-dimensional and/or multimodal posterior distribution, standard Monte-Carlo techniques could lead to poor performance. In this thesis, the study is focused on Sequential Monte-Carlo Sampler, a more robust and efficient Monte Carlo algorithm. Although this approach presents many advantages over traditional Monte-Carlo methods, the potential of this emergent technique is however largely underexploited in signal processing. In this thesis, we therefore focus our study on this technique by aiming at proposing some novel strategies that will improve the efficiency and facilitate practical implementation of the SMC sampler. Firstly, we propose an automatic and adaptive strategy that selects the sequence of distributions within the SMC sampler that approximately minimizes the asymptotic variance of the estimator of the posterior normalization constant. Secondly, we present an original contribution in order to improve the global efficiency of the SMC sampler by introducing some correction mechanisms that allow the use of the particles generated through all the iterations of the algorithm (instead of only particles from the last iteration). Finally, to illustrate the usefulness of such approaches, we apply the SMC sampler integrating our proposed improvement strategies to two challenging practical problems: Multiple source localization in wireless sensor networks and Bayesian penalized regression
Dahlin, Johan. "Sequential Monte Carlo for inference in nonlinear state space models." Licentiate thesis, Linköpings universitet, Reglerteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-106752.
Full textBrasnett, Paul. "Sequential Monte-Carlo methods for object tracking and replacement in video." Thesis, University of Bristol, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442196.
Full textChen, Wen-shiang. "Bayesian estimation by sequential Monte Carlo sampling for nonlinear dynamic systems." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1086146309.
Full textTitle from first page of PDF file. Document formatted into pages; contains xiv, 117 p. : ill. (some col.). Advisors: Bhavik R. Bakshi and Prem K. Goel, Department of Chemical Engineering. Includes bibliographical references (p. 114-117).
Kuhlenschmidt, Bernd. "On the stability of sequential Monte Carlo methods for parameter estimation." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709098.
Full textNemeth, Christopher. "Parameter estimation for state space models using sequential Monte Carlo algorithms." Thesis, Lancaster University, 2014. http://eprints.lancs.ac.uk/71713/.
Full textGassama, Edrissa. "PIEZOELECTRIC INVERSE PROBLEMS WITH RESONANCE DATA: A SEQUENTIAL MONTE CARLO ANALYSIS." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1396623563.
Full textSkrivanek, Zachary. "Sequential Imputation and Linkage Analysis." The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1039121487.
Full textSpengler, Martin Spengler Martin. "On the applicability of sequential Monte Carlo methods to multiple target tracking /." [S.l.] : [s.n.], 2005. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=16112.
Full text