To see the other types of publications on this topic, follow the link: Séries temporelles d'images satellites.

Dissertations / Theses on the topic 'Séries temporelles d'images satellites'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 32 dissertations / theses for your research on the topic 'Séries temporelles d'images satellites.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Petitjean, François. "Dynamic time warping : apports théoriques pour l'analyse de données temporelles : application à la classification de séries temporelles d'images satellites." Thesis, Strasbourg, 2012. http://www.theses.fr/2012STRAD023.

Full text
Abstract:
Les séries temporelles d’images satellites (STIS) sont des données cruciales pour l’observation de la terre. Les séries temporelles actuelles sont soit des séries à haute résolution temporelle (Spot-Végétation, MODIS), soit des séries à haute résolution spatiale (Landsat). Dans les années à venir, les séries temporelles d’images satellites à hautes résolutions spatiale et temporelle vont être produites par le programme Sentinel de l’ESA. Afin de traiter efficacement ces immenses quantités de données qui vont être produites (par exemple, Sentinel-2 couvrira la surface de la terre tous les cinq jours, avec des résolutions spatiales allant de 10m à 60m et disposera de 13 bandes spectrales), de nouvelles méthodes ont besoin d’être développées. Cette thèse se focalise sur la comparaison des profils d’évolution radiométrique, et plus précisément la mesure de similarité « Dynamic Time Warping », qui constitue un outil permettant d’exploiter la structuration temporelle des séries d’images satellites
Satellite Image Time Series are becoming increasingly available and will continue to do so in the coming years thanks to the launch of space missions, which aim at providing a coverage of the Earth every few days with high spatial resolution (ESA’s Sentinel program). In the case of optical imagery, it will be possible to produce land use and cover change maps with detailed nomenclatures. However, due to meteorological phenomena, such as clouds, these time series will become irregular in terms of temporal sampling. In order to consistently handle the huge amount of information that will be produced (for instance, Sentinel-2 will cover the entire Earth’s surface every five days, with 10m to 60m spatial resolution and 13 spectral bands), new methods have to be developed. This Ph.D. thesis focuses on the “Dynamic Time Warping” similarity measure, which is able to take the most of the temporal structure of the data, in order to provide an efficient and relevant analysis of the remotely observed phenomena
APA, Harvard, Vancouver, ISO, and other styles
2

Bellet, Valentine. "Intelligence artificielle appliquée aux séries temporelles d'images satellites pour la surveillance des écosystèmes." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES013.

Full text
Abstract:
Dans un contexte de changement climatique, la surveillance des écosystèmes est une mission essentielle. En effet, cela permet de mieux comprendre les changements qui peuvent affecter les écosystèmes mais aussi de prendre des décisions en conséquence afin de préserver les générations actuelles et futures. Les cartes d'occupations du sol sont un outil indispensable en fournissant des informations sur les différents types de couverture physique de la surface de la Terre (e.g. forêts, prairies, terres agricoles). Actuellement, un nombre accru de missions satellites fournissent un volume important de données gratuites et librement accessibles. Les séries temporelles d'images satellites (SITS), dont celles de Sentinel-2, notamment grâce à leurs très hautes résolutions, informent sur la dynamique de la végétation. Des algorithmes d'apprentissage automatique permettent de produire de manière fréquente et régulière des cartes d'occupations du sol à partir de SITS. L'objectif de cette thèse est le développement d'algorithmes de classification supervisée pour la production de cartes d'occupations du sol à grande échelle. Dans un contexte opérationnel, quatre principaux défis se dégagent. Le premier concerne le volume important de données que les algorithmes doivent être capables de gérer. Le second est lié à la prise en compte des corrélations entre les variables spectro-temporelles et leur extraction pour la classification. Le troisième, quant à lui, correspond à la prise en compte de la variabilité spatiale: dans des zones géographiques étendues, la donnée n'est pas stationnaire. Enfin, le quatrième défi concerne l'utilisation de SITS irrégulièrement échantillonnées et non alignées, principalement du aux conditions météorologiques (e.g. nuages) ou à des dates d'acquisitions différentes entre deux orbites. Cette thèse est divisée en deux contributions principales. La première contribution concerne la mise en place de processus gaussiens stochastiques variationnels (SVGP) pour des SITS à grande échelle. Des millions d'échantillons peuvent être utilisés pour l'apprentissage, au lieu de quelques milliers pour les processus gaussiens (GP) traditionnels. Des combinaisons de fonctions de covariances ont été mis en place permettant notamment de prendre en compte l'information spatiale et d'être plus robuste vis à vis de la variabilité spatiale. Cependant, les SITS sont ré-échantillonnés linéairement indépendamment de la tâche de classification. La deuxième contribution concerne donc la mise en place d'un ré-échantillonnage optimisé pour la tâche de classification. Un interpolateur à noyau prenant en compte l'information spatiale permet de produire une représentation latente qui est donnée à notre SVGP. Les expérimentations ont été menées avec les SITS de Sentinel-2 pour l'ensemble de l'année 2018 sur une zone d'environ 200 000 km^2(environ 2 milliards de pixels) dans le sud de la France (27 tuiles MGRS). Ce dispositif expérimental est représentatif d'un cadre opérationnel. Les résultats obtenus montrent que les modèles issus des deux contributions sont plus performants que la méthode utilisée pour les systèmes opérationnels actuels (i.e. forêts d'arbres aléatoires avec des SITS linéairement ré-échantillonnées utilisant la stratification spatiale)
In the context of climate change, ecosystem monitoring is a crucial task. It allows to better understand the changes that affect them and also enables decision-making to preserve them for current and future generations. Land use and land cover (LULC) maps are an essential tool in ecosystem monitoring providing information on different types of physical cover of the Earth's surface (e.g. forests, grasslands, croplands). Nowadays, an increasing number of satellite missions generate huge amounts of free and open data. In particular, satellite image time series (SITS), such as the ones produced by Sentinel-2, offer high temporal, spectral and spatial resolutions and provide relevant information about vegetation dynamics. Combined with machine learning algorithms, they allow the production of frequent and accurate LULC maps. This thesis is focused on the development of pixel-based supervised classification algorithms for the production of LULC maps at large scale. Four main challenges arise in an operational context. Firstly, unprecedented amounts of data are available and the algorithms need to be adapted accordingly. Secondly, with the improvement in spatial, spectral and temporal resolutions, the algorithms should be able to take into account correlations between the spectro-temporal features to extract meaningful representations for the purpose of classification. Thirdly, in wide geographical coverage, the problem of non-stationarity of the data arises, therefore the algorithms should be able to take into account this spatial variability. Fourthly, because of the different satellite orbits or meteorological conditions, the acquisition times are irregular and unaligned between pixels, thus, the algorithms should be able to work with irregular and unaligned SITS. This work has been divided into two main parts. The first PhD contribution is the development of stochastic variational Gaussian Processes (SVGP) on massive data sets. The proposed Gaussian Processes (GP) model can be trained with millions of samples, compared to few thousands for traditional GP methods. The spatial and spectro-temporal structure of the data is taken into account thanks to the inclusion of the spatial information in bespoke composite covariance functions. Besides, this development enables to take into account the spatial information and thus to be robust to the spatial variability of the data. However, the time series are linearly resampled independently from the classification. Therefore, the second PhD contribution is the development of an end-to-end learning by combining a time and space informed kernel interpolator with the previous SVGP classifier. The interpolator embeds irregular and unaligned SITS onto a fixed and reduced size latent representation. The obtained latent representation is given to the SVGP classifier and all the parameters are jointly optimized w.r.t. the classification task. Experiments were run with Sentinel-2 SITS of the full year 2018 over an area of 200 000 km^2 (about 2 billion pixels) in the south of France (27 MGRS tiles), which is representative of an operational setting. Results show that both methods (i.e. SVGP classifier with linearly interpolated time series and the spatially kernel interpolator combined with the SVGP classifier) outperform the method used for current operational systems (i.e. Random Forest with linearly interpolated time series using spatial stratification)
APA, Harvard, Vancouver, ISO, and other styles
3

Héas, Patrick. "Apprentissage bayésien de structures spatio-temporelles : application à la fouille visuelle de séries temporelles d'images de satellites." Toulouse, ENSAE, 2005. http://www.theses.fr/2005ESAE0004.

Full text
Abstract:
Durant les dernières décennies, les satellites n'ont cessé d'acquérir des images de haute résolution de beaucoup de sites d'observation de la Terre. De nouveaux produits sont apparus avec ce processus d'acquisition intensif : les séries temporelles d'images satellites de haute résolution. Elles représentent un important volume de données dont le riche contenu informatif est susceptible d'intéresser un large panel d'applications nouvelles. Cette thèse présente un concept de fouille d'information qui permet l'apprentissage de structures spatio-temporelles contenues dans les séquences d'images, l'objectif étant l'interprétation et la recherche probabiliste de phénomènes dans l'espace et le temps. Les connaissances expertes d'un utilisateur conduisent le processus d'apprentissage, via la communication d'exemples et de contre exemples. Les fondements théoriques de ce concept se situent à l'interface de l'inférence bayésienne et entropique, des modèles stochastiques et de la cognition visuelle. Le concept emploie une modélisation hiérarchique bayésienne du contenu des séquences d'images, qui permet de lier les intérêt des utilisateurs aux différentes structures spatio-temporelles. La hiérarchie comprend deux principales phases d'apprentissage : l'inférence non supervisé d'un graphe de trajectoires de clusters dynamiques et, basé sur ce graphe, l'apprentissage interactif d'étiquettes sémantiques associées aux structures spatio-temporelles contenues dans la scène dynamique. Les algorithmes et méthodes développés sont intégrés dans un système de fouille visuelle d'information. Ce système représente un outil entièrement novateur pour l'exploitation du contenu des séries temporelles d'images satellites de haute résolution. Les expériences effectuées avec une série temporelles d'images SPOT démontrent les capacités du système dans la compréhension de scènes dynamiques.
APA, Harvard, Vancouver, ISO, and other styles
4

Dusseux, Pauline. "Exploitation de séries temporelles d'images satellites à haute résolution spatiale pour le suivi des prairies en milieu agricole." Thesis, Rennes 2, 2014. http://www.theses.fr/2014REN20031/document.

Full text
Abstract:
En milieu agricole, on observe depuis plusieurs décennies une régression des prairies ainsi qu’uneévolution de leur mode de gestion liées à l’intensification de l’agriculture. Face aux enjeux que ces changementsimpliquent tant sur le plan environnemental qu’économique, l’estimation de la place des prairies dans les systèmes de production et la détermination des pratiques agricoles qui leur sont associées sont stratégiques. Avec l’arrivée de nouveaux capteurs de télédétection à Haute Résolution Spatiale (HRS) caractérisés par une résolution temporelle élevée, il est désormais possible d’envisager l’étude des couverts prairiaux à une échelle fine et à partir d’observations régulières dans le temps. L’objectif de cette thèse est d’identifier les couverts prairiaux à l’échelle des territoires agricoles et de déterminer leurs modes de gestion à partir de paramètres dérivés de séries temporelles d’images de télédétection à HRS. Pour cela, plusieurs séries intra–annuelles d’images à haute résolution spatiale optiques et radars ont été constituées afin de recenser les prairies et d’identifier trois de leurs modes de gestion : le pâturage, la fauche et l’exploitation mixte, sur un bassin versant dont le système d’exploitation dominant est l’élevage laitier. Les résultats obtenus à partir du traitement et de l’analyse des séries temporelles optiques ont permis de montrer qu’il est possible d’estimer avec une bonne précision la biomasse des prairies, de les identifier et de les caractériser. Ils mettent aussi en évidence le fait que les images radars améliorent l’identification des prairies sans pouvoir discriminer leurs modes de gestion, l’utilisation combinée des deux types d’images augmentant encore le taux d’identification des prairies. Par ailleurs, les résultats montrent que les méthodes de classification s’appuyant sur des critères de comparaison adaptés aux séries temporelles (distances élastiques) produisent des résultats nettement plus satisfaisants pour discriminer les modes de gestion des prairies que les méthodes de classification standards
In agricultural areas, we observed a decrease of grasslands and change in their management in the last half–century, which are commonly associated with agriculture intensification. These changes have affected environmental and economic systems. In this context, the evaluation of grassland status and grassland management in farming systems is a key–issue for sustainable agriculture. With the arrival of new Earth observation sensors with high spatial and temporal resolutions, it is now possible to study grasslands at fine scale using regular observations over time. The objective of this thesis is to identify grasslands and their management practices using parameters derived from time–series of high spatial resolution (HSR) remote sensing data. For that purpose, several intra–annual time series of HSR optical and Synthetic Aperture Radar (SAR) satellite images were acquired in order to identify grasslands and three of their management practices: grazing, mowing and mixed management, on a catchment area mainly oriented towards cattle production. Results obtained from the processing and analysis of the optical time series have shown that it is possible to estimate with good accuracy grassland biomass, to identify and to characterize them. They also highlighted that radar images improve grassland identification without being able to distinguish management practices, the combined use of the two types of images further increasing grassland identification. Furthermore, results showed that the classification methods based on comparison criteria adapted to time series (warping criteria) increase significantly results for discriminating grassland management practices compared to standard classification methods
APA, Harvard, Vancouver, ISO, and other styles
5

Sanchez, Eduardo Hugo. "Learning disentangled representations of satellite image time series in a weakly supervised manner." Thesis, Toulouse 3, 2021. http://www.theses.fr/2021TOU30032.

