Journal articles on the topic 'Sequential Monte Carlo Filter'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Sequential Monte Carlo Filter.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hanif, Ayub, and Robert Elliott Smith. "State Space Modeling & Bayesian Inference with Computational Intelligence." New Mathematics and Natural Computation 11, no. 01 (March 2015): 71–101. http://dx.doi.org/10.1142/s1793005715500040.
Full textDu, Yun Ming, Bing Bing Yan, and Yong Cheng Jiang. "Face Tracking Algorithm Based on Sequential Monte Carlo Filter." Advanced Materials Research 430-432 (January 2012): 1777–81. http://dx.doi.org/10.4028/www.scientific.net/amr.430-432.1777.
Full textKitagawa, Genshiro. "Computational aspects of sequential Monte Carlo filter and smoother." Annals of the Institute of Statistical Mathematics 66, no. 3 (March 4, 2014): 443–71. http://dx.doi.org/10.1007/s10463-014-0446-0.
Full textCong-An, Xu, Xu Congqi, Dong Yunlong, Xiong Wei, Chai Yong, and Li Tianmei. "A Novel Sequential Monte Carlo-Probability Hypothesis Density Filter for Particle Impoverishment Problem." Journal of Computational and Theoretical Nanoscience 13, no. 10 (October 1, 2016): 6872–77. http://dx.doi.org/10.1166/jctn.2016.5640.
Full textFreitas, J. F. G. de, M. Niranjan, A. H. Gee, and A. Doucet. "Sequential Monte Carlo Methods to Train Neural Network Models." Neural Computation 12, no. 4 (April 1, 2000): 955–93. http://dx.doi.org/10.1162/089976600300015664.
Full textHong Yoon, Ju, Du Yong Kim, and Kuk-Jin Yoon. "Efficient importance sampling function design for sequential Monte Carlo PHD filter." Signal Processing 92, no. 9 (September 2012): 2315–21. http://dx.doi.org/10.1016/j.sigpro.2012.01.010.
Full textPulido, Manuel, and Peter Jan van Leeuwen. "Sequential Monte Carlo with kernel embedded mappings: The mapping particle filter." Journal of Computational Physics 396 (November 2019): 400–415. http://dx.doi.org/10.1016/j.jcp.2019.06.060.
Full textBeskos, Alexandros, Dan Crisan, Ajay Jasra, Kengo Kamatani, and Yan Zhou. "A stable particle filter for a class of high-dimensional state-space models." Advances in Applied Probability 49, no. 1 (March 2017): 24–48. http://dx.doi.org/10.1017/apr.2016.77.
Full textAhmed, Imtiaz. "Dolphin Whistle Track Estimation Using Sequential Monte Carlo Probability Hypothesis Density Filter." Dhaka University Journal of Science 62, no. 1 (February 7, 2015): 17–20. http://dx.doi.org/10.3329/dujs.v62i1.21954.
Full textThulin, Kristian, Geir Nævdal, Hans Julius Skaug, and Sigurd Ivar Aanonsen. "Quantifying Monte Carlo Uncertainty in the Ensemble Kalman Filter." SPE Journal 16, no. 01 (October 27, 2010): 172–82. http://dx.doi.org/10.2118/123611-pa.
Full textHeine, Kari, and Dan Crisan. "Uniform approximations of discrete-time filters." Advances in Applied Probability 40, no. 04 (December 2008): 979–1001. http://dx.doi.org/10.1017/s0001867800002937.
Full textHeine, Kari, and Dan Crisan. "Uniform approximations of discrete-time filters." Advances in Applied Probability 40, no. 4 (December 2008): 979–1001. http://dx.doi.org/10.1239/aap/1231340161.
Full textNoh, S. J., Y. Tachikawa, M. Shiiba, and S. Kim. "Applying sequential Monte Carlo methods into a distributed hydrologic model: lagged particle filtering approach with regularization." Hydrology and Earth System Sciences Discussions 8, no. 2 (April 4, 2011): 3383–420. http://dx.doi.org/10.5194/hessd-8-3383-2011.
