Academic literature on the topic 'Set valued theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Set valued theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Set valued theory"
Hajek, P., and Z. Hanikova. "Interpreting lattice-valued set theory in fuzzy set theory." Logic Journal of IGPL 21, no. 1 (July 18, 2012): 77–90. http://dx.doi.org/10.1093/jigpal/jzs023.
Full textTitani, Satoko. "A lattice-valued set theory." Archive for Mathematical Logic 38, no. 6 (August 1, 1999): 395–421. http://dx.doi.org/10.1007/s001530050134.
Full textProtasov, I. "Decompositions of set-valued mappings." Algebra and Discrete Mathematics 30, no. 2 (2020): 235–38. http://dx.doi.org/10.12958/adm1485.
Full textPapageorgiou, Nikolaos S. "Contributions to the theory of set valued functions and set valued measures." Transactions of the American Mathematical Society 304, no. 1 (January 1, 1987): 245. http://dx.doi.org/10.1090/s0002-9947-1987-0906815-3.
Full textPapageorgiou, Nikolaos S. "On the theory of Banach space valued multifunctions. 2. Set valued martingales and set valued measures." Journal of Multivariate Analysis 17, no. 2 (October 1985): 207–27. http://dx.doi.org/10.1016/0047-259x(85)90079-x.
Full textTANINO, Tetsuzo. "Theory and Applications of Set-Valued Mappings : Part1:Fundamental Properties of Set-Valued Mappings." Journal of Japan Society for Fuzzy Theory and Systems 13, no. 1 (2001): 11–19. http://dx.doi.org/10.3156/jfuzzy.13.1_11.
Full textDESCHRIJVER, GLAD, and CHRIS CORNELIS. "REPRESENTABILITY IN INTERVAL-VALUED FUZZY SET THEORY." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 15, no. 03 (June 2007): 345–61. http://dx.doi.org/10.1142/s0218488507004716.
Full textO'Regan, Donal. "Generalized coincidence theory for set-valued maps." Journal of Nonlinear Sciences and Applications 10, no. 03 (March 4, 2017): 855–64. http://dx.doi.org/10.22436/jnsa.010.03.01.
Full textNishimura, Hirokazu. "Heyting valued set theory and fibre bundles." Publications of the Research Institute for Mathematical Sciences 24, no. 2 (1988): 225–47. http://dx.doi.org/10.2977/prims/1195175197.
Full textNishimura, Hirokazu. "Heyting valued set theory and Sato hyperfunctions." Publications of the Research Institute for Mathematical Sciences 22, no. 4 (1986): 801–11. http://dx.doi.org/10.2977/prims/1195177631.
Full textDissertations / Theses on the topic "Set valued theory"
Kaczynski, Tomasz. "Topological transversality of condensing set-valued maps." Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=73995.
Full textOrnelas, Gilbert. "Set-valued extensions of fuzzy logic classification theorems /." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2007. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Full textStofile, Simfumene. "Fixed points of single-valued and multi-valued mappings with applications." Thesis, Rhodes University, 2013. http://hdl.handle.net/10962/d1002960.
Full textGalbraith, Grant N. "Applications of variational analysis to optimal trajectories and nonsmooth Hamilton-Jacobi theory /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/5766.
Full textPennanen, Teemu. "Dualization of monotone generalized equations /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/5731.
Full textBrill, Markus [Verfasser], Felix [Akademischer Betreuer] Brandt, and Jérôme [Akademischer Betreuer] Lang. "Set-Valued Solution Concepts in Social Choice and Game Theory : Axiomatic and Computational Aspects / Markus Brill. Gutachter: Felix Brandt ; Jérôme Lang. Betreuer: Felix Brandt." München : Universitätsbibliothek der TU München, 2012. http://d-nb.info/1031512683/34.