Full text
Abstract:
Cette thèse se focalise sur l'apprentissage de représentations de séries temporelles d'images satellites via des méthodes d'apprentissage non supervisé. Le but principal est de créer une représentation qui capture l'information la plus pertinente de la série temporelle afin d'effectuer d'autres applications d'imagerie satellite. Cependant, l'extraction d'information à partir de la donnée satellite implique de nombreux défis. D'un côté, les modèles doivent traiter d'énormes volumes d'images fournis par les satellites. D'un autre côté, il est impossible pour les opérateurs humains d'étiqueter manuellement un tel volume d'images pour chaque tâche (par exemple, la classification, la segmentation, la détection de changement, etc.). Par conséquent, les méthodes d'apprentissage supervisé qui ont besoin des étiquettes ne peuvent pas être appliquées pour analyser la donnée satellite. Pour résoudre ce problème, des algorithmes d'apprentissage non supervisé ont été proposés pour apprendre la structure de la donnée au lieu d'apprendre une tâche particulière. L'apprentissage non supervisé est une approche puissante, car aucune étiquette n'est nécessaire et la connaissance acquise sur la donnée peut être transférée vers d'autres tâches permettant un apprentissage plus rapide avec moins d'étiquettes. Dans ce travail, on étudie le problème de l'apprentissage de représentations démêlées de séries temporelles d'images satellites. Le but consiste à créer une représentation partagée qui capture l'information spatiale de la série temporelle et une représentation exclusive qui capture l'information temporelle spécifique à chaque image. On présente les avantages de créer des représentations spatio-temporelles. Par exemple, l'information spatiale est utile pour effectuer la classification ou la segmentation d'images de manière invariante dans le temps tandis que l'information temporelle est utile pour la détection de changement. Pour ce faire, on analyse plusieurs modèles d'apprentissage non supervisé tels que l'auto-encodeur variationnel (VAE) et les réseaux antagonistes génératifs (GANs) ainsi que les extensions de ces modèles pour effectuer le démêlage des représentations. Considérant les résultats impressionnants qui ont été obtenus par les modèles génératifs et reconstructifs, on propose un nouveau modèle qui crée une représentation spatiale et une représentation temporelle de la donnée satellite. On montre que les représentations démêlées peuvent être utilisées pour effectuer plusieurs tâches de vision par ordinateur surpassant d'autres modèles de l'état de l'art. Cependant, nos expériences suggèrent que les modèles génératifs et reconstructifs présentent des inconvénients liés à la dimensionnalité de la représentation, à la complexité de l'architecture et au manque de garanties sur le démêlage. Pour surmonter ces limitations, on étudie une méthode récente basée sur l'estimation et la maximisation de l'informations mutuelle sans compter sur la reconstruction ou la génération d'image. On propose un nouveau modèle qui étend le principe de maximisation de l'information mutuelle pour démêler le domaine de représentation. En plus des expériences réalisées sur la donnée satellite, on montre que notre modèle est capable de traiter différents types de données en étant plus performant que les méthodes basées sur les GANs et les VAEs. De plus, on prouve que notre modèle demande moins de puissance de calcul et pourtant est plus efficace. Enfin, on montre que notre modèle est utile pour créer une représentation qui capture uniquement l'information de classe entre deux images appartenant à la même catégorie. Démêler la classe ou la catégorie d'une image des autres facteurs de variation permet de calculer la similarité entre pixels et effectuer la segmentation d'image d'une manière faiblement supervisée
This work focuses on learning data representations of satellite image time series via an unsupervised learning approach. The main goal is to enforce the data representation to capture the relevant information from the time series to perform other applications of satellite imagery. However, extracting information from satellite data involves many challenges since models need to deal with massive amounts of images provided by Earth observation satellites. Additionally, it is impossible for human operators to label such amount of images manually for each individual task (e.g. classification, segmentation, change detection, etc.). Therefore, we cannot use the supervised learning framework which achieves state-of-the-art results in many tasks.To address this problem, unsupervised learning algorithms have been proposed to learn the data structure instead of performing a specific task. Unsupervised learning is a powerful approach since no labels are required during training and the knowledge acquired can be transferred to other tasks enabling faster learning with few labels.In this work, we investigate the problem of learning disentangled representations of satellite image time series where a shared representation captures the spatial information across the images of the time series and an exclusive representation captures the temporal information which is specific to each image. We present the benefits of disentangling the spatio-temporal information of time series, e.g. the spatial information is useful to perform time-invariant image classification or segmentation while the knowledge about the temporal information is useful for change detection. To accomplish this, we analyze some of the most prevalent unsupervised learning models such as the variational autoencoder (VAE) and the generative adversarial networks (GANs) as well as the extensions of these models to perform representation disentanglement. Encouraged by the successful results achieved by generative and reconstructive models, we propose a novel framework to learn spatio-temporal representations of satellite data. We prove that the learned disentangled representations can be used to perform several computer vision tasks such as classification, segmentation, information retrieval and change detection outperforming other state-of-the-art models. Nevertheless, our experiments suggest that generative and reconstructive models present some drawbacks related to the dimensionality of the data representation, architecture complexity and the lack of disentanglement guarantees. In order to overcome these limitations, we explore a recent method based on mutual information estimation and maximization for representation learning without relying on image reconstruction or image generation. We propose a new model that extends the mutual information maximization principle to disentangle the representation domain into two parts. In addition to the experiments performed on satellite data, we show that our model is able to deal with different kinds of datasets outperforming the state-of-the-art methods based on GANs and VAEs. Furthermore, we show that our mutual information based model is less computationally demanding yet more effective. Finally, we show that our model is useful to create a data representation that only captures the class information between two images belonging to the same category. Disentangling the class or category of an image from other factors of variation provides a powerful tool to compute the similarity between pixels and perform image segmentation in a weakly-supervised manner
APA, Harvard, Vancouver, ISO, and other styles
6

Pelletier, Charlotte. "Cartographie de l'occupation des sols à partir de séries temporelles d'images satellitaires à hautes résolutions : identification et traitement des données mal étiquetées." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30241/document.

Full text
Abstract:
L'étude des surfaces continentales est devenue ces dernières années un enjeu majeur à l'échelle mondiale pour la gestion et le suivi des territoires, notamment en matière de consommation des terres agricoles et d'étalement urbain. Dans ce contexte, les cartes d'occupation du sol caractérisant la couverture biophysique des terres émergées jouent un rôle essentiel pour la cartographie des surfaces continentales. La production de ces cartes sur de grandes étendues s'appuie sur des données satellitaires qui permettent de photographier les surfaces continentales fréquemment et à faible coût. Le lancement de nouvelles constellations satellitaires - Landsat-8 et Sentinel-2 - permet depuis quelques années l'acquisition de séries temporelles à hautes résolutions. Ces dernières sont utilisées dans des processus de classification supervisée afin de produire les cartes d'occupation du sol. L'arrivée de ces nouvelles données ouvre de nouvelles perspectives, mais questionne sur le choix des algorithmes de classification et des données à fournir en entrée du système de classification. Outre les données satellitaires, les algorithmes de classification supervisée utilisent des échantillons d'apprentissage pour définir leur règle de décision. Dans notre cas, ces échantillons sont étiquetés, \ie{} la classe associée à une occupation des sols est connue. Ainsi, la qualité de la carte d'occupation des sols est directement liée à la qualité des étiquettes des échantillons d'apprentissage. Or, la classification sur de grandes étendues nécessite un grand nombre d'échantillons, qui caractérise la diversité des paysages. Cependant, la collecte de données de référence est une tâche longue et fastidieuse. Ainsi, les échantillons d'apprentissage sont bien souvent extraits d'anciennes bases de données pour obtenir un nombre conséquent d'échantillons sur l'ensemble de la surface à cartographier. Cependant, l'utilisation de ces anciennes données pour classer des images satellitaires plus récentes conduit à la présence de nombreuses données mal étiquetées parmi les échantillons d'apprentissage. Malheureusement, l'utilisation de ces échantillons mal étiquetés dans le processus de classification peut engendrer des erreurs de classification, et donc une détérioration de la qualité de la carte produite. L'objectif général de la thèse vise à améliorer la classification des nouvelles séries temporelles d'images satellitaires à hautes résolutions. Le premier objectif consiste à déterminer la stabilité et la robustesse des méthodes de classification sur de grandes étendues. Plus particulièrement, les travaux portent sur l'analyse d'algorithmes de classification et la sensibilité de ces algorithmes vis-à-vis de leurs paramètres et des données en entrée du système de classification. De plus, la robustesse de ces algorithmes à la présence des données imparfaites est étudiée. Le second objectif s'intéresse aux erreurs présentes dans les données d'apprentissage, connues sous le nom de données mal étiquetées. Dans un premier temps, des méthodes de détection de données mal étiquetées sont proposées et étudiées. Dans un second temps, un cadre méthodologique est proposé afin de prendre en compte les données mal étiquetées dans le processus de classification. L'objectif est de réduire l'influence des données mal étiquetées sur les performances de l'algorithme de classification, et donc d'améliorer la carte d'occupation des sols produite
Land surface monitoring is a key challenge for diverse applications such as environment, forestry, hydrology and geology. Such monitoring is particularly helpful for the management of territories and the prediction of climate trends. For this purpose, mapping approaches that employ satellite-based Earth Observations at different spatial and temporal scales are used to obtain the land surface characteristics. More precisely, supervised classification algorithms that exploit satellite data present many advantages compared to other mapping methods. In addition, the recent launches of new satellite constellations - Landsat-8 and Sentinel-2 - enable the acquisition of satellite image time series at high spatial and spectral resolutions, that are of great interest to describe vegetation land cover. These satellite data open new perspectives, but also interrogate the choice of classification algorithms and the choice of input data. In addition, learning classification algorithms over large areas require a substantial number of instances per land cover class describing landscape variability. Accordingly, training data can be extracted from existing maps or specific existing databases, such as crop parcel farmer's declaration or government databases. When using these databases, the main drawbacks are the lack of accuracy and update problems due to a long production time. Unfortunately, the use of these imperfect training data lead to the presence of mislabeled training instance that may impact the classification performance, and so the quality of the produced land cover map. Taking into account the above challenges, this Ph.D. work aims at improving the classification of new satellite image time series at high resolutions. The work has been divided into two main parts. The first Ph.D. goal consists in studying different classification systems by evaluating two classification algorithms with several input datasets. In addition, the stability and the robustness of the classification methods are discussed. The second goal deals with the errors contained in the training data. Firstly, methods for the detection of mislabeled data are proposed and analyzed. Secondly, a filtering method is proposed to take into account the mislabeled data in the classification framework. The objective is to reduce the influence of mislabeled data on the classification performance, and thus to improve the produced land cover map
APA, Harvard, Vancouver, ISO, and other styles
7

Hedhli, Ihsen. "Modèles de classification hiérarchiques d'images satellitaires multi-résolutions, multi-temporelles et multi-capteurs. Application aux désastres naturels." Thesis, Nice, 2016. http://www.theses.fr/2016NICE4006/document.

Full text
Abstract:
Les moyens mis en œuvre pour surveiller la surface de la Terre, notamment les zones urbaines, en cas de catastrophes naturelles telles que les inondations ou les tremblements de terre, et pour évaluer l’impact de ces événements, jouent un rôle primordial du point de vue sociétal, économique et humain. Dans ce cadre, des méthodes de classification précises et efficaces sont des outils particulièrement importants pour aider à l’évaluation rapide et fiable des changements au sol et des dommages provoqués. Étant données l’énorme quantité et la variété des données Haute Résolution (HR) disponibles grâce aux missions satellitaires de dernière génération et de différents types, telles que Pléiades, COSMO-SkyMed ou RadarSat-2 la principale difficulté est de trouver un classifieur qui puisse prendre en compte des données multi-bande, multi-résolution, multi-date et éventuellement multi-capteur tout en gardant un temps de calcul acceptable. Les approches de classification multi-date/multi-capteur et multi-résolution sont fondées sur une modélisation statistique explicite. En fait, le modèle développé consiste en un classifieur bayésien supervisé qui combine un modèle statistique conditionnel par classe intégrant des informations pixel par pixel à la même résolution et un champ de Markov hiérarchique fusionnant l’information spatio-temporelle et multi-résolution, en se basant sur le critère des Modes Marginales a Posteriori (MPM en anglais), qui vise à affecter à chaque pixel l’étiquette optimale en maximisant récursivement la probabilité marginale a posteriori, étant donné l’ensemble des observations multi-temporelles ou multi-capteur
The capabilities to monitor the Earth's surface, notably in urban and built-up areas, for example in the framework of the protection from environmental disasters such as floods or earthquakes, play important roles in multiple social, economic, and human viewpoints. In this framework, accurate and time-efficient classification methods are important tools required to support the rapid and reliable assessment of ground changes and damages induced by a disaster, in particular when an extensive area has been affected. Given the substantial amount and variety of data available currently from last generation very-high resolution (VHR) satellite missions such as Pléiades, COSMO-SkyMed, or RadarSat-2, the main methodological difficulty is to develop classifiers that are powerful and flexible enough to utilize the benefits of multiband, multiresolution, multi-date, and possibly multi-sensor input imagery. With the proposed approaches, multi-date/multi-sensor and multi-resolution fusion are based on explicit statistical modeling. The method combines a joint statistical model of multi-sensor and multi-temporal images through hierarchical Markov random field (MRF) modeling, leading to statistical supervised classification approaches. We have developed novel hierarchical Markov random field models, based on the marginal posterior modes (MPM) criterion, that support information extraction from multi-temporal and/or multi-sensor information and allow the joint supervised classification of multiple images taken over the same area at different times, from different sensors, and/or at different spatial resolutions. The developed methods have been experimentally validated with complex optical multispectral (Pléiades), X-band SAR (COSMO-Skymed), and C-band SAR (RadarSat-2) imagery taken from the Haiti site
APA, Harvard, Vancouver, ISO, and other styles
8

Julea, Andreea Maria. "Extraction de motifs spatio-temporels dans des séries d'images de télédétection : application à des données optiques et radar." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00652810.