Full textFinke, Axel, Arnaud Doucet, and Adam M. Johansen. "Limit theorems for sequential MCMC methods." Advances in Applied Probability 52, no. 2 (June 2020): 377–403. http://dx.doi.org/10.1017/apr.2020.9.
Full textHiranmayi, Penumarty, Kola Sai Gowtham, S. Koteswara Rao, and V. Gopi Tilak. "Tracking of pendulum using particle filter with residual resampling." International Journal of Engineering & Technology 7, no. 2.7 (March 18, 2018): 12. http://dx.doi.org/10.14419/ijet.v7i2.7.10246.
Full textLian, Feng, Chen Li, Chongzhao Han, and Hui Chen. "Convergence Analysis for the SMC-MeMBer and SMC-CBMeMBer Filters." Journal of Applied Mathematics 2012 (2012): 1–25. http://dx.doi.org/10.1155/2012/584140.
Full textStordal, Andreas S., and Hans A. Karlsen. "Large Sample Properties of the Adaptive Gaussian Mixture Filter." Monthly Weather Review 145, no. 7 (July 2017): 2533–53. http://dx.doi.org/10.1175/mwr-d-15-0372.1.
Full textNoh, S. J., Y. Tachikawa, M. Shiiba, and S. Kim. "Applying sequential Monte Carlo methods into a distributed hydrologic model: lagged particle filtering approach with regularization." Hydrology and Earth System Sciences 15, no. 10 (October 25, 2011): 3237–51. http://dx.doi.org/10.5194/hess-15-3237-2011.
Full textKim, Sangil, and Jeong-Soo Park. "Sequential Monte Carlo filters for abruptly changing state estimation." Probabilistic Engineering Mechanics 26, no. 2 (April 2011): 194–201. http://dx.doi.org/10.1016/j.probengmech.2010.07.010.
Full textPeralta-Cabezas, J. L., M. Torres-Torriti, and M. Guarini-Hermann. "A comparison of Bayesian prediction techniques for mobile robot trajectory tracking." Robotica 26, no. 5 (September 2008): 571–85. http://dx.doi.org/10.1017/s0263574708004153.
Full textInfante, Saba, Luis Sánchez, Aracelis Hernández, and José Marcano. "Sequential Monte Carlo Filters with Parameters Learning for Commodity Pricing Models." Statistics, Optimization & Information Computing 9, no. 3 (June 22, 2021): 694–716. http://dx.doi.org/10.19139/soic-2310-5070-814.
Full textSong, Bin, Enqi Liang, and Bing Liu. "American Option Pricing Using Particle Filtering Under Stochastic Volatility Correlated Jump Model." Journal of Systems Science and Information 2, no. 6 (December 25, 2014): 505–19. http://dx.doi.org/10.1515/jssi-2014-0505.
Full textJiang, Tong-yang, Mei-qin Liu, Xie Wang, and Sen-lin Zhang. "An efficient measurement-driven sequential Monte Carlo multi-Bernoulli filter for multi-target filtering." Journal of Zhejiang University SCIENCE C 15, no. 6 (June 2014): 445–57. http://dx.doi.org/10.1631/jzus.c1400025.
Full textLi, Jiahao, Joaquin Klee Barillas, Clemens Guenther, and Michael A. Danzer. "Multicell state estimation using variation based sequential Monte Carlo filter for automotive battery packs." Journal of Power Sources 277 (March 2015): 95–103. http://dx.doi.org/10.1016/j.jpowsour.2014.12.010.
Full textShi, Shengxian, and Daoyi Chen. "Enhancing particle image tracking performance with a sequential Monte Carlo method: The bootstrap filter." Flow Measurement and Instrumentation 22, no. 3 (June 2011): 190–200. http://dx.doi.org/10.1016/j.flowmeasinst.2011.02.001.