Full textPiccoli, Bibiana. "Funções ponto a conjunto." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306087.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-04T02:57:42Z (GMT). No. of bitstreams: 1 Piccoli_Bibiana_M.pdf: 1524742 bytes, checksum: 4328a3e766798f219a0267cdf6e892b7 (MD5) Previous issue date: 2005
Resumo: Estudamos um tipo especial de função denominada função ponto a conjunto, que associa a cada elemento de um espaço métrico um único subconjunto não vazio de outro espaço métrico. A noção de continuidade das funções usuais caracterizada por propriedades equivalentes, enun-ciadas em termos de vizinhanças ou em termos de seqüências, deram origem a versões corres-pondentes para as funções ponto a conjunto. As propriedades adaptadas, não mais equivalentes, são conhecidas como semicontinuidade superior e semicontinuidade inferior, respectivamente. Uma condição do tipo Lipschitz e um tipo de continuidade propriamente, obtido munindo-se o contradomínio da métrica de Hausdorff, foram relacionados à semicontinuidade. Algumas propriedades algébricas ou topológicas dos conjuntos imagem foram essenciais para os resulta-dos obtidos. Abordamos adaptações de alguns resultados clássicos da análise funcional como os teoremas da limitação uniforme, da aplicação aberta e do gráfico fechado para as funções ponto a conjunto caracterizadas como processos convexos, que são os análogos dos operadores lineares. Estabelecemos também uma versão do teorema de Schauder sobre pontos fixos para funções ponto a conjunto e também para as do tipo contração
Abstract: We study a mapping called a set-valued map which associates with each point of a metric space a non empty subset of another metric space. In the case of single-valued maps, contin-uous functions are characterized by two equivalent properties: one in terms of neighborhood and other in terms of sequences. These two properties can be adapted to the case of set-valued maps, are no longer equivalent and are called upper semi continuity and lower semi continuity, respectively. We adapt to the set-valued case the concept of Lipschitz applications and also a type of continuity when the range is enjoyed with the Hausdorff metric. We related them with the conditions of semi continuity. Some of the results depends on algebraic or topological prop-erties of the images. We adapt to closed convex process the principIe of uniform boundedness, the Banach open mapping and closed graph theorems. The closed convex processes are the set-valued analogues of continuous linear operators. We also establish two fixed point result for set-valued maps: the first generalizes the Schauder fixed point theorem and the second considers that of contraction type
Mestrado
Matematica
Mestre em Matemática
Okon, Thomas. "When graph meets diagonal: an approximative access to fixed point theory." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2001. http://nbn-resolving.de/urn:nbn:de:swb:14-1000223151750-26347.
Full textBuquicchio, Luke J. "Variational Open Set Recognition." Digital WPI, 2020. https://digitalcommons.wpi.edu/etd-theses/1377.
Full textTawn, Jonathan Angus. "Extreme value theory with oceanographic applications." Thesis, University of Surrey, 1988. http://epubs.surrey.ac.uk/2882/.
Full textBooks on the topic "Set valued theory"
Yukio, Ogura, and Kreinovich Vladik, eds. Limit theorems and applications of set-valued and fuzzy set-valued random variables. Dordrecht: Kluwer Academic Publishers, 2002.
Find full textLi, Shoumei. Limit theorems and applications of set-valued and fuzzy set-valued random variables. Dordrecht: Kluwer Academic Publishers, 2002.
Find full textSong, Wen. Quality in set-valued optimization. Warszawa: Polska Akademia Nauk, Instytut Matematyczny, 1998.
Find full textL, Bell J. Set theory: Boolean-valued models and independence proofs. 3rd ed. Oxford [Oxfordshire]: Clarendon Press, 2011.
Find full textPękala, Barbara. Uncertainty Data in Interval-Valued Fuzzy Set Theory. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-93910-0.
Full textBell, J. L. Boolean-valued models and independence proofs in set theory. 2nd ed. Oxford: Clarendon, 1985.
Find full textBoolean-valued models and independence proofs in set theory. 2nd ed. Oxford [Oxfordshire]: Oxford University Press, 1985.