Full text
Abstract:
Les Séries Temporelles d'Images Satellitaires (STIS), visant la même scène en évolution, sont très intéressantes parce qu'elles acquièrent conjointement des informations temporelles et spatiales. L'extraction de ces informations pour aider les experts dans l'interprétation des données satellitaires devient une nécessité impérieuse. Dans ce mémoire, nous exposons comment on peut adapter l'extraction de motifs séquentiels fréquents à ce contexte spatio-temporel dans le but d'identifier des ensembles de pixels connexes qui partagent la même évolution temporelle. La démarche originale est basée sur la conjonction de la contrainte de support avec différentes contraintes de connexité qui peuvent filtrer ou élaguer l'espace de recherche pour obtenir efficacement des motifs séquentiels fréquents groupés (MSFG) avec signification pour l'utilisateur. La méthode d'extraction proposée est non supervisée et basée sur le niveau pixel. Pour vérifier la généricité du concept de MSFG et la capacité de la méthode proposée d'offrir des résultats intéressants à partir des SITS, sont réalisées des expérimentations sur des données réelles optiques et radar.
APA, Harvard, Vancouver, ISO, and other styles
9

Kalinicheva, Ekaterina. "Unsupervised satellite image time series analysis using deep learning techniques." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS335.

Full text
Abstract:
Cette thèse présente un ensemble d'algorithmes non-supervisés pour l'analyse générique de séries temporelles d'images satellites (STIS). Nos algorithmes exploitent des méthodes de machine learning et, notamment, les réseaux de neurones afin de détecter les différentes entités spatio-temporelles et leurs changements éventuels dans le temps. Nous visons à identifier trois types de comportement temporel : les zones sans changements, les changements saisonniers, les changements non triviaux (changements permanents comme les constructions, la rotation des cultures agricoles, etc).Par conséquent, nous proposons deux frameworks : pour la détection et le clustering des changements non-triviaux et pour le clustering des changements saisonniers et des zones sans changements. Le premier framework est composé de deux étapes : la détection de changements bi-temporels et leur interprétation dans le contexte multi-temporel avec une approche basée graphes. La détection de changements bi-temporels est faite pour chaque couple d’images consécutives et basée sur la transformation des features avec les autoencodeurs (AEs). A l’étape suivante, les changements à différentes dates qui appartiennent à la même zone géographique forment les graphes d’évolution qui sont par la suite clusterisés avec un modèle AE de réseaux de neurones récurrents. Le deuxième framework présente le clustering basé objets de STIS. Premièrement, la STIS est encodée en image unique avec un AE convolutif 3D multi-vue. Dans un deuxième temps, nous faisons la segmentation en deux étapes en utilisant à la fois l’image encodée et la STIS. Finalement, les segments obtenus sont clusterisés avec leurs descripteurs encodés
This thesis presents a set of unsupervised algorithms for satellite image time series (SITS) analysis. Our methods exploit machine learning algorithms and, in particular, neural networks to detect different spatio-temporal entities and their eventual changes in the time.In our thesis, we aim to identify three different types of temporal behavior: no change areas, seasonal changes (vegetation and other phenomena that have seasonal recurrence) and non-trivial changes (permanent changes such as constructions or demolishment, crop rotation, etc). Therefore, we propose two frameworks: one for detection and clustering of non-trivial changes and another for clustering of “stable” areas (seasonal changes and no change areas). The first framework is composed of two steps which are bi-temporal change detection and the interpretation of detected changes in a multi-temporal context with graph-based approaches. The bi-temporal change detection is performed for each pair of consecutive images of the SITS and is based on feature translation with autoencoders (AEs). At the next step, the changes from different timestamps that belong to the same geographic area form evolution change graphs. The graphs are then clustered using a recurrent neural networks AE model to identify different types of change behavior. For the second framework, we propose an approach for object-based SITS clustering. First, we encode SITS with a multi-view 3D convolutional AE in a single image. Second, we perform a two steps SITS segmentation using the encoded SITS and original images. Finally, the obtained segments are clustered exploiting their encoded descriptors
APA, Harvard, Vancouver, ISO, and other styles
10

El, hajj Mahmoud. "Exploitation des séries temporelles d'images satellite à haute résolution spatiale par fusion d'informations multi-sources pour le suivi des opérations culturales : Application à la détection des coupes de canne à sucre à La Réunion." Phd thesis, AgroParisTech, 2008. http://pastel.archives-ouvertes.fr/pastel-00005085.

Full text
Abstract:
Les séries temporelles d'images satellite acquises à haute résolution spatiale sont une source d'information importante pour le suivi des changements sur des grandes surfaces. Ces données sont particulièrement intéressantes pour les applications agricoles car elles permettent d'appréhender à l'échelle parcellaire les changements d'état de surface induits par les pratiques culturales. Cependant, le traitement des séries temporelles est souvent limité par l'irrégularité des acquisitions et par la nécessité d'une intervention experte récurrente. Cette thèse présente une méthodologie innovante qui répond à cette problématique. L'application agricole considérée est le suivi des coupes de canne à sucre à La Réunion à partir d'images SPOT (Kalideos ISLE-Réunion©). Afin d'assurer la comparabilité des images, nous avons tout d'abord développé une méthode de normalisation radiométrique relative basée sur une technique de sélection automatique de cibles invariantes. Ensuite, nous avons conçu et développé un système qui exploite, en temps réel, le contenu informatif des séries temporelles en s'appuyant sur des simulations faites à partir d'un modèle de culture et sur des connaissances expertes. Le formalisme de fusion d'informations utilisé est basé sur la modélisation linguistique et sur la logique floue. Il permet de manipuler des données imprécises, incertaines et de nature hétérogène. Il permet également de construire des règles de décision interprétables qui reproduisent, en partie, le raisonnement humain. Deux méthodes de construction des règles sont proposées : la première repose sur des règles définies par l'expert et la deuxième sur une induction automatique des règles par apprentissage. Les performances du système ont été évaluées sur différents sites et sur différentes années. Les résultats obtenus sont satisfaisants : la précision globale atteint 98,8% et le pourcentage de bonne détection des coupes atteint 96,1%. L'analyse de la contribution des différentes sources d'informations a montré, entre autres, que le modèle de culture apporte 6,4% de précision supplémentaire dans la détection des coupes. L'apport de l'expertise a été difficile à évaluer car elle intervient dans différentes parties du système. La méthodologie présentée dans cette thèse est très prometteuse. Elle est applicable à d'autres cultures et transférable à d'autres applications telle que la cartographie dynamique de l'occupation du sol.
APA, Harvard, Vancouver, ISO, and other styles
11

Lopes, Maïlys. "Ecological monitoring of semi-natural grasslands : statistical analysis of dense satellite image time series with high spatial resolution." Thesis, Toulouse, INPT, 2017. http://www.theses.fr/2017INPT0095/document.

Full text
Abstract:
Les prairies représentent une source importante de biodiversité dans les paysages agricoles qu’il est important de surveiller. Les satellites de nouvelle génération tels que Sentinel-2 offrent de nouvelles opportunités pour le suivi des prairies grâce à leurs hautes résolutions spatiale et temporelle combinées. Cependant, le nouveau type de données fourni par ces satellites implique des problèmes liés au big data et à la grande dimension des données en raison du nombre croissant de pixels à traiter et du nombre élevé de variables spectro-temporelles. Cette thèse explore le potentiel des satellites de nouvelle génération pour le suivi de la biodiversité et des facteurs qui influencent la biodiversité dans les prairies semi-naturelles. Des outils adaptés à l’analyse statistique des prairies à partir de séries temporelles d’images satellites (STIS) denses à haute résolution spatiale sont proposés. Tout d’abord, nous montrons que la réponse spectrotemporelle des prairies est caractérisée par sa variabilité au sein des prairies et parmi les prairies. Puis, pour les analyses statistiques, les prairies sont modélisées à l’échelle de l’objet pour être cohérent avec les modèles écologiques qui représentent les prairies à l’échelle de la parcelle. Nous proposons de modéliser la distribution des pixels dans une prairie par une loi gaussienne. A partir de cette modélisation, des mesures de similarité entre deux lois gaussiennes robustes à la grande dimension sont développées pour la classification des prairies en utilisant des STIS denses: High-Dimensional Kullback-Leibler Divergence et -Gaussian Mean Kernel. Cette dernière est plus performante que les méthodes conventionnelles utilisées avec les machines à vecteur de support (SVM) pour la classification du mode de gestion et de l’âge des prairies. Enfin, des indicateurs de biodiversité des prairies issus de STIS denses sont proposés à travers des mesures d’hétérogénéité spectro-temporelle dérivées du clustering non supervisé des prairies. Leur corrélation avec l’indice de Shannon est significative mais faible. Les résultats suggèrent que les variations spectro-temporelles mesurées à partir de STIS à 10 mètres de résolution spatiale et qui couvrent la période où ont lieu les pratiques agricoles sont plus liées à l’intensité des pratiques qu’à la diversité en espèces. Ainsi, bien que les propriétés spatiales et temporelles de Sentinel-2 semblent limitées pour estimer directement la diversité en espèces des prairies, ce satellite devrait permettre le suivi continu des facteurs influençant la biodiversité dans les prairies. Dans cette thèse, nous avons proposé des méthodes qui prennent en compte l’hétérogénéité au sein des prairies et qui permettent l’utilisation de toute l’information spectrale et temporelle fournie par les satellites de nouvelle génération
Grasslands are a significant source of biodiversity in farmed landscapes that is important to monitor. New generation satellites such as Sentinel-2 offer new opportunities for grassland’s monitoring thanks to their combined high spatial and temporal resolutions. Conversely, the new type of data provided by these sensors involves big data and high dimensional issues because of the increasing number of pixels to process and the large number of spectro-temporal variables. This thesis explores the potential of the new generation satellites to monitor biodiversity and factors that influence biodiversity in semi-natural grasslands. Tools suitable for the statistical analysis of grasslands using dense satellite image time series (SITS) with high spatial resolution are provided. First, we show that the spectro-temporal response of grasslands is characterized by its variability within and among the grasslands. Then, for the statistical analysis, grasslands are modeled at the object level to be consistent with ecological models that represent grasslands at the field scale. We propose to model the distribution of pixels in a grassland by a Gaussian distribution. Following this modeling, similarity measures between two Gaussian distributions robust to the high dimension are developed for the lassification of grasslands using dense SITS: the High-Dimensional Kullback-Leibler Divergence and the -Gaussian Mean Kernel. The latter outperforms conventional methods used with Support Vector Machines for the classification of grasslands according to their management practices and to their age. Finally, indicators of grassland biodiversity issued from dense SITS are proposed through spectro-temporal heterogeneity measures derived from the unsupervised clustering of grasslands. Their correlation with the Shannon index is significant but low. The results suggest that the spectro-temporal variations measured from SITS at a spatial resolution of 10 meters covering the period when the practices occur are more related to the intensity of management practices than to the species diversity. Therefore, although the spatial and spectral properties of Sentinel-2 seem limited to assess the species diversity in grasslands directly, this satellite should make possible the continuous monitoring of factors influencing biodiversity in grasslands. In this thesis, we provided methods that account for the heterogeneity within grasslands and enable the use of all the spectral and temporal information provided by new generation satellites
APA, Harvard, Vancouver, ISO, and other styles
12

Desrues, Mathilde. "Surveillance opérationnelle de mouvements gravitaires par séries temporelles d'images." Thesis, Strasbourg, 2021. http://www.theses.fr/2021STRAH002.