Full textYuan, Xianghui, Feng Lian, and Chongzhao Han. "Multiple-Model Cardinality Balanced Multitarget Multi-Bernoulli Filter for Tracking Maneuvering Targets." Journal of Applied Mathematics 2013 (2013): 1–16. http://dx.doi.org/10.1155/2013/727430.
Full textQi, Wen Juan, Peng Zhang, Zi Li Deng, and Yuan Gao. "Multisensor Covariance Intersection Fusion Kalman Filters." Applied Mechanics and Materials 373-375 (August 2013): 946–52. http://dx.doi.org/10.4028/www.scientific.net/amm.373-375.946.
Full textErgun, Ayla, Riccardo Barbieri, Uri T. Eden, Matthew A. Wilson, and Emery N. Brown. "Construction of Point Process Adaptive Filter Algorithms for Neural Systems Using Sequential Monte Carlo Methods." IEEE Transactions on Biomedical Engineering 54, no. 3 (March 2007): 419–28. http://dx.doi.org/10.1109/tbme.2006.888821.
Full textDanis, F. Serhan, A. Taylan Cemgil, and Cem Ersoy. "Adaptive Sequential Monte Carlo Filter for Indoor Positioning and Tracking With Bluetooth Low Energy Beacons." IEEE Access 9 (2021): 37022–38. http://dx.doi.org/10.1109/access.2021.3062818.
Full textKamsing, Patcharin, Peerapong Torteeka, Wuttichai Boonpook, and Chunxiang Cao. "Deep Neural Learning Adaptive Sequential Monte Carlo for Automatic Image and Speech Recognition." Applied Computational Intelligence and Soft Computing 2020 (October 7, 2020): 1–9. http://dx.doi.org/10.1155/2020/8866259.
Full textStroud, Jonathan R., and Thomas Bengtsson. "Sequential State and Variance Estimation within the Ensemble Kalman Filter." Monthly Weather Review 135, no. 9 (September 1, 2007): 3194–208. http://dx.doi.org/10.1175/mwr3460.1.
Full textCemgil, A. T., and B. Kappen. "Monte Carlo Methods for Tempo Tracking and Rhythm Quantization." Journal of Artificial Intelligence Research 18 (January 1, 2003): 45–81. http://dx.doi.org/10.1613/jair.1121.
Full textZhang, Jungen. "Bearings-only multitarget tracking based onRao-Blackwellized particle CPHD filter." International Journal of Circuits, Systems and Signal Processing 14 (January 13, 2021): 1129–36. http://dx.doi.org/10.46300/9106.2020.14.141.
Full textWang, Yiwen, António R. C. Paiva, José C. Príncipe, and Justin C. Sanchez. "Sequential Monte Carlo Point-Process Estimation of Kinematics from Neural Spiking Activity for Brain-Machine Interfaces." Neural Computation 21, no. 10 (October 2009): 2894–930. http://dx.doi.org/10.1162/neco.2009.01-08-699.
Full textIltis, R. A. "A sequential monte carlo filter for joint linear/nonlinear state estimation with application to DS-CDMA." IEEE Transactions on Signal Processing 51, no. 2 (February 2003): 417–26. http://dx.doi.org/10.1109/tsp.2002.806995.
Full textMa, Dongdong, Feng Lian, and Jing Liu. "Sequential Monte Carlo implementation of cardinality balanced multi‐target multi‐Bernoulli filter for extended target tracking." IET Radar, Sonar & Navigation 10, no. 2 (February 2016): 272–77. http://dx.doi.org/10.1049/iet-rsn.2015.0081.
Full textBarbary, Mohamed, and Mohamed H. Abd El-Azeem. "Track-before-detect for complex extended targets based sequential monte carlo Mb-sub-random matrices filter." Multidimensional Systems and Signal Processing 32, no. 3 (February 6, 2021): 863–96. http://dx.doi.org/10.1007/s11045-021-00762-3.