Find full textYannelis, Nicholas C. Set-valued functions of two variables in economic theory. [Urbana, Ill.]: College of Commerce and Business Administration, University of Illinois at Urbana-Champaign, 1989.
Find full textBook chapters on the topic "Set valued theory"
Aubin, Jean-Pierre. "Set-Valued Maps." In Viability Theory, 53–75. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4910-4_4.
Full textAubin, Jean-Pierre. "Set-Valued Analysis." In Studies in Economic Theory, 361–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60756-1_11.
Full textDenkowski, Zdzisław, Stanisław Migórski, and Nikolas S. Papageorgiou. "SET-Valued Analysis." In An Introduction to Nonlinear Analysis: Theory, 405–516. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9158-4_4.
Full textKharazishvili, A. B. "Set-valued mappings." In Applications of Point Set Theory in Real Analysis, 21–38. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-0750-3_2.
Full textAubin, Jean-Pierre, Alexandre M. Bayen, and Patrick Saint-Pierre. "Set-Valued Analysis at a Glance." In Viability Theory, 713–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16684-6_18.
Full textCross, Valerie V., and Thomas A. Sudkamp. "Fuzzy-Valued Similarity Measures." In Similarity and Compatibility in Fuzzy Set Theory, 139–42. Heidelberg: Physica-Verlag HD, 2002. http://dx.doi.org/10.1007/978-3-7908-1793-5_10.
Full textVan Gasse, Bart, Chris Cornelis, and Glad Deschrijver. "Interval-Valued Algebras and Fuzzy Logics." In 35 Years of Fuzzy Set Theory, 57–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16629-7_4.
Full textHan, Zhengzhi, Xiushan Cai, and Jun Huang. "Set-Valued Mappings and Differential Inclusions." In Theory of Control Systems Described by Differential Inclusions, 53–156. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49245-1_2.
Full textGottwald, S. "Many-Valued Logic And Fuzzy Set Theory." In The Handbooks of Fuzzy Sets Series, 5–89. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5079-2_2.
Full textAbd El-Monsef, M. E., H. M. Abu-Donia, and E. A. Marei. "Multi-valued Approach to Near Set Theory." In Transactions on Rough Sets XV, 26–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31903-7_2.
Full textConference papers on the topic "Set valued theory"
Alkhazaleh, Shawkat. "n-valued refined neutrosophic soft set theory." In 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2016. http://dx.doi.org/10.1109/fuzz-ieee.2016.7738004.
Full textSHIRAHATA, MASARU. "PHASE-VALUED MODELS OF LINEAR SET THEORY." In 7th and 8th Asian Logic Conferences. CO-PUBLISHED WITH SINGAPORE UNIVERSITY PRESS, 2003. http://dx.doi.org/10.1142/9789812705815_0016.
Full textRus, Ioan A., Adrian Petruşel, and Gabriela Petruşel. "Fixed point theorems for set-valued Y-contractions." In Fixed Point Theory and its Applications. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc77-0-17.
Full textChen, Ji-Qiang, Ming-Hu Ha, and Li-Fang Zheng. "The Key Theorem of Learning Theory on Set-Valued Probability Space." In 2007 International Conference on Machine Learning and Cybernetics. IEEE, 2007. http://dx.doi.org/10.1109/icmlc.2007.4370620.
Full textFigallo-Orellano, Aldo, and Juan Sebastián Slagter. "Models for da Costa’s paraconsistent set theory." In Workshop Brasileiro de Lógica. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/wbl.2020.11456.
Full textLin, Yunguo, Xiaoyun Chen, and ShanLi Hu. "Interval-Valued Agent Belief Model Based on New Fuzzy Set Theory." In Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007). IEEE, 2007. http://dx.doi.org/10.1109/fskd.2007.370.
Full text"Using Valued Tolerance decisions rules for property valuation with rough set theory." In 10th European Real Estate Society Conference: ERES Conference 2003. ERES, 2003. http://dx.doi.org/10.15396/eres2003_141.