Full text
Abstract:
Comprendre la dynamique et le comportement des mouvements gravitaires est essentiel dans l’anticipation de catastrophes naturelles et donc dans la protection des infrastructures et des personnes. Plusieurs techniques géodésiques apportent déjà des informations sur les champs de déplacement / déformation des pentes instables, techniques qui permettent d’analyser les propriétés géométriques des masses en mouvement et le comportement mécanique des pentes. En combinant des séries temporelles d’images optiques terrestres et ces techniques classiques, la quantité d’informations collectées est densifiée et répartie dans l’espace. Les capteurs passifs numériques sont de plus en plus utilisés pour la détection et la surveillance de mouvements gravitationnels. Ils fournissent à la fois des informations qualitatives, telles que la détection des changements de surface, et une caractérisation quantitative, telle que la quantification du déplacement du sol par des techniques de corrélation d’images. Notre approche consiste à analyser des séries chronologiques d’images terrestres provenant soit d’une seule caméra fixe, soit de caméras stéreoscopiques, ces dernières permettant d’obtenir des informations redondantes et complémentaires. Les séries temporelles sont traitées pour détecter les zones dans lesquelles le comportement cinématique est homogène. Les propriétés de la pente, telles que le volume de glissement et l’épaisseur de la masse en mouvement, font partie des résultats de l’analyse afin d’obtenir une vue d’ensemble aussi complète que possible. Ces travaux sont présentés au travers de l’analyse de quatre glissements de terrain situés dans les Alpes françaises. Ils interviennent dans le cadre d’une convention CIFRE/ANRT entre la société SAGE - Société Alpine de GEotechnique (Gières, France) et l’IPGS – Institut de Physique du Globe de Strasbourg / CNRS UMR 7516 (Strasbourg, France)
Understanding the dynamics and the behavior of gravitational slope movements is essential to anticipate catastrophic failures and thus to protect lives and infrastructures. Several geodetic techniques already bring some information on the displacement / deformation fields of the unstable slopes. These techniques allow the analysis of the geometrical properties of the moving masses and of the mechanical behavior of the slopes. By combining time series of passive terrestrial imagery and these classical techniques, the amount of collected information is densified and spatially distributed. Digital passive sensors are increasingly used for the detection and the monitoring of gravitational motion. They provide both qualitative information, such as the detection of surface changes, and a quantitative characterization, such as the quantification of the soil displacement by correlation techniques. Our approach consists in analyzing time series of terrestrial images from either a single fixed camera or pair-wise cameras, the latter to obtain redundant and additional information. The time series are processed to detect the areas in which the Kinematic behavior is homogeneous. The slope properties, such as the sliding volume and the thickness of the moving mass, are part of the analysis results to obtain an overview which is as complete as possible. This work is presented around the analysis of four landslides located in the French Alps. It is part of a CIFRE/ANRT agreement between the SAGE Society - Société Alpine de Géotechnique (Gières, France) and the IPGS - Institut de Physique du Globe de Strasbourg / CNRS UMR 7516 (Strasbourg, France)
APA, Harvard, Vancouver, ISO, and other styles
13

Khiali, Lynda. "Fouille de données à partir de séries temporelles d’images satellites." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS046/document.

Full text
Abstract:
Les images satellites représentent de nos jours une source d’information incontournable. Elles sont exploitées dans diverses applications, telles que : la gestion des risques, l’aménagent des territoires, la cartographie du sol ainsi qu’une multitude d’autre taches. Nous exploitons dans cette thèse les Séries Temporelles d’Images Satellites (STIS) pour le suivi des évolutions des habitats naturels et semi-naturels. L’objectif est d’identifier, organiser et mettre en évidence des patrons d’évolution caractéristiques de ces zones.Nous proposons des méthodes d’analyse de STIS orientée objets, en opposition aux approches par pixel, qui exploitent des images satellites segmentées. Nous identifions d’abord les profils d’évolution des objets de la série. Ensuite, nous analysons ces profils en utilisant des méthodes d’apprentissage automatique. Afin d’identifier les profils d’évolution, nous explorons les objets de la série pour déterminer un sous-ensemble d’objets d’intérêt (entités spatio-temporelles/objets de référence). L’évolution de ces entités spatio-temporelles est ensuite illustrée en utilisant des graphes d’évolution.Afin d’analyser les graphes d’évolution, nous avons proposé trois contributions. La première contribution explore des STIS annuelles. Elle permet d’analyser les graphes d’évolution en utilisant des algorithmes de clustering, afin de regrouper les entités spatio-temporelles évoluant similairement. Dans la deuxième contribution, nous proposons une méthode d’analyse pluri-annuelle et multi-site. Nous explorons plusieurs sites d’étude qui sont décrits par des STIS pluri-annuelles. Nous utilisons des algorithmes de clustering afin d’identifier des similarités intra et inter-site. Dans la troisième contribution, nous introduisons une méthode d’analyse semi-supervisée basée sur du clustering par contraintes. Nous proposons une méthode de sélection de contraintes. Ces contraintes sont utilisées pour guider le processus de clustering et adapter le partitionnement aux besoins de l’utilisateur.Nous avons évalué nos travaux sur différents sites d’étude. Les résultats obtenus ont permis d’identifier des profils d’évolution types sur chaque site d’étude. En outre, nous avons aussi identifié des évolutions caractéristiques communes à plusieurs sites. Par ailleurs, la sélection de contraintes pour l’apprentissage semi-supervisé a permis d’identifier des entités profitables à l’algorithme de clustering. Ainsi, les partitionnements obtenus en utilisant l’apprentissage non supervisé ont été améliorés et adaptés aux besoins de l’utilisateur
Nowadays, remotely sensed images constitute a rich source of information that can be leveraged to support several applications including risk prevention, land use planning, land cover classification and many other several tasks. In this thesis, Satellite Image Time Series (SITS) are analysed to depict the dynamic of natural and semi-natural habitats. The objective is to identify, organize and highlight the evolution patterns of these areas.We introduce an object-oriented method to analyse SITS that consider segmented satellites images. Firstly, we identify the evolution profiles of the objects in the time series. Then, we analyse these profiles using machine learning methods. To identify the evolution profiles, we explore all the objects to select a subset of objects (spatio-temporal entities/reference objects) to be tracked. The evolution of the selected spatio-temporal entities is described using evolution graphs.To analyse these evolution graphs, we introduced three contributions. The first contribution explores annual SITS. It analyses the evolution graphs using clustering algorithms, to identify similar evolutions among the spatio-temporal entities. In the second contribution, we perform a multi-annual cross-site analysis. We consider several study areas described by multi-annual SITS. We use the clustering algorithms to identify intra and inter-site similarities. In the third contribution, we introduce à semi-supervised method based on constrained clustering. We propose a method to select the constraints that will be used to guide the clustering and adapt the results to the user needs.Our contributions were evaluated on several study areas. The experimental results allow to pinpoint relevant landscape evolutions in each study sites. We also identify the common evolutions among the different sites. In addition, the constraint selection method proposed in the constrained clustering allows to identify relevant entities. Thus, the results obtained using the unsupervised learning were improved and adapted to meet the user needs
APA, Harvard, Vancouver, ISO, and other styles
14

Gueguen, Lionel. "Extraction d'information et compression conjointes de Séries Temporelles d'Images Satellitaires." Phd thesis, Télécom ParisTech, 2007. http://pastel.archives-ouvertes.fr/pastel-00003146.

Full text
Abstract:
Ces derniers temps, de nouvelles données riches en information ont été produites : les Séries Temporelles d'Images Satellitaires qui permettent d'observer les évolutions de la surface de la Terre. Ces séries constituent un grand volume de données et elles contiennent des informations complexes et d'intérêt. Par exemple, de nombreux événements spatio-temporels, tels que les récoltes, la maturation de cultures ou l'évolution de zones urbaines, peuvent y être obsérvés et sont utiles pour des problèmatiques de télé-surveillance. Dans ce contexte, cette thèse se propose d'extraire l'information automatiquement pour aider à la compréhension des événements spatio-temporels et de compresser pour limiter l'espace de stockage. Aussi l'objectif majeur de ces travaux consiste en la conception d'une méthodologie incorporant conjointement l'extraction d'information et la compression. Ce traitement conjoint nous permet d'obtenir une représentation compacte des Séries Temporelles d'Images Satellitaires qui contienne un index du contenu informationnel. Plus précisément, ces travaux décrivent dans un premier temps le concept d'extraction et de compression conjointes où l'extraction est vue comme une compression avec pertes de l'information. Dans un second temps, deux méthodologies élaborées à partir du concept précédent sont présentées. La première permet de construire un index du contenu informationnel en se fondant sur le principe d'Information Bottleneck. La seconde permet de construire un code ou une représentation compacte qui intègre un index du contenu informationnel. Finalement, ces deux méthodes sont validées et comparées sur des données synthétiques et sont par la suite appliquées avec succès aux Séries Temporelles d'Images Satellitaires.
APA, Harvard, Vancouver, ISO, and other styles
15

Gueguen, Lionel. "Extraction d'information et compression conjointes des séries temporelles d'images satellitaires." Paris, ENST, 2007. http://www.theses.fr/2007ENST0025.

Full text
Abstract:
Ces derniers temps, de nouvelles données riches en information ont été produites : les Séries Temporelles d'Images Satellitaires qui permettent d'observer les évolutions de la surface de la Terre. Ces séries constituent un grand volume de données et elles contiennent des informations complexes et d'intérêt. Par exemple, de nombreux événements spatio-temporels, tels que les récoltes, la maturation de cultures ou l'évolution de zones urbaines, peuvent y être obsérvés et sont utiles pour des problèmatiques de télé-surveillance. Dans ce contexte, cette thèse se propose d'extraire l'information automatiquement pour aider à la compréhension des événements spatio-temporels et de compresser pour limiter l'espace de stockage. Aussi l'objectif majeur de ces travaux consiste en la conception d'une méthodologie incorporant conjointement l'extraction d'information et la compression. Ce traitement conjoint nous permet d'obtenir une représentation compacte des Séries Temporelles d'Images Satellitaires qui contienne un index du contenu informationnel. Plus précisément, ces travaux décrivent dans un premier temps le concept d'extraction et de compression conjointes où l'extraction est vue comme une compression avec pertes de l'information. Dans un second temps, deux méthodologies élaborées à partir du concept précédent sont présentées. La première permet de construire un index du contenu informationnel en se fondant sur le principe d’Information Bottleneck. La seconde permet de construire un code ou une représentation compacte qui intègre un index du contenu informationnel. Finalement, ces deux méthodes sont validées et comparées sur des données synthétiques et sont par la suite appliquées avec succès aux Séries Temporelles d'Images Satellitaires
Nowadays, new data which contain interesting information can be produced : the Satellite Image Time Series which are observations of Earth’s surface evolution. These series constitute huge data volume and contain complex types of information. For example, numerous spatio-temporal events, such as harvest or urban area expansion, can be observed in these series and serve for remote surveillance. In this framework, this thesis deals with the information extraction from Satellite Image Time Series automatically in order to help spatio-temporal events comprehension and the compression in order to reduce storing space. Thus, this work aims to provide methodologies which extract information and compress jointly these series. This joint processing provides a compact representation which contains an index of the informational content. First, the concept of joint extraction and compression is described where the information extraction is grasped as a lossy compression of the information. Secondly, two methodologies are developed based on the previous concept. The first one provides an informational content index based on the Information Bottleneck principle. The second one provides a code or a compact representation which integrates an informational content index. Finally, both methodologies are validated and compared with synthetic data, then are put into practice successfully with Satellite Image Time Series
APA, Harvard, Vancouver, ISO, and other styles
16

Lê, Thu Trang. "Extraction d'informations de changement à partir des séries temporelles d'images radar à synthèse d'ouverture." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAA020/document.

Full text
Abstract:
La réussite du lancement d'un grand nombre des satellites Radar à Synthèse d'Ouverture (RSO - SAR) de nouvelle génération a fourni régulièrement des images SAR et SAR polarimétrique (PolSAR) multitemporelles à haute et très haute résolution spatiale sur de larges régions de la surface de la Terre. Le système SAR est approprié pour des tâches de surveillance continue ou il offre l'avantage d'être indépendant de l'éclairement solaire et de la couverture nuageuse. Avec des données multitemporelles, l'information spatiale et temporelle peut être exploitée simultanément pour rendre plus concise, l'extraction d'information à partir des données. La détection de changement de structures spécifiques dans un certain intervalle de temps nécessite un traitement complexe des données SAR et la présence du chatoiement (speckle) qui affecte la rétrodiffusion comme un bruit multiplicatif. Le but de cette thèse est de fournir une méthodologie pour simplifier l'analyse des données multitemporelles SAR. Cette méthodologie doit bénéficier des avantages d'acquisitions SAR répétitives et être capable de traiter différents types de données SAR (images SAR mono-, multi- composantes, etc.) pour diverses applications. Au cours de cette thèse, nous proposons tout d'abord une méthode générale basée sur une matrice d'information spatio-temporelle appelée Matrice de détection de changement (CDM). Cette matrice contient des informations de changements obtenus à partir de tests croisés de similarité sur des voisinages adaptatifs. La méthode proposée est ensuite exploitée pour réaliser trois tâches différentes: 1) la détection de changement multitemporel avec différents types de changements, ce qui permet la combinaison des cartes de changement entre des paires d'images pour améliorer la performance de résultat de détection de changement; 2) l'analyse de la dynamicité de changement de la zone observée, ce qui permet l'étude de l'évolution temporelle des objets d'intérêt; 3) le filtrage nonlocal temporel des séries temporelles d'images SAR/PolSAR, ce qui permet d'éviter le lissage des informations de changement dans des séries pendant le processus de filtrage.Afin d'illustrer la pertinence de la méthode proposée, la partie expérimentale de la thèse est effectuée sur deux sites d'étude: Chamonix Mont-Blanc, France et le volcan Merapi, Indonésie, avec différents types de changements (i.e. évolution saisonnière, glaciers, éruption volcanique, etc.). Les observations de ces sites d'étude sont acquises sur quatre séries temporelles d'images SAR monocomposantes et multicomposantes de moyenne à haute et très haute résolution: des séries temporelles d'images Sentinel-1, ALOS-PALSAR, RADARSAT-2 et TerraSAR-X
A large number of successfully launched and operated Synthetic Aperture Radar (SAR) satellites has regularly provided multitemporal SAR and polarimetric SAR (PolSAR) images with high and very high spatial resolution over immense areas of the Earth surface. SAR system is appropriate for monitoring tasks thanks to the advantage of operating in all-time and all-weather conditions. With multitemporal data, both spatial and temporal information can simultaneously be exploited to improve the results of researche works. Change detection of specific features within a certain time interval has to deal with a complex processing of SAR data and the so-called speckle which affects the backscattered signal as multiplicative noise.The aim of this thesis is to provide a methodology for simplifying the analysis of multitemporal SAR data. Such methodology can benefit from the advantages of repetitive SAR acquisitions and be able to process different kinds of SAR data (i.e. single, multipolarization SAR, etc.) for various applications. In this thesis, we first propose a general framework based on a spatio-temporal information matrix called emph{Change Detection Matrix} (CDM). This matrix contains temporal neighborhoods which are adaptive to changed and unchanged areas thanks to similarity cross tests. Then, the proposed method is used to perform three different tasks:1) multitemporal change detection with different kinds of changes, which allows the combination of multitemporal pair-wise change maps to improve the performance of change detection result;2) analysis of change dynamics in the observed area, which allows the investigation of temporal evolution of objects of interest;3) nonlocal temporal mean filtering of SAR/PolSAR image time series, which allows us to avoid smoothing change information in the time series during the filtering process.In order to illustrate the relevancy of the proposed method, the experimental works of the thesis is performed on four datasets over two test-sites: Chamonix Mont-Blanc, France and Merapi volcano, Indonesia, with different types of changes (i.e., seasonal evolution, glaciers, volcanic eruption, etc.). Observations of these test-sites are performed on four SAR images time series from single polarization to full polarization, from medium to high, very high spatial resolution: Sentinel-1, ALOS-PALSAR, RADARSAT-2 and TerraSAR-X time series
APA, Harvard, Vancouver, ISO, and other styles
17

Bioresita, Filsa. "Exploitation de séries temporelles d'images multi-sources pour la cartographie des surfaces en eau." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAH004/document.