Full textMartínez-Barberá, Humberto, Pablo Bernal-Polo, and David Herrero-Pérez. "Sensor Modeling for Underwater Localization Using a Particle Filter." Sensors 21, no. 4 (February 23, 2021): 1549. http://dx.doi.org/10.3390/s21041549.
Full textJamal, Alaa, and Raphael Linker. "Genetic Operator-Based Particle Filter Combined with Markov Chain Monte Carlo for Data Assimilation in a Crop Growth Model." Agriculture 10, no. 12 (December 7, 2020): 606. http://dx.doi.org/10.3390/agriculture10120606.
Full textMa, Junkai, Haibo Luo, Bin Hui, and Zheng Chang. "Robust Scale Adaptive Tracking by Combining Correlation Filters with Sequential Monte Carlo." Sensors 17, no. 3 (March 4, 2017): 512. http://dx.doi.org/10.3390/s17030512.
Full textKang, Chang Ho, and Chan Gook Park. "Particles resampling scheme using regularized optimal transport for sequential Monte Carlo filters." International Journal of Adaptive Control and Signal Processing 32, no. 10 (August 2, 2018): 1393–402. http://dx.doi.org/10.1002/acs.2918.
Full textLi, Jiahao, Joaquin Klee Barillas, Clemens Guenther, and Michael A. Danzer. "Sequential Monte Carlo filter for state estimation of LiFePO 4 batteries based on an online updated model." Journal of Power Sources 247 (February 2014): 156–62. http://dx.doi.org/10.1016/j.jpowsour.2013.08.099.
Full textZhang, Jian, and Ling Shen. "Applied Technology in an Adaptive Particle Filter Based on Interval Estimation and KLD-Resampling." Advanced Materials Research 1014 (July 2014): 452–58. http://dx.doi.org/10.4028/www.scientific.net/amr.1014.452.
Full textGong, Yang, and Chen Cui. "A Robust SMC-PHD Filter for Multi-Target Tracking with Unknown Heavy-Tailed Measurement Noise." Sensors 21, no. 11 (May 22, 2021): 3611. http://dx.doi.org/10.3390/s21113611.
Full textWu, Wei Hua, Jing Jiang, Chong Yang Liu, and Xiong Hua Fan. "Fast Gaussian Mixture Probability Hypothesis Density Filter." Applied Mechanics and Materials 568-570 (June 2014): 550–56. http://dx.doi.org/10.4028/www.scientific.net/amm.568-570.550.
Full textWang, Sen, Qinglong Bao, and Zengping Chen. "Refined PHD Filter for Multi-Target Tracking under Low Detection Probability." Sensors 19, no. 13 (June 26, 2019): 2842. http://dx.doi.org/10.3390/s19132842.
Full textWang, Dong, Shilong Sun, and Peter W. Tse. "A general sequential Monte Carlo method based optimal wavelet filter: A Bayesian approach for extracting bearing fault features." Mechanical Systems and Signal Processing 52-53 (February 2015): 293–308. http://dx.doi.org/10.1016/j.ymssp.2014.07.005.
Full textZhou, Junchuan, Stefan Knedlik, and Otmar Loffeld. "INS/GPS Tightly-coupled Integration using Adaptive Unscented Particle Filter." Journal of Navigation 63, no. 3 (May 28, 2010): 491–511. http://dx.doi.org/10.1017/s0373463310000068.
Full textPoterjoy, Jonathan, Louis Wicker, and Mark Buehner. "Progress toward the Application of a Localized Particle Filter for Numerical Weather Prediction." Monthly Weather Review 147, no. 4 (March 20, 2019): 1107–26. http://dx.doi.org/10.1175/mwr-d-17-0344.1.
Full textDong, Guangzhong, Zonghai Chen, and Jingwen Wei. "Sequential Monte Carlo Filter for State-of-Charge Estimation of Lithium-Ion Batteries Based on Auto Regressive Exogenous Model." IEEE Transactions on Industrial Electronics 66, no. 11 (November 2019): 8533–44. http://dx.doi.org/10.1109/tie.2018.2890499.
Full text