Full textXin, Guan, Yi Xiao, and He You. "Discretization of Continuous Interval-Valued Attributes in Rough Set Theory and its Application." In 2007 International Conference on Machine Learning and Cybernetics. IEEE, 2007. http://dx.doi.org/10.1109/icmlc.2007.4370787.
Full textZhao Zhijin, Yao Yao, and Pu Junjie. "Multiuser detection based on random-set theory and multi-valued particle swarm optimization." In 2008 11th IEEE International Conference on Communication Technology (ICCT 2008). IEEE, 2008. http://dx.doi.org/10.1109/icct.2008.4716289.
Full textMatsumoto, Takahiro, Shinya Matsufuji, Tetsuya Kojima, and Udaya Parampalli. "A generation method of an orthogonal set of real-valued periodic orthogonal sequences from Huffman sequences." In 2011 Australian Communications Theory Workshop (AusCTW). IEEE, 2011. http://dx.doi.org/10.1109/ausctw.2011.5728739.
Full textReports on the topic "Set valued theory"
Kim, Joseph J., Samuel Dominguez, and Luis Diaz. Freight Demand Model for Southern California Freeways with Owner–Operator Truck Drivers. Mineta Transportation Institute, October 2020. http://dx.doi.org/10.31979/mti.2020.1931.
Full textPhillips, Jake. Understanding the impact of inspection on probation. Sheffield Hallam University, 2021. http://dx.doi.org/10.7190/shu.hkcij.05.2021.
Full textChandra, Shailesh, Mehran Rahmani, Timothy Thai, Vivek Mishra, and Jacqueline Camacho. Evaluating Financing Mechanisms and Economic Benefits to Fund Grade Separation Projects. Mineta Transportation Institute, January 2021. http://dx.doi.org/10.31979/mti.2020.1926.
Full textBayley, Stephen, Darge Wole, Louise Yorke, Paul Ramchandani, and Pauline Rose. Researching Socio-Emotional Learning, Mental Health and Wellbeing: Methodological Issues in Low-Income Contexts. Research on Improving Systems of Education (RISE), April 2021. http://dx.doi.org/10.35489/bsg-rise-wp_2021/068.
Full textBridges, Todd, Jeffrey King, Johnathan Simm, Michael Beck, Georganna Collins, Quirijn Lodder, and Ram Mohan. International Guidelines on Natural and Nature-Based Features for Flood Risk Management. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41946.
Full textRojas Smith, Lucia, Megan L. Clayton, Carol Woodell, and Carol Mansfield. The Role of Patient Navigators in Improving Caregiver Management of Childhood Asthma. RTI Press, April 2017. http://dx.doi.org/10.3768/rtipress.2017.rr.0030.1704.
Full textDiGrande, Laura, Sue Pedrazzani, Elizabeth Kinyara, Melanie Hymes, Shawn Karns, Donna Rhodes, and Alanna Moshfegh. Field Interviewer– Administered Dietary Recalls in Participants’ Homes: A Feasibility Study Using the US Department of Agriculture’s Automated Multiple-Pass Method. RTI Press, May 2021. http://dx.doi.org/10.3768/rtipress.2021.mr.0045.2105.
Full textOrning, Tanja. Professional identities in progress – developing personal artistic trajectories. Norges Musikkhøgskole, August 2018. http://dx.doi.org/10.22501/nmh-ar.544616.
Full textFoster, Jessica. Survey of Legal Mechanisms Relating to Groundwater Along the Texas-Mexico Border. Edited by Gabriel Eckstein. Texas A&M University School of Law Program in Natural Resources Systems, April 2018. http://dx.doi.org/10.37419/eenrs.groundwateralongborder.
Full textRuosteenoja, Kimmo. Applicability of CMIP6 models for building climate projections for northern Europe. Finnish Meteorological Institute, September 2021. http://dx.doi.org/10.35614/isbn.9789523361416.
Full text