Full text
Abstract:
Les eaux de surface sont des ressources importantes pour la biosphère et l'anthroposphère. Elles favorisent la préservation des habitats, le développement de la biodiversité et le maintien des services écosystémiques en contrôlant le cycle des nutriments et le carbone à l’échelle mondiale. Elles sont essentielles à la vie quotidienne de l’homme, notamment pour l'irrigation, la consommation d’eau potable, la production hydro-électrique, etc. Par ailleurs, lors des inondations, elles peuvent présenter des dangers pour l'homme, les habitations et les infrastructures. La surveillance des changements dynamiques des eaux de surface a donc un rôle primordial pour guider les choix des gestionnaires dans le processus d’aide à la décision. L’imagerie satellitaire constitue une source de données adaptée permettant de fournir des informations sur les eaux de surface. De nos jours, la télédétection satellitaire a connu une révolution avec le lancement des satellites Sentinel-1 (Radar) et Sentinel-2 (Optique) qui disposent d’une haute fréquence de revisite et d’une résolution spatiale moyenne à élevée. Ces données peuvent fournir des séries temporelles essentielles pour apporter davantage d'informations afin d'améliorer la capacité d'observation des eaux de surface. L’exploitation de telles données massives et multi-sources pose des défis en termes d’extraction de connaissances et de processus de traitement d’images car les chaines de traitement doivent être le plus automatiques possibles. Dans ce contexte, l'objectif de ce travail de thèse est de proposer de nouvelles approches permettant de cartographier l’extension spatiales des eaux de surface et des inondations, en explorant l'utilisation unique et combinée des données Sentinel-1 et Sentinel-2
Surface waters are important resources for the biosphere and the anthroposphere. Surface waters preserve diverse habitat, support biodiversity and provide ecosystem service by controlling nutrient cycles and global carbon. Surface waters are essential for human's everyday life, such as for irrigation, drinking-water and/or the production of energy (power plants, hydro-electricity). Further, surface waters through flooding can pose hazards to human, settlements and infrastructures. Monitoring the dynamic changes of surface waters is crucial for decision making process and policy. Remote sensing data can provide information on surface waters. Nowadays, satellite remote sensing has gone through a revolution with the launch of the Sentinel-1 SAR data and Sentinel-2 optical data with high revisit time at medium to high spatial resolution. Those data can provide time series and multi-source data which are essential in providing more information to upgrade ability in observing surface water. Analyzing such massive datasets is challenging in terms of knowledge extraction and processing as nearly fully automated processing chains are needed to enable systematic detection of water surfaces.In this context, the objectives of the work are to propose new (e.g. fully automated) approaches for surface water detection and flood extents detection by exploring the single and combined used of Sentinel-1 and Sentinel-2 data
APA, Harvard, Vancouver, ISO, and other styles
18

Luna, Donald A. "Évaluation de la réponse des prairies à la sécheresse grâce à des séries chronologiques d'images satellites." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2023. http://www.theses.fr/2023UCFA0054.

Full text
Abstract:
Les sécheresses deviennent plus fréquentes et intenses avec le changement climatique, ce qui menace la durabilité des services écosystémiques fournis par de nombreux agroécosystèmes, y compris les prairies gérées, dans de nombreuses régions du monde. L'anticipation et l'atténuation des effets de la sécheresse ont motivé les recherches scientifiques en agronomie, écophysiologie et écologie. Pour mieux comprendre les processus associés à la réponse des prairies aux sécheresses, de nombreuses études ont mené des expérimentations en pot, en mésocosme ou sur le terrain. Malgré leur rôle primordial dans l'élaboration de nos connaissances actuelles, ces approches font face à des limitations cruciales comme leur étendue spatio-temporelle restreinte et leur disjonction des conditions réelles. Le développement de produits et de techniques de télédétection ouvre des pistes prometteuses pour le suivi des écosystèmes terrestres et leur réponse aux diverses sources de perturbations. En complément des expérimentations plus classiques sur la sécheresse et des observations sur le terrain, cette thèse a pour objectif de tirer parti des données de télédétection satellitaires à long termepour évaluer la variabilité et les déterminants de la réponse des prairies à lasécheresse dans les systèmes agricoles du Massif central. Pour ce faire, cette thèse examine d'abord les approches méthodologiques actuelles pour l'évaluation de la réponse des prairies à la sécheresse par télédétection. Elle révise ensuite à déterminer la variabilité et les facteurs de sensibilité des prairies à la sécheresse à l'échelle régionale. Enfin, elle approfondit l'analyse de ces réponses en s'affrichissant de facteurs confondants, grâce à l'assimilation de données de télédétection à un modèle simple de croissance des prairies permanentes gérées. La revue bibliographique des analyses par télédétection des effets de la sécheresse sur les prairies a révélé l'existence de cinq approches méthodologiques alternatives. De loin, l'approche méthodologique la plus courante appelée ici « inférence statistique » consiste à inférer l'impact de la sécheresse à partir de la relation statistique entre la réflectance de la végétation et les indices météorologiques de sécheresse à l'aide de données chronologiques à long terme. Cette analyse bibliographique a également montré que la plupart des recherches ont été menées dans les Grandes Plaines (Amérique du Nord) et le Plateau mongol (Asie centrale) laissant de nombreux vides biogéographiques, en particulier dans les régions tempérées de l'Europe occidentale. La deuxième partie de cette thèse souligne la forte variabilité de la réponse des prairies gérées tempérées dans une région montagneuse hétérogène (le Massif central en France). Plus important encore, cette variabilité pourrait s'expliquer par un ensemble de facteurs pédoclimatiques, la diversité végétale et les pratiques de gestion. Conformément à l'attendu, certains facteurs pédologiques et topographiques, comme la capacité de rétention en eau du sol, ont été identifiés comme des facteurs d'atténuation clés des effets de la sécheresse. En outre, nos résultats ont montré une sensibilité plus faible des prairies préférentiellement fauchées plutôt que pâturées et avec une utilisation précoce. Pour les sécheresses longues et peu fréquentes, la diversité végétale a eu d'importants effets atténuants, mais nos conclusions suggèrent des effets en cascade complexes entre les pratiques de gestion et la structure des communautés végétales qui doivent encore être examinés. Enfin, la dernière partie de cette thèse a fourni une évaluation plus complète des réponses des prairies à la sécheresse en décomposant ses composantes de résistance et de résilience et en isolant l'impact de la sécheresse des influences confondantes des événements de gestion (coupe ou rotations de pâturage) et la phénologie de la végétation. (...)
Drought events are becoming more frequent and severe with climate change, threatening the sustainability of ecosystem services provided by many agroecosystems, including managed grasslands in many regions of the world. The anticipation and mitigation of drought impacts have motivated scientific researches in agronomy, ecophysiology, and ecology. To better understand the processes associated with grassland responses to drought, many studies have conducted controlled pot, mesocosm, or field experiments. Despite their crucial role in building our current knowledge, these approaches face critical limitations such as their restricted spatio-temporal coverage and their disconnection from real-life conditions. The development of remote sensing (RS) products and techniques opens promising avenues for monitoring terrestrial ecosystems and their response to various sources of disturbances. As a complement to more traditional drought experiments and field observations, this PhD thesis aimed at taking advantage of long-term satellite RS data, together with climate and field data, to assess the variability and drivers of grassland response to drought in agricultural systems in the Massic central. To do so, this thesis first reviewed the current methodological approaches for the assessment of grassland response to drought using RS. It addresseses the central objective of determining the variability and drivers of grassland sensitivity to drought at the regional scale. Finally, it sought to comprehensively analyze the impact of drought, amidst the confounding factors, by assimilation of RS data with a simple model of grassland growth. The review of RS-based analyses of drought impacts on grasslands revealed the existence of five alternative methodological approaches. By far, the most common one called here as the “statistical inference” approach consists of inferring the impact of drought from the statistical relationship between vegetation reflectance and meteorological drought indices using long time series datasets. This bibliographic analysis also showed that most of the researches were conducted in the Great Plains (North America) and Mongolian Plateau (Central Asia) leaving many biogeographic gaps, particularly in the temperate regions of Western Europe. The second part of this thesis emphasized the strong variability of the response of temperate managed grasslands across a heterogeneous mountainous region (the Massif central, France). Most importantly, such variability could be explained by a set of pedoclimatic factors, vegetation diversity, and management practices. As expected, some soil and topographic factors, like the soil water holding capacity, were identified as key mitigating factors of drought impacts. In addition, our results showed lower sensitivity of grasslands predominantly mown rather than grazed and with early herbage uptake. For long and infrequent drought events, vegetation diversity had significant mitigating effects, but our findings suggest complex cascading effects between management practices and plant community structure that still need to be addressed. (...)
APA, Harvard, Vancouver, ISO, and other styles
19

Benoist, Clément. "Apport de la prise en compte de la dépendance spatiotemporelle des séries temporelles de positions GNSS à l'estimation d'un système de référence." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEO011.

Full text
Abstract:
Tout positionnement global précis nécessite un repère de référence tel le repère international de référence terrestre (ITRF). La détermination de l’ITRF s’appuie sur des séries temporelles de positions d’instruments géodésiques, en particulier des stations GNSS permanentes. Les séries temporelles de positions de stations GNSS sont corrélées temporellement et spatialement. De nombreuses études ont caractérisé la dépendance temporelle de ces séries et son impact sur la détermination de repères de référence. En revanche, les corrélations spatiales (entre stations proches) des séries GNSS n’ont jusqu’à présent jamais été prises en compte dans le calcul de repères de référence. L’objectif de cette thèse est donc de proposer une méthodologie pour la prise en compte de ces corrélations spatiales et d’évaluer son apport.Les dépendances spatiales entre les séries de 195 stations GNSS sont tout d’abord évaluées à l’aide de variogrammes empiriques confirmant l’existence de corrélations jusqu’à des distances d’environ 5000 km. Des modèles de covariance exponentielle ne dépendant que de la distance inter-stations sont ajustés sur ces variogrammes empiriques.Une méthodologie basée sur un filtre de Kalman est ensuite développée pour prendre en compte les dépendances spatiales des séries GNSS dans le calcul d’un repère de référence. Trois modèles de dépendance spatiale sont proposés : un modèle ne tenant pas compte de la dépendance spatiale (cas actuel du calcul de l’ITRF), un modèle basé sur les covariances empiriques entre séries de différentes stations, et un modèle basé sur les fonctions de covariance exponentielle mentionnées ci-dessus. Ces différents modèles sont appliqués à trois jeux tests d’une dizaine de stations chacun situés en Europe, aux Caraïbes et sur la côte est des États-Unis. Les trois modèles sont évalués à l’aune d’un critère de validation croisée, c’est-à-dire sur leur capacité à prédire les positions des stations en l’absence de données. Les résultats sur les jeux tests d’Europe et des États-Unis montrent une amélioration considérable de cette capacité prédictive lorsque la dépendance spatiale des séries est prise en compte. Cette amélioration est maximale lorsque le modèle de covariance exponentielle est utilisé. L’amélioration est nettement moindre, mais toujours présente sur le jeu test des Caraïbes.Les trois modèles sont également évalués sur leur capacité à déterminer des vitesses de déplacement exactes à partir de séries temporelles de positions courtes. L’impact de la prise en compte de la dépendance spatiale des séries sur l’exactitude des vitesses estimées est significatif. Comme précédemment, l’amélioration est maximale lorsque le modèle de covariance exponentielle est utilisé.Cette thèse démontre ainsi l’intérêt de la prise en compte des dépendances spatiales entre séries GNSS pour la détermination de repères de référence. La méthodologie développée pourra être utilisée pour le calcul de futures versions de l’ITRF
Any global and precise positioning requires a reference frame such as the International Terrestrial Reference Frame (ITRF). The determination of the ITRF relies on the position time series of various geodetic instruments, including in particular permanent GNSS stations. GNSS station position time series are known to be temporally and spatially correlated. Many authors have studied the temporal dependency of GNSS time series and its impact on the determination of terrestrial reference frames. On the other hand, the spatial correlations (i.e., between nearby stations) of GNSS time series have so far never been taken into account in the computation of terrestrial reference frames. The objective of this thesis is therefore to develop a methodology to account for the spatial correlations of GNSS time series, and evaluate its benefits.The spatial dependencies between the position time series of 195 GNSS stations are first evaluated by means of empirical variograms, which confirm the existence of correlations up to distances of about 5000 km. Exponential covariance models, depending only on the distance between stations, are adjusted to these empirical variograms.A methodology based on a Kalman filter is then developed to take into account the spatial dependencies of GNSS time series in the computation of a terrestrial reference frame. Three models of spatial dependency are proposed: a model which does not account for the spatial dependency between GNSS time series (current case of the ITRF computation), a model based on the empirical covariances between the time series of different stations, and a model based on the exponential covariance functions mentioned above.These different models are applied to three test cases of ten stations each, located in Europe, in the Caribbean, and along the east coast of the US. The three models are evaluated with regard to a cross-validation criterion, i.e., on their capacity to predict station positions in the absence of observations. The results obtained with the Europe and US test cases demonstrate a significant improvement of this predictive capacity when the spatial dependency of the series is taken into account. This improvement is highest when the exponential covariance model is used. The improvement is much lower, but still present with the Caribbean test case.The three models are also evaluated with regard to their capacity to determine accurate station velocities from short position time series. The impact of accounting for the spatial dependency between series on the accuracy of the estimated velocities is again significant. Like previously, the improvement is highest when the exponential covariance model is used.This thesis thus demonstrates the interest of accounting for the spatial dependency of GNSS station position time series in the determination of terrestrial reference frames. The developed methodology could be used in the computation of future ITRF versions
APA, Harvard, Vancouver, ISO, and other styles
20

Agoua, Xwégnon. "Développement de méthodes spatio-temporelles pour la prévision à court terme de la production photovoltaïque." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM066/document.

Full text
Abstract:
L’évolution du contexte énergétique mondial et la lutte contre le changement climatique ont conduit à l’accroissement des capacités de production d’énergie renouvelable. Les énergies renouvelables sont caractérisées par une forte variabilité due à leur dépendance aux conditions météorologiques. La maîtrise de cette variabilité constitue un enjeu important pour les opérateurs du système électrique, mais aussi pour l’atteinte des objectifs européens de réduction des émissions de gaz à effet de serre, d’amélioration de l’efficacité énergétique et de l’augmentation de la part des énergies renouvelables. Dans le cas du photovoltaïque(PV), la maîtrise de la variabilité de la production passe par la mise en place d’outils qui permettent de prévoir la production future des centrales. Ces prévisions contribuent entre autres à l’augmentation du niveau de pénétration du PV,à l’intégration optimale dans le réseau électrique, à l’amélioration de la gestion des centrales PV et à la participation aux marchés de l’électricité. L’objectif de cette thèse est de contribuer à l’amélioration de la prédictibilité à court-terme (moins de 6 heures) de la production PV. Dans un premier temps, nous analysons la variabilité spatio-temporelle de la production PV et proposons une méthode de réduction de la non-stationnarité des séries de production. Nous proposons ensuite un modèle spatio-temporel de prévision déterministe qui exploite les corrélations spatio-temporelles entre les centrales réparties sur une région. Les centrales sont utilisées comme un réseau de capteurs qui permettent d’anticiper les sources de variabilité. Nous proposons aussi une méthode automatique de sélection des variables qui permet de résoudre les problèmes de dimension et de parcimonie du modèle spatio-temporel. Un modèle spatio-temporel probabiliste a aussi été développé aux fins de produire des prévisions performantes non seulement du niveau moyen de la production future mais de toute sa distribution. Enfin nous proposons, un modèle qui exploite les observations d’images satellites pour améliorer la prévision court-terme de la production et une comparaison de l’apport de différentes sources de données sur les performances de prévision
The evolution of the global energy context and the challenges of climate change have led to anincrease in the production capacity of renewable energy. Renewable energies are characterized byhigh variability due to their dependence on meteorological conditions. Controlling this variabilityis an important challenge for the operators of the electricity systems, but also for achieving the Europeanobjectives of reducing greenhouse gas emissions, improving energy efficiency and increasing the share of renewable energies in EU energy consumption. In the case of photovoltaics (PV), the control of the variability of the production requires to predict with minimum errors the future production of the power stations. These forecasts contribute to increasing the level of PV penetration and optimal integration in the power grid, improving PV plant management and participating in electricity markets. The objective of this thesis is to contribute to the improvement of the short-term predictability (less than 6 hours) of PV production. First, we analyze the spatio-temporal variability of PV production and propose a method to reduce the nonstationarity of the production series. We then propose a deterministic prediction model that exploits the spatio-temporal correlations between the power plants of a spatial grid. The power stationsare used as a network of sensors to anticipate sources of variability. We also propose an automaticmethod for selecting variables to solve the dimensionality and sparsity problems of the space-time model. A probabilistic spatio-temporal model has also been developed to produce efficient forecasts not only of the average level of future production but of its entire distribution. Finally, we propose a model that exploits observations of satellite images to improve short-term forecasting of PV production
APA, Harvard, Vancouver, ISO, and other styles
21

Masse, Antoine. "Développement et automatisation de méthodes de classification à partir de séries temporelles d'images de télédétection : application aux changements d'occupation des sols et à l'estimation du bilan carbone." Phd thesis, Toulouse 3, 2013. http://thesesups.ups-tlse.fr/2106/.

Full text
Abstract:
La quantité de données de télédétection archivées est de plus en plus importante et grâce aux nouveaux et futurs satellites, ces données offriront une plus grande diversité de caractéristiques : spectrale, temporelle, résolution spatiale et superficie de l'emprise du satellite. Cependant, il n'existe pas de méthode universelle qui maximise la performance des traitements pour tous les types de caractéristiques citées précédemment; chaque méthode ayant ses avantages et ses inconvénients. Les travaux de cette thèse se sont articulés autour de deux grands axes que sont l'amélioration et l'automatisation de la classification d'images de télédétection, dans le but d'obtenir une carte d'occupation des sols la plus fiable possible. En particulier, les travaux ont portés sur la la sélection automatique de données pour la classification supervisée, la fusion automatique d'images issues de classifications supervisées afin de tirer avantage de la complémentarité des données multi-sources et multi-temporelles et la classification automatique basée sur des séries temporelles et spectrales de référence, ce qui permettra la classification de larges zones sans référence spatiale. Les méthodes ont été testées et validées sur un panel de données très variées de : capteurs : optique (Formosat-2, Spot 2/4/5, Landsat 5/7, Worldview-2, Pleiades) et radar (Radarsat,Terrasar-X), résolutions spatiales : de haute à très haute résolution (de 30 mètres à 0. 5 mètre), répétitivités temporelles (jusqu'à 46 images par an) et zones d'étude : agricoles (Toulouse, Marne), montagneuses (Pyrénées), arides (Maroc, Algérie). Deux applications majeures ont été possibles grâce à ces nouveaux outils : l'obtention d'un bilan carbone à partir des rotations culturales obtenues sur plusieurs années et la cartographie de la trame verte (espaces écologiques) dans le but d'étudier l'impact du choix du capteur sur la détection de ces éléments
As acquisition technology progresses, remote sensing data contains an ever increasing amount of information. Future projects in remote sensing like Copernicus will give a high temporal repeatability of acquisitions and will cover large geographical areas. As part of the Copernicus project, Sentinel-2 combines a large swath, frequent revisit (5 days), and systematic acquisition of all land surfaces at high-spatial resolution and with a large number of spectral bands. The context of my research activities has involved the automation and improvement of classification processes for land use and land cover mapping in application with new satellite characteristics. This research has been focused on four main axes: selection of the input data for the classification processes, improvement of classification systems with introduction of ancillary data, fusion of multi-sensors, multi-temporal and multi-spectral classification image results and classification without ground truth data. These new methodologies have been validated on a wide range of images available: various sensors (optical: Landsat 5/7, Worldview-2, Formosat-2, Spot 2/4/5, Pleiades; and radar: Radarsat, Terrasar-X), various spatial resolutions (30 meters to 0. 5 meters), various time repeatability (up to 46 images per year) and various geographical areas (agricultural area in Toulouse, France, Pyrenean mountains and arid areas in Morocco and Algeria). These methodologies are applicable to a wide range of thematic applications like Land Cover mapping, carbon flux estimation and greenbelt mapping
APA, Harvard, Vancouver, ISO, and other styles
22

Masse, Antoine. "Développement et automatisation de méthodes de classification à partir de séries temporelles d'images de télédétection - Application aux changements d'occupation des sols et à l'estimation du bilan carbone." Phd thesis, Université Paul Sabatier - Toulouse III, 2013. http://tel.archives-ouvertes.fr/tel-00921853.

Full text
Abstract:
La quantité de données de télédétection archivées est de plus en plus importante et grâce aux nouveaux et futurs satellites, ces données offriront une plus grande diversité de caractéristiques : spectrale, temporelle, résolution spatiale et superficie de l'emprise du satellite. Cependant, il n'existe pas de méthode universelle qui maximise la performance des traitements pour tous les types de caractéristiques citées précédemment; chaque méthode ayant ses avantages et ses inconvénients. Les travaux de cette thèse se sont articulés autour de deux grands axes que sont l'amélioration et l'automatisation de la classification d'images de télédétection, dans le but d'obtenir une carte d'occupation des sols la plus fiable possible. En particulier, les travaux ont portés sur la la sélection automatique de données pour la classification supervisée, la fusion automatique d'images issues de classifications supervisées afin de tirer avantage de la complémentarité des données multi-sources et multi-temporelles et la classification automatique basée sur des séries temporelles et spectrales de référence, ce qui permettra la classification de larges zones sans référence spatiale. Les méthodes ont été testées et validées sur un panel de données très variées de : capteurs : optique (Formosat-2, Spot 2/4/5, Landsat 5/7, Worldview-2, Pleiades) et radar (Radarsat,Terrasar-X), résolutions spatiales : de haute à très haute résolution (de 30 mètres à 0.5 mètre), répétitivités temporelles (jusqu'à 46 images par an) et zones d'étude : agricoles (Toulouse, Marne), montagneuses (Pyrénées), arides (Maroc, Algérie). Deux applications majeures ont été possibles grâce à ces nouveaux outils : l'obtention d'un bilan carbone à partir des rotations culturales obtenues sur plusieurs années et la cartographie de la trame verte (espaces écologiques) dans le but d'étudier l'impact du choix du capteur sur la détection de ces éléments.
APA, Harvard, Vancouver, ISO, and other styles
23

Bontemps, Noélie. "Forçage sismique et déclenchement des mouvements de terrain : apport du suivi de glissements de terrain lents dans la vallée de la Colca, Pérou." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAU028.

Full text
Abstract:
Les mouvements de terrain sont le premier risque naturel secondaire lié aux séismes. L’analyse des inventaires de glissements de terrain rapides déclenchés par de larges séismes (Mw>6,6) a par ailleurs révélé une interaction complexe entre les secousses sismiques et les précipitations. Cette interaction s'exprime notamment par un nombre plus important de glissements déclenchés dans les mois voire les années qui suivent un séisme de forte magnitude. Malgré toutes les observations existantes, l’identification et la quantification des différents processus impactant la cinématique des glissements de terrain lors de séismes restent limitées par manque de données in situ. Le but principal de cette thèse est ainsi d'étudier ces mécanismes dans les régions où les forçages sismiques et pluviométriques peuvent être interdépendants. Pour répondre à cette problématique, nous nous sommes intéressés aux mouvements de terrain lents, sur lesquels on peut suivre des grandeurs physiques de la dynamique gravitaire au cours du temps.Ces travaux se centrent sur l'étude des mouvements de terrain dans la vallée de la Colca, au sud Pérou, qui présente divers avantages : (1) plusieurs glissements de terrain lents s’y sont développés, (2) la région est sismiquement très active et (3) les précipitations y sont saisonnières.Une première approche consiste à étudier la réponse cinématique de plusieurs glissements de terrain lents aux mêmes forçages. Une méthode provenant de l'InSAR a été adaptée pour restituer des séries temporelles de champ de déplacement du sol, grâce à l’inversion de corrélations d’images optiques satellitaires. Cela nous a permis de remonter à plus de 28 ans d’histoire de mouvement du sol dans la vallée de la Colca. Les résultats montrent un impact d’un séisme local de magnitude Mw 5,4 en 1991 sur la cinématique du glissement de terrain de Maca. Nos résultats suggèrent un double effet du séisme, avec une accélération des déplacements de manière co- et post-sismique (<6 années) et une modification des propriétés mécaniques du sol (endommagement) qui a conduit à une interaction complexe avec la pluie.Pour mieux comprendre les mécanismes à l’origine de cet effet combiné, nous avons par la suite étudié des données in situ (GPS et sismomètres) acquises en continu sur le glissement de terrain de Maca depuis 2016. Le traitement de ces données, couplant géodésie et bruit de fond sismique, a permis de mettre en évidence et de quantifier l’endommagement du sol par les séismes et l’influence de la pluie sur sa cicatrisation. Nous montrons également l’influence des petits séismes lors du recouvrement de la rigidité du sol et l’importance de la temporalité entre les précipitations et les séismes sur la dynamique du glissement. Finalement, nous quantifions les processus de régression d’un glissement de terrain grâce à des observations nouvelles de la cinématique couplées à des informations sur la rigidité du sol au cours du temps
Landslides are the first secondary effect of earthquakes. Statistical analysis of regional inventories of earthquake-triggered-landslides after large earthquakes (Mw> 6.6) reveal a complex interaction between seismic shaking and rainfall. The consequence of this interaction is an increase of the landslide triggering rate for several months and even years after a large event. Even though a large amount of observation are available, the identification and the quantification of the different processes impacting landslide kinematics during and after an earthquake are very limited, due mainly to a lack of in situ monitoring. The main goal of this thesis is to study these mechanisms in regions where earthquakes and precipitations can be interdependent. To this purpose, we focused on slow-moving landslides, on which we can monitor physical processes of the gravitational dynamic with time.The studied slow-moving landslides are located in the Colca Valley, south Peru. This area presents several advantages: (1) several active slow-moving landslides are active, (2) the region is seismically very active and (3) the precipitations are seasonal.The first approach consists in studying the kinematic response of several slow-moving landslides to the same forcings. A method coming from the InSAR data processing has been adapted to compute time series of displacement fields, thanks to the inversion of satellite optical images. This allows us to go back as far as 28 years in the past in terms of displacements in the Colca Valley. We show the possible impact of a local Mw 5.4 earthquake in 1991 on the kinematics of the Maca landslide. Our results suggest a double effect of the earthquake, with a co- and post-seismic acceleration (<6 years) and a modification of the mechanical properties of the soil (damage) leading to a complex interaction with precipitations.To better understand the mechanisms at the origin of this combined effect, we studied in situ data (GPS and seismometer) acquired continuously on the Maca landslide since 2016. The processing of these data, coupling geodesy and ambient noise interferometry, allowed to evidence and quantify the damage of the soil generated by earthquakes together with the impact of precipitations on its healing. The influence of small magnitude earthquakes during the soil rigidity recovery is also highlighted together with the importance of the temporality between precipitations and earthquakes. Finally, we quantify the retrogression of the landslide thanks to new observation coupling the landslide’s kinematic and soil rigidity variations
APA, Harvard, Vancouver, ISO, and other styles
24

Boulanger, Xavier. "Modélisation du canal de propagation Terre-Espace en bandes Ka et Q/V : synthèse de séries temporelles, variabilité statistique et estimation de risque." Thesis, Toulouse, ISAE, 2013. http://www.theses.fr/2013ESAE0009/document.

Full text
Abstract:
Les bandes de fréquences utilisées conventionnellement pour les systèmes fixes de télécommunication par satellites (bandes C et Ku i.e. 4-15 GHz) sont congestionnées. Néanmoins, le marché des télécommunications civil et de défense accuse une demande de plus en plus importante en services multimédia haut-débit. Par conséquent, l'augmentation de la fréquence porteuse vers les bandes Ka et Q/V (20-40/50 GHz)est activement étudiée. Pour des fréquences supérieures à 5 GHz, la propagation des signaux radioélectriques souffre de l'atténuation troposphérique. Parmi les différents contributeurs à l'affaiblissement troposphérique total(atténuation, scintillation, dépolarisation, température de bruit du ciel), les précipitations jouent un rôle prépondérant. Pour compenser la détérioration des conditions de propagation, des techniques de compensation des affaiblissements (FMT: Fade Mitigation Technique) permettant d'adapter en temps réel les caractéristiques du système en fonction de l'état du canal de propagation doivent être employées. Une alternative à l'utilisation de séries temporelles expérimentales peu nombreuses est la génération de séries temporelles synthétiques d'atténuation due à la pluie et d'atténuation totale représentatives d'une liaison donnée.Le manuscrit est organisé autour de cinq articles. La première contribution est dédiée à la modélisation temporelle de l'affaiblissement troposphérique total. Le deuxième article porte sur des améliorations significatives du modèle de génération de séries temporelles d'atténuation due à la pluie recommandé par l'UITR.Les trois contributions suivantes constituent une analyse critique et une modélisation de la variabilité des statistiques du 1er ordre utilisées lors des tests des modèles de canal. La variance de l'estimateur statistique des distributions cumulatives complémentaires de l'atténuation due à la pluie et de l'intensité de précipitation est alors mise en évidence. Un modèle à application mondiale paramétré au moyen de données expérimentales est proposé. Celui-ci permet, d'une part, d'estimer les intervalles de confiance associés aux mesures de propagation et d'autre part, de quantifier le risque en termes de disponibilité annuelle associée à la prédiction d'une marge de propagation donnée. Cette approche est étendue aux variabilités des statistiques jointes. Elle permet alors une évaluation statistique de l'impact des techniques de diversité de site sur les performances systèmes, tant à microéchelle(quelques kms) qu'à macro-échelle (quelques centaines de kms)
Nowadays, C and Ku bands used for fixed SATCOM systems are totally congested. However, the demand of the end users for high data rate multimedia services is increasing. Consequently, the use of higher frequency bands (Ka: 20 GHz and Q/V 40/50 GHz) is under investigation. For frequencies higher than 5 GHz, radiowave propagation is strongly affected by tropospheric attenuation. Among the different contributors, rain is the most significant. To compensate the deterioration of the propagation channel, Fade Mitigation Techniques (FMT) are used. The lack of experimental data needed to optimize the real-time control loops of FMT leads tothe use of rain attenuation and total attenuation time series synthesizers. The manuscript is a compilation of five articles. The first contribution is dedicated to the temporal modelling of total impairments. The second article aims at providing significant improvements on the rain attenuation time series synthesizer recommended by ITU-R. The last three contributions are a critical analysis and a modelling of the variability observed on the 1st order statistics used to validate propagation channel models. The variance of the statistical estimator of the complementary cumulative distribution functions of rainfall rate and rain attenuation is highlighted. A worldwide model parameterized in compliance with propagation measurements is proposed. It allows the confidence intervals to be estimated and the risk on a required availability associated with a given propagation margin prediction to be quantified. This approach is extended to the variability of joint statistics. It allows the impact of site diversity techniques on system performances at small scale (few kms) and large scale (few hundred of kms) to be evaluated
APA, Harvard, Vancouver, ISO, and other styles
25

Morin, David. "Estimation et suivi de la ressource en bois en France métropolitaine par valorisation des séries multi-temporelles à haute résolution spatiale d'images optiques (Sentinel-2) et radar (Sentinel-1, ALOS-PALSAR)." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30079.

Full text
Abstract:
L'estimation et le suivi du carbone et de la ressource forestière sont des enjeux majeurs pour la gestion des territoires. Les forêts ont un rôle important dans les plans nationaux et internationaux pour l'atténuation du changement climatique (stockage du carbone, régulation du climat, biodiversité, énergies renouvelables). Dans les forêts tempérées, de nombreuses mesures des paramètres de structure forestière sont acquises sur des petites zones, des statistiques au niveau national ou sur de larges zones administratives sont délivrées annuellement par les organismes gouvernementaux. Les forêts tempérées sont fortement anthropisées (forte variabilité spatiale et fractionnement des peuplements), il y a actuellement un besoin fort d'une spatialisation plus fine et continue des ressources forestières dans ces régions. Les images satellitaires optiques et radar apportent des informations sur l'état de la végétation, la structure des arbres et l'organisation spatiale des forêts. Dans un contexte exceptionnel de disponibilité mondiale et gratuite, de diversité, de qualité des images à haute résolution spatiale et temporelle, le travail de thèse a pour objectif de mettre en place les bases méthodologiques et scientifiques pour une production nationale semi-automatique d'une cartographie des paramètres forestiers (biomasse, diamètre, hauteur, etc.). Nous avons évalué le potentiel des séries temporelles Sentinel-1 (radar en bande C), Sentinel-2 (optique), et des mosaïques annuelles ALOS2-PALSAR2 (radar, bande L) pour estimer les paramètres de structure forestière. Ces données satellitaires ont été combinées à l'aide d'algorithmes d'apprentissage supervisé et de mesures terrain pour construire des modèles d'estimation de la biomasse, du diamètre moyen des arbres (DBH), de la hauteur et d'autres paramètres de structure. Ces modèles peuvent ensuite être spatialisés sur l'ensemble du territoire à l'aide des images satellitaires, et fournir une information continue à la résolution spatiale des images utilisées (10 à 20 mètres). Notre approche a été conçue et testée sur quatre sites d'étude avec des essences forestières et des propriétés structurales et environnementales différentes : la zone intérieure et la zone dunaire de la forêt des Landes (pins maritimes), la forêt d'Orléans (chênes et pins sylvestres), et la forêt de Saint-Gobain (chênes, charmes et hêtres). Les principaux développements portent sur les données satellitaires à utiliser, la sélection des variables explicatives, le choix des algorithmes de régression et leur paramétrisation, la différenciation des types de forêt et la cartographie des estimations de paramètres forestiers. Les primitives issues des données satellitaires fournissent des informations sur les propriétés optiques du sol et de la végétation, l'organisation spatiale des arbres, la structure et le volume de bois vivant des houppiers et des troncs. L'utilisation d'algorithmes de régression multivariée non-linéaire permet d'obtenir des estimations des paramètres forestiers avec des performances en termes d'erreur relative de l'ordre de 15 à 35 % pour la surface terrière (~2.8 à 5.9 m2/ha) selon les types de forêt, 5 à 20 % pour la hauteur (~1.3 à 3 m), et de 5 à 25 % pour le DBH (~1.5 à 8 cm). Les résultats montrent l'apport de la combinaison de plusieurs types de données satellitaires (optique, radar multi-fréquence et indices de texture spatiale) ainsi que l'importance de différencier les types de forêt pour la construction des modèles. L'application des modèles sur les images satellitaires permet de produire des cartes à haute résolution spatiale de ces paramètres forestiers, utilisables de l'échelle locale à l'échelle régionale/nationale
The estimation and monitoring of forest resources and carbon stocks are major issues for wood industry and public bodies. Forests play an important role in national and international plans for climate change mitigation (carbon storage, climate regulation, biodiversity, renewable energy). In temperate forests, monitoring is done at two different levels: on one hand, at local level, in small areas by the acquisition of many measures of forest structure parameters, and, on the other hand, by statistics at national level or in large administrative areas that are provided annually by public bodies. Temperate forests are highly anthropogenic (high spatial variability and fragmentation of stands), so there is currently a strong need for a more refined and regular maps of forest resources in these regions. Optical and radar satellite images provide information on the state of vegetation, tree structure and spatial organization of forests. In an exceptional context of free global availability, diversity, and quality of images with high spatial and temporal resolution, the aim of this PhD work is to set up the methodological bases for a generic and semi-automatic production of forest parameters mapping (biomass, diameter, height, etc.). We have assessed the potential of Sentinel-1 (C-band radar), Sentinel-2 (optical) time series, and ALOS2-PALSAR2 (radar, L-band) annual mosaics to estimate forest structure parameters. These satellite data are combined, using supervised learning algorithms and field measurements, to construct models for estimating aboveground biomass (AGB), mean tree diameter (DBH), height, basal area and tree density. These models can then be spatially applied over the entire territory by using satellite images, providing thus continuous information on the spatial resolution of the images used (10 to 20 meters). This approach has been conceived and tested on four study sites with different forest species and structural and environmental properties: the inner and the dune zone of the Landes forest (maritime pines), the Orléans forest (oak and Scots pines), and the forest of Saint-Gobain (oaks, hornbeams and beeches). The investigated issues are the satellite data to be used, the selection of explanatory variables, the choice of regression algorithms and their parameterization, the differentiation of forest types and the spatialization of forest parameter estimates. The primitives derived from satellite data provide information on the optical properties of soil and vegetation, the spatial organization of trees, the structure and volume of live wood of crowns and trunks. The use of nonlinear multivariate regression algorithms allows to obtain forest parameter estimates with relative error performance in the order of 15 to 35 % for the basal area (~ 2.8 to 5.9 m2/ha) depending on forest types, 5 to 20 % for height (~ 1.3 to 3 m), and 5 to 25 % for DBH (~ 1.5 to 8 cm). The results highlight the improvement by combining several types of satellite data (optical, multi-frequency radar and spatial texture indexes), as well as the importance of differentiating forest types for the construction of models. This high-resolution, regular mapping of the forest resource is very promising to help improving the monitoring and policy of territorial and national strategies for the timber sector, biodiversity and carbon storage
APA, Harvard, Vancouver, ISO, and other styles
26

Roumiguie, Antoine. "Développement et validation d’un indice de production des prairies basé sur l’utilisation de séries temporelles de données satellitaires : application à un produit d’assurance en France." Thesis, Toulouse, INPT, 2016. http://www.theses.fr/2016INPT0030/document.

Full text
Abstract:
Une assurance indicielle est proposée en réponse à l'augmentation des sécheresses impactant les prairies. Elle se base sur un indice de production fourragère (IPF) obtenu à partir d'images satellitaires de moyenne résolution spatiale pour estimer l'impact de l'aléa dans une zone géographique définie. Le principal enjeu lié à la mise en place d'une telle assurance réside dans la bonne estimation des pertes subies. Les travaux de thèse s’articulent autour de deux objectifs : la validation de l'IPF et la proposition d'amélioration de cet indice. Un protocole de validation est construit pour limiter les problèmes liés à l'utilisation de produit de moyenne résolution et au changement d’échelle. L'IPF, confronté à des données de référence de différentes natures, montre de bonnes performances : des mesures de production in situ (R² = 0,81; R² = 0,71), des images satellitaires haute résolution spatiale (R² = 0,78 - 0,84) et des données issues de modélisation (R² = 0,68). Les travaux permettent également d'identifier des pistes d'amélioration pour la chaîne de traitement de l'IPF. Un nouvel indice, basé sur une modélisation semiempirique combinant les données satellitaires avec des données exogènes relatives aux conditions climatiques et à la phénologie des prairies, permet d'améliorer la précision des estimations de production de 18,6 %. L’ensemble des résultats obtenus ouvrent de nombreuses perspectives de recherche sur le développement de l'IPF et ses potentiels d'application dans le domaine assurantiel
An index-based insurance is provided in response to the increasing number of droughts impacting grasslands. It is based on a forage production index (FPI) retrieved from medium resolution remote sensing images to estimate the impact of hazard in a specific geographical area. The main issue related to the development of such an insurance is to obtain an accurate estimation of losses. This study focuses on two objectives: the FPI validation and the improvement of this index. A validation protocol is defined to limit problems attached to the use of medium resolution products and scaling issues in the comparisons process. FPI is validated with different data: ground measurements production (R² = 0.81; R² = 0.71), high resolution remote sensing images (R² = 0.78 - 0.84) and modelled data (R² = 0.68). This study also points out areas of improvement for the IPF chain. A new index, based on semi-empirical modeling combining remote sensing data with exogenous data referring to climatic conditions and grassland phenology, allows improving production estimation accuracy by 18.6%. Results of this study open several new research perspectives on FPI development and its potential practical application
APA, Harvard, Vancouver, ISO, and other styles
27

Derksen, Dawa. "Classification contextuelle de gros volumes de données d'imagerie satellitaire pour la production de cartes d'occupation des sols sur de grandes étendues." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30290.

Full text
Abstract:
Ce travail étudie l'application de la classification supervisée pour la production de cartes d'occupation des sols à partir de séries temporelles d'images satellitaires à haute résolution spatiale, spectrale, et temporelle. Sur ce problème, certaines classes, par exemple, les classes urbaines, dépendent plus du contexte des pixels que de leur contenu. L'enjeu de la thèse est la prise en compte du voisinage du pixel, pour améliorer la précision de ces classes. Cette recherche nous mène dans un premier temps à questionner la définition du voisinage, et à imaginer différentes formes. Ensuite, il s'agit de décrire le voisinage, c'est à dire de créer une représentation ou un modèle qui permette de reconnaître les classes ciblées. Les combinaisons de ces deux aspects sont évaluées sur deux jeux de données expérimentales, un sur de l'imagerie Sentinel-2, et un sur une image SPOT-7
This work studies the application of supervised classification for the production of land cover maps using time series of satellite images at high spatial, spectral, and temporal resolutions. On this problem, certain classes such as urban cover, depend more on the context of the pixel than its content. The issue of this Ph.D. work is therefore to take into account the neighborhood of the pixel, to improve the recognition rates of these classes. This research first leads to question the definition of the context, and to imagine different possible shapes for it. Then comes describing the context, that is to say to create a representation or a model that allows the target classes to be recognized. The combinations of these two aspects are evaluated on two experimental data sets, one on Sentinel-2 images, and the other on SPOT-7 images
APA, Harvard, Vancouver, ISO, and other styles
28

Warembourg, Caroline. "Analyse temporelle du mésozooplancton dans la rade de Villefranche-sur-Mer à l'aide d'un nouveau système automatique d'imagerie numérique, le Zooscan : influence des apports particulaires, de la production primaire et des facteurs environnementaux." Paris 6, 2005. http://www.theses.fr/2005PA066469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

NICOLAS, Joëlle. "La Station Laser Ultra Mobile - De l'obtention d'une exactitude centimétrique des mesures à des applications en océanographie et géodésie spatiales." Phd thesis, Université de Nice Sophia-Antipolis, 2000. http://tel.archives-ouvertes.fr/tel-00007083.

Full text
Abstract:
La Station Laser Ultra Mobile est la plus petite station de télémétrie laser au monde, ne pesant que 300 kg, dédiée à la poursuite de satellites équipés de rétroréflecteurs laser. Elle utilise un petit télescope de 13 cm de diamètre placé sur une monture issue d'un théodolite de précision et motorisé, un laser très compact et une photodiode à avalanche permettant la détection au niveau du simple photo-électron. Les premières expériences (Corse, fin 1996) ont révélé des instabilités dans la qualité des mesures. Ce travail concerne l'étude et la mise en place de nombreuses modifications techniques afin d'atteindre une exactitude centimétrique des mesures et de pouvoir participer à la campagne de validation des orbites et d'étalonnage de l'altimètre du satellite océanographique JASON-1 (2001). La précision instrumentale souhaitée a été vérifiée avec succès en laboratoire.
Outre cet aspect instrumental et métrologique, une analyse a été développée afin de pouvoir estimer l'exactitude et la stabilité des observations de la station mobile après intégration des modifications. A partir d'une expérience de co-localisation entre les deux stations laser fixe du plateau de Calern, on a fait une analyse fondée sur l'ajustement, par station, de coordonnées et d'un biais instrumental moyen à partir d'une orbite de référence des satellites LAGEOS. Des variations saisonnières très cohérentes ont été mises en évidence dans les séries temporelles des différentes composantes. La comparaison locale des déformations de la croûte terrestre se traduisant par des variations d'altitude issues des données laser montre une cohérence avec les mesures d'un gravimètre absolu transportable (FG5). Des signaux de même amplitude ont été observés par GPS. Ces variations sont également mises en évidence à l'échelle mondiale et leur interprétation géophysique est due à la combinaison des effets de marées terrestres et polaire et des effets de charge atmosphérique.
APA, Harvard, Vancouver, ISO, and other styles
30

Lecerf, Rémi. "Suivi des changements d'occupation et d'utilisation des sols d'origine anthropique et climatique à l'échelle régionale par télédétection moyenne résolution (application à la Bretagne)." Phd thesis, Université Rennes 2, 2008. http://tel.archives-ouvertes.fr/tel-00337099.

Full text
Abstract:
Les données de télédétection disponibles jusqu'à présent ne permettaient pas d'envisager un suivi spatio-temporel détaillé de l'occupation et de l'utilisation des sols à l'échelle régionale dans des régions au paysage très fragmenté, en raison de leur résolution temporelle trop faible ou de leur couverture spatiale trop limitée. Les objectifs de cette thèse étaient d'une part d'évaluer des séries temporelles d'images de télédétection à moyenne résolution spatiale pour effectuer ce type de suivi et d'autre part d'identifier et de caractériser les changements d'usage des terres en région agricole intensive à travers l'évolution de deux indicateurs, le taux de couverture hivernale des sols et le ratio céréales-prairies. Pour cela, des séries temporelles MODIS ont été constituées sur la région Bretagne entre 2000 et 2008. Une chaîne de prétraitements et de traitements complète a été mise en œuvre. Elle comprend des méthodes déjà utilisées sur des images de télédétection, mais qui ont dû être adaptées aux séries temporelles MODIS, et des méthodes originales, notamment pour la phase de reconstruction des séries temporelles. Les résultats montrent des tendances d'évolution comme la diminution des prairies au détriment des céréales ou l'augmentation de l'implantation d'intercultures. Ils mettent aussi en évidence des changements ponctuels comme l'augmentation des céréales en 2006 et 2008 et du maïs en 2001. Les principaux facteurs de changements d'occupation et d'utilisation agricole du sol, qui sont des conditions climatiques particulières ou des changements de pratiques agricoles en fonction du contexte politique ou socio-économique, ont été identifiés
APA, Harvard, Vancouver, ISO, and other styles
31

Lalys, Florent. "Automatic recognition of low-level and high-level surgical tasks in the operating room from video images." Phd thesis, Rennes 1, 2012. https://ecm.univ-rennes1.fr/nuxeo/site/esupversions/2186a1f7-f586-43c5-b037-6585b5c22aef.

Full text
Abstract:
La besoin d’une meilleure intégration des nouveaux systèmes de chirurgie assisté par ordinateur dans les salles d’opération à récemment été souligné. Une nécessité pour atteindre cet objectif est de récupérer des données dans les salles d’opérations avec différents capteurs, puis de à partir de ces données de créer des modèles de processus chirurgicaux. Récemment, l'utilisation de vidéos dans la salle d'opération a démontré son efficacité pour aider à la création de système de CAO sensible au contexte. Le but de cette thèse était de présenter une nouvelle méthode pour la détection automatique de tâches haut niveaux (i. E. Phases chirurgicales) et bas-niveaux (i. E. Activités chirurgicales) à partir des vidéos des microscopes uniquement. La première étape a consisté à reconnaitre automatiquement les phases chirurgicales. L'idée fut de combiner des techniques récentes de vision par ordinateur avec une analyse temporelle. Des classifieurs furent tout d’abord mis en œuvre pour extraire des attributs visuels et ainsi caractériser chaque image, puis des algorithmes de classification de séries temporelles furent utilisés pour reconnaitre les phases. La deuxième étape a consisté à reconnaitre les activités chirurgicales. Des informations concernant des outils chirurgicaux et des structures anatomiques furent détectées et combinées avec l'information de la phase précédemment obtenu au sein d’un système de reconnaissance intelligent. Après des validations croisées sur des vidéos de neurochirurgie et de chirurgie de l’œil, nous avons obtenu des taux de reconnaissance de l'ordre de 94% pour la reconnaissance des phases et 64% pour la reconnaissance des activités. Ces systèmes de reconnaissance pourraient être utiles pour générer automatiquement des rapports post-opératoires, pour l'enseignement, l’apprentissage, mais aussi pour les futurs systèmes sensibles au contexte
The need for a better integration of new Computer-Assisted-Surgical systems in the Operating Room (OR) has been recently emphasized. One necessity to achieve this objective is to retrieve data from the OR with different sensors, then to derive models from these data for creating Surgical Process Models (SPMs). Recently, the use of videos from cameras in the OR has demonstrated its efficiency for advancing the creation of situation-aware CAS systems. The purpose of this thesis was to present a new method for the automatic detection of high-level (i. E. Surgical phases) and low-level surgical tasks (i. E. Surgical activities) from microscope video images only. The first step consisted in the detection of high-level surgical tasks. The idea was to combine state-of-the-art computer vision techniques with time series analysis. Image-based classifiers were implemented for extracting visual cues, therefore characterizing each frame of the video, and time-series algorithms were then applied to model time-varying data. The second step consisted in the detection of low-level surgical tasks. Information concerning surgical tools and anatomical structures were detected through an image-based approach and combined with the information of the current phase within a knowledge-based recognition system. Validated on neurosurgical and eye procedures, we obtained recognition rates of around 94% for the recognition of high-level tasks and 64% for low-level tasks. These recognition frameworks might be helpful for automatic post-operative report generation, learning/teaching purposes, and for future context-aware surgical systems
APA, Harvard, Vancouver, ISO, and other styles
32

Lalys, Florent. "Automatic recognition of low-level and high-level surgical tasks in the Operating Room from video images." Phd thesis, Université Rennes 1, 2012. http://tel.archives-ouvertes.fr/tel-00695648.

Full text
Abstract:
La besoin d'une meilleure intégration des nouveaux systèmes de chirurgie assistée par ordinateur dans les salles d'opération à récemment été souligné. Une nécessité pour atteindre cet objectif est de récupérer des données dans les salles d'opérations avec différents capteurs, puis à partir de ces données de créer des modèles de processus chirurgicaux. Récemment, l'utilisation de vidéos dans la salle d'opération a démontré son efficacité pour aider à la création de systèmes de CAO sensibles au contexte. Le but de cette thèse était de présenter une nouvelle méthode pour la détection automatique de tâches haut niveaux (i.e. phases chirurgicales) et bas-niveaux (i.e. activités chirurgicales) à partir des vidéos des microscopes uniquement. La première étape a consisté à reconnaitre automatiquement les phases chirurgicales. L'idée fut de combiner des techniques récentes de vision par ordinateur avec une analyse temporelle. Des classifieurs furent tout d'abord mis en œuvre pour extraire des attributs visuels et ainsi caractériser chaque image, puis des algorithmes de classification de séries temporelles furent utilisés pour reconnaitre les phases. La deuxième étape a consisté à reconnaitre les activités chirurgicales. Des informations concernant des outils chirurgicaux et des structures anatomiques furent détectées et combinées avec l'information de la phase précédemment obtenu au sein d'un système de reconnaissance intelligent. Après des validations croisées sur des vidéos de neurochirurgie et de chirurgie de l'œil, nous avons obtenu des taux de reconnaissance de l'ordre de 94% pour la reconnaissance des phases et 64% pour la reconnaissance des activités. Ces systèmes de reconnaissance pourraient être utiles pour générer automatiquement des rapports post-opératoires, pour l'enseignement, l'apprentissage, mais aussi pour les futurs systèmes sensibles au contexte.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography