To see the other types of publications on this topic, follow the link: Sewage Sewage sludge digestion. Anaerobic bacteria.

Dissertations / Theses on the topic 'Sewage Sewage sludge digestion. Anaerobic bacteria'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Sewage Sewage sludge digestion. Anaerobic bacteria.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Budiastuti, Herawati. "Intensification of single stage continuously stirred tank anaerobic digestion process using carriers." Thesis, Budiastuti, Herawati (2004) Intensification of single stage continuously stirred tank anaerobic digestion process using carriers. PhD thesis, Murdoch University, 2004. https://researchrepository.murdoch.edu.au/id/eprint/491/.

Full text
Abstract:
The Continuously fed Stirred Tank Reactor (CSTR) is a popular design for anaerobic treatment of wastewater. This reactor type is simple in design and operation, independent of biomass type and low in capital costs. The CSTR has, however, to be operated at long Hydraulic Retention Times (HRT) of the order of 16 to 30 days since biomass is continuously lost with the effluent. Various alternate concepts of reactor design have, therefore, been developed to allow more rapid treatment. Treatment can be enhanced by retaining biomass within the digester so that the HRT is decoupled from solid biomass retention time (SRT). Unlike in continuous stirred tank digesters where the SRT is equal to HRT, the SRT in other designs are much greater than the HRT. This allows the wastewater to be treated at high throughputs while retaining the biocatalyst (or biomass) mediating the treatment within the digester. In this study the operation of a CSTR was intensified by separating SRT from HRT while taking into account the economical aspects. The intensification of operation is defined as increasing wastewater throughput or organic loading rate while at the same time maintaining efficiency of treatment and robustness to reject disturbances (changes in wastewater concentration and flow rate). The operation of existing CSTR was intensified by addition of carriers. It is hypothesized that by providing surfaces (or carriers) for bacterial attachment within the continuous stirred tank digester, biomass will be better retained and the wastewater throughput can be increased. The carriers or surfaces employed in this study were light carrier elements (shredded granular rubber tire having a density of 0.96 g/cm3) that move gently with the water in the reactor. This carrier material is much cheaper compared with other commercial carrier materials. This reactor type, called an Anaerobic Moving Bed Reactor (AMBR), was applied in this study to treat high strength synthetic wastewater, containing molasses as the main substrate. The improvement of reactor performance was clearly shown by the capability of the system to be operated without any difficulties at HRT of 6 days at an OLR of 5.8 g COD/l/d or at HRT of 1 day at an OLR of 4 g COD/l/d. The carriers were shown to be effective in retaining biomass aggregates. The AMBR was further intensified by changing the feeding strategy. It was shown that in stirred tank digester without carriers an intermittent feeding strategy resulted in better microbial capacity to degrade higher chain volatile fatty acids like propionic and butyric acids than the continuous feeding mode. An increase in degrading capacity of the intermittently fed digester was shown via degradation rates of pulse additions of propionic and butyric acids and by its capability of handling all changes in loading rates imposed. The continuously fed digester, receiving constant feed, on the other hand, suffered more when loading rates were changed, and the degradation rates of propionic and butyric acids were slower. The intermittent feeding mode was then implemented on the AMBR, and it was operated as a sequencing batch reactor with a fill, react, settle and decant period in each cycle. The sequencing batch mode when applied to the AMBR (now called an Anaerobic Moving Bed Sequencing Batch Reactor or AMBSBR) could increase capability of the digester to handle higher shock loads. At 3.8 d HRT the AMBSBR could handle an OLR of 10.8 g COD/l/d as opposed to 7.4 g COD/l/d by the AMBR. At 2.5 d HRT the AMBSBR could handle an OLR of 6.4 g COD/l/d while the AMBR could only be loaded at an OLR of 4.2 g COD/l/d. The ratio of SRT to HRT was at least 15 for this reactor. The reactor was able to handle concentrated feed flow rates at longer cycles or more dilute feed flow rates at frequent shorter cycles. The proposed operational strategies were verified by using a structured mathematical model which was developed based on the IWA ADM1 model. Several modifications were implemented to the model to obtain better predictions. The modified model was capable in predicting all the trends of the operating variables from both continuously and intermittently fed reactors. None of the two model versions (ADM1 and modified models) was, however, able to predict the increased propionate degradation capacity in intermittently fed digesters. The reason for this was the assumption of fixed stoichiometry of fermentative reactions for glucose mineralisation. By modifying the fractions of glucose mineralisation a better fit between experimental results and the model could be obtained.
APA, Harvard, Vancouver, ISO, and other styles
2

Budiastuti, Herawati. "Intensification of single stage continuously stirred tank anaerobic digestion process using carriers." Budiastuti, Herawati (2004) Intensification of single stage continuously stirred tank anaerobic digestion process using carriers. PhD thesis, Murdoch University, 2004. http://researchrepository.murdoch.edu.au/491/.

Full text
Abstract:
The Continuously fed Stirred Tank Reactor (CSTR) is a popular design for anaerobic treatment of wastewater. This reactor type is simple in design and operation, independent of biomass type and low in capital costs. The CSTR has, however, to be operated at long Hydraulic Retention Times (HRT) of the order of 16 to 30 days since biomass is continuously lost with the effluent. Various alternate concepts of reactor design have, therefore, been developed to allow more rapid treatment. Treatment can be enhanced by retaining biomass within the digester so that the HRT is decoupled from solid biomass retention time (SRT). Unlike in continuous stirred tank digesters where the SRT is equal to HRT, the SRT in other designs are much greater than the HRT. This allows the wastewater to be treated at high throughputs while retaining the biocatalyst (or biomass) mediating the treatment within the digester. In this study the operation of a CSTR was intensified by separating SRT from HRT while taking into account the economical aspects. The intensification of operation is defined as increasing wastewater throughput or organic loading rate while at the same time maintaining efficiency of treatment and robustness to reject disturbances (changes in wastewater concentration and flow rate). The operation of existing CSTR was intensified by addition of carriers. It is hypothesized that by providing surfaces (or carriers) for bacterial attachment within the continuous stirred tank digester, biomass will be better retained and the wastewater throughput can be increased. The carriers or surfaces employed in this study were light carrier elements (shredded granular rubber tire having a density of 0.96 g/cm3) that move gently with the water in the reactor. This carrier material is much cheaper compared with other commercial carrier materials. This reactor type, called an Anaerobic Moving Bed Reactor (AMBR), was applied in this study to treat high strength synthetic wastewater, containing molasses as the main substrate. The improvement of reactor performance was clearly shown by the capability of the system to be operated without any difficulties at HRT of 6 days at an OLR of 5.8 g COD/l/d or at HRT of 1 day at an OLR of 4 g COD/l/d. The carriers were shown to be effective in retaining biomass aggregates. The AMBR was further intensified by changing the feeding strategy. It was shown that in stirred tank digester without carriers an intermittent feeding strategy resulted in better microbial capacity to degrade higher chain volatile fatty acids like propionic and butyric acids than the continuous feeding mode. An increase in degrading capacity of the intermittently fed digester was shown via degradation rates of pulse additions of propionic and butyric acids and by its capability of handling all changes in loading rates imposed. The continuously fed digester, receiving constant feed, on the other hand, suffered more when loading rates were changed, and the degradation rates of propionic and butyric acids were slower. The intermittent feeding mode was then implemented on the AMBR, and it was operated as a sequencing batch reactor with a fill, react, settle and decant period in each cycle. The sequencing batch mode when applied to the AMBR (now called an Anaerobic Moving Bed Sequencing Batch Reactor or AMBSBR) could increase capability of the digester to handle higher shock loads. At 3.8 d HRT the AMBSBR could handle an OLR of 10.8 g COD/l/d as opposed to 7.4 g COD/l/d by the AMBR. At 2.5 d HRT the AMBSBR could handle an OLR of 6.4 g COD/l/d while the AMBR could only be loaded at an OLR of 4.2 g COD/l/d. The ratio of SRT to HRT was at least 15 for this reactor. The reactor was able to handle concentrated feed flow rates at longer cycles or more dilute feed flow rates at frequent shorter cycles. The proposed operational strategies were verified by using a structured mathematical model which was developed based on the IWA ADM1 model. Several modifications were implemented to the model to obtain better predictions. The modified model was capable in predicting all the trends of the operating variables from both continuously and intermittently fed reactors. None of the two model versions (ADM1 and modified models) was, however, able to predict the increased propionate degradation capacity in intermittently fed digesters. The reason for this was the assumption of fixed stoichiometry of fermentative reactions for glucose mineralisation. By modifying the fractions of glucose mineralisation a better fit between experimental results and the model could be obtained.
APA, Harvard, Vancouver, ISO, and other styles
3

Tshivhunge, Azwiedziswi Sylvia. "Enzymology of activated sewage sludge during anaerobic treatment of wastewaters : identification, characterisation, isolation and partial purification of proteases." Thesis, Rhodes University, 2001. http://hdl.handle.net/10962/d1004072.

Full text
Abstract:
During anaerobic digestion bacteria inside the digester require a carbon source for their growth and metabolism, sewage sludge was used as a carbon source in this study. The COD content was used to measure the disappearance of the substrate. COD content was reduced by 48.3% and 49% in the methanogenic and sulphidogenic bioreactors, respectively, while sulphate concentration was reduced by 40%, producing 70mg/L of hydrogen sulphide as the end product over the first 5-7 days. Sulphate (which is used as a terminal electron acceptor of sulphur reducing bacteria) has little or no effect on the sulphidogenic and methanogenic proteases. Sulphite and sulphide (the intermediate and end product of sulphate reduction) increased protease activity by 20% and 40%-80%, respectively. Maximum protease activity occurred on day 21 in the methanogenic reactor and on day 9 in the sulphidogenic reactor. The absorbance, which indicates the level of amino acid increased to 2 and 9 for methanogenic and sulphidogenic bioreactors, respectively. Proteases that were active during anaerobic digestion were associated with the pellet (organic particulate matter) of the sewage. These enzymes have an optimum activity at pH 10 and at temperature of 50°C. The proteases that were active at pH 5 and 7, had optimum temperatures at 30°C and 60°C, respectively. Due to their association with organic particulate matter, these enzymes were stable at their optimum temperatures for at least five hours at their respective pH. Inhibition by PMSF, TPCK and 1.10-phenanthroline suggested that proteases inside the anaerobic digester are a mixture of cysteine, serine and metalloproteases. At pH 5, however, EDTA appeared to enhance protease activity by 368% (three-fold). Acetic acid decreased protease activity by 21%, while both propionic and butyric acid at 200 mg/L cause total inhibition of protease activity while these acids at higher pH (where they exist as their corresponding salts) exerted little effect. Copper, iron and zinc inhibited protease activity by 85% at pH 5 with concentrations ranging between 200 and 600 mg/L. On the other hand, nickel, showed an increase in protease activity of nearly 250%. At pH 7 and 10, copper had no effect on protease activity while iron, nickel and zinc inhibited these enzymes by 20-40%. Proteases at pH 7 were extracted from the pellet by sonication, releasing 50% of the total enzymes into the solution. The enzymes were precipitated by ammonium sulphate precipitation, and further purified by ion exchange chromatography and gel filtration. Ion exchange chromatography revealed that most of the enzymes that hydrolyse proteins are negatively charged while gel filtration showed that their molecular weight is approximately 500 kDa.
APA, Harvard, Vancouver, ISO, and other styles
4

Lucero-Ramirez, Baltazar. "The effects of time and temperature on the fate of pathogens and indicator bacteria during municipal wastewater sludge-mesophilic anaerobic digestion, air-drying, and composting /." Full text (PDF) from UMI/Dissertation Abstracts International, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p3004325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lam, Shirley. "Effect of sulphate on the anaerobic degradation of organic pollutants (benzoate) /." Hong Kong : University of Hong Kong, 1994. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13813523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Riley, S. A. "An investigation into the role of hydrogen during the anaerobic digestion of domestic sewage sludge." Thesis, University of Essex, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

林淑儀 and Shirley Lam. "Effect of sulphate on the anaerobic degradation of organicpollutants (benzoate)." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1994. http://hub.hku.hk/bib/B31252886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Poon, Wing Chi. "An exploratory study of using hydrogen peroxide as oxygen source in aerobic upflow sludge blanket reactor /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202005%20POON.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Holloway, Ryan W. "Forward osmosis for concentration of anaerobic digester centrate." abstract and full text PDF (free order & download UNR users only), 2006. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1436020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Tong. "Anaerobic treatment of benzoate- and phenol- containing wastewaters /." Hong Kong : University of Hong Kong, 1996. http://sunzi.lib.hku.hk/hkuto/record.jsp?B17590607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Chen, Tong, and 陳彤. "Anaerobic treatment of benzoate- and phenol- containing wastewaters." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B31212918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Beyers, Analene. "Process optimization for partial oxidation of bacterial sludge in a sonochemical reactor." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86289.

Full text
Abstract:
Thesis (MEng)--Stellenbosch University, 2014.
ENGLISH ABSTRACT: It was found that bacterial sludge from anaerobic water treatment systems is produced internationally at a rate of 60 grams per person per day and the accumulation of the potentially hazardous by-product has become of increasing concern. The produced bacterial sludge is frequently pumped into dams, dried out and used as agricultural fertilizer. This bacterial sludge is expected to have a relatively high heating value and as such, has the potential to produce energy from the biomass. It is, therefore, advisable to utilize this energy potential as an alternative to conventional sludge disposal. This project aimed to improve the yield of syngas by optimizing the reactor design to partially oxidize bacterial sludge using a sonochemical reactor that is operated at bulk atmospheric conditions. The effect of different conditions was investigated and the optimum settings for syngas production were found by investigating temperature, pressure and the effect of the amplitude of operation that regulates the energy input by the ultrasonic equipment. The optimum conditions were used to investigate the kinetics involved in this process as well as to determine the energy consumption by the process. It was also required to study the feasibility of partially oxidizing bacterial sludge using a sonochemical reactor instead of conventional steam gasification and also as an alternative means of sludge disposal. By eliminating this pollutant source, the future environmental threat posed by an increasing population size will be minimized and energy will be utilized from a thus-far wasted energy source. The syngas that is produced is used as a green alternative to fossil fuels in the Gas-to-Liquids (GTL) process to produce liquids fuels. A thus-far wasted energy source will be consumed and fossil fuels can be saved in the process. It was found that the maximum hydrogen mole percentage produced is 0.141 mole % of the vapour phase with the maximum carbon monoxide mole percentage in the vapour phase at 1.896 mole %. This shows an improvement on work conducted by Beyers (2011) of 59 % for hydrogen, 92% for carbon monoxide and a reduction of 49 % for carbon dioxide. A kinetic study of the process indicated that the rate equations that describe the hydrogen and carbon monoxide production are zero order and, therefore, independent of initial concentration of the sludge. The rate constants were 0.0146 (mol % hydrogen/s) and 0.0183 (mol % hydrogen/s) for hydrogen and carbon monoxide, respectively. It was found that the most severe change to the higher heating value of the feed was a mere 0.27 mJ/kg from an original value of 9.81 mJ/kg. This therefore confirms that the reaction has not proceeded to completion. The statistical model predicted a maximum value for hydrogen production at 0.151 mole % in the product gas, 0.01 mole % from the measured maximum. It was also found that hydrogen is produced during the sonolysis of distilled water and that this confirms that the hydrogen production during partial oxidation of the sludge sample comes mainly from the water present in the sludge. The hydrogen produced when only using water, was found to be 0.127 mole % and when using the active sludge, the value was 0.116 mole % hydrogen in the vapour phase. The thermal decomposition of calcium carbonate in the lime that is used to treat the pH of the unit where the sludge originates from, followed by the formation of carbon monoxide during the Boudouard reaction, led to an increased amount of carbon monoxide present in the product gas. Ultrasonic intensity is defined as the amount of energy that is transferred to the sample per cubic meter of the internal surface area of the reactor vessel. It was found that the intensity that was delivered to the reactant was lower than expected as the reactor was operating at an efficiency of only 36%. The design intensity was 1.44 W/m2 and the actual delivered intensity was 0.52 W/m2. Based on a maximum yield of 0.00012 Nm3/kg, the cost of syngas production under the conditions described by this study, would amount to R 19.98/Nm3. This cost only implicates the operational expenses and does not take further downstream processing and initial capital investment repayments into account. Conventional steam gasification at a yield of 0.67 Nm3/kg has an operational syngas production cost of R 1.48/Nm3. This process was therefore found to not be economically feasible as the cost of utilizing ultrasound as opposed to normal steam gasification is more than ten times more expensive. It was concluded that the process was successfully optimized by the redesigning of the reactor and that carbon dioxide production was limited by excluding oxygen from the feed gas. It was also concluded that the sonolysis of water and the thermal decomposition of calcium carbonate, followed by the conversion of carbon dioxide to carbon monoxide, supplements the syngas production under the current operational conditions. Based on the production of no methane during the course of this study, the sonochemical process can be tied into the GTL process after the steam reforming unit. Due to the relatively high carbon dioxide content, the process will need to join the main feed gas stream that is fed into the carbon dioxide removal unit before it enters the GTL process to correct the desired feed gas ratio. Based on the very low syngas yields, the low hydrogen to carbon monoxide ratio in comparison to the required ratio of 2 as well as the high energy intensity required for this process, it can be concluded that the partial oxidation of biomass sludge in a sonochemical reactor is not feasible as an alternative technology to conventional steam gasification. The operating costs of the sonochemical unit would be nearly ten times that of steam gasification and is therefore concluded to not be a competitive technology to conventional steam gasification. It is recommended that the reactor design is reinvestigated to improve the delivered ultrasound intensity as well as the surface area where the ultrasonic waves are intensified. This would eliminate dead-zones. It was also recommended that the argon gas is continuously bubbled through the reactant mixture during experiments to eliminate the degassing effect caused when the ultrasound is initially emitted. The gas outlet of the process can then be connected to an online gas chromatograph (GC) with a thermal conductivity detector (TCD) and flame ionization detector (FID) methanizer in series as the TCD does not destroy the sample and this setup would improve the analytical process. The production of carbon monoxide from lime as well as the production of hydrogen from water during sonolysis needs to be investigated. The effect of radicals can also be studied by the addition of a radical scavenger to the process. It is recommended that the experimental design is reinvestigated and a design that will deliver similar information utilizing fewer data points should be chosen. Based on this model as well as further kinetic testing, it is recommended that a complete ASPEN model is developed to simulate the energy requirements to tie the ultrasonic process into the commercial plant. Based on this model, a complete feasibility study can then be conducted to determine the capital costs involved, the operating costs, the repayment period as well as taking the current costs of sludge disposal into account.
AFRIKAANSE OPSOMMING: Daar is gevind dat bakteriele slik internasionaal geproduseer word deur anaerobiese waterbehandelingseenhede teen ‘n tempo van 60 gram per person per dag en dat die opberging van hierdie gevaarlike byproduk ‘n groeiende probleem word. Die geproduseerde bakteriele slik word in damme gestoor, uitgedroog of gebruik as kunsmis in die landbou bedryf. Daar word vermoed dat hierdie baketriele slik oor ‘n hoe verwarmings waarde beskik en het daarom die potensiaal om energie te produseer uit die biomassa. Daarom is dit voorgestel om alternatiewe prosesse te ondersoek om van hierdie slik ontslae te raak en moontlik die energie wat beskikbaar is te gebruik. Die projek is daarop gefokus om die produksie van syngas te verbeter deur die reaktorontwerp te optimeer deur gebruik te maak van parsiele oksidasie van slik onder atmosferiese kondisies deur klankgolwe te gebruik. Die effek van verskillende operasionele kondisies is ondersoek en die optimale vlakke van syngas produksie is gevind deur temperatuur, druk en amplitude wat die hoeveelheid energie wat oorgedra word aan die reaktor reguleer, te ondersoek. Die optimale kondisies is ook gebruik om die kinetiese aspekte van die proses te ondersoek en ook om te kyk wat die sisteem se energie benodighede behels. Die haalbaarheid om baketriele slik parsieel te oksideer in ‘n sonochemiese reaktor is vergelyk met dit van konvensionele stoom vergassing van die biomassa en is ook ondersoek as ‘n alternatief om van die slik ontslae te raak. Deur die slik te verwyder as ‘n potensiele bron van besoedeling, kan die toekomstige omgewing’s risiko wat deur die toename in die bevolkkingsgroote tot gevolg is, verwyder word deur ‘n energie bron te gebruik wat tot dusver geignoreer is. Die syngas wat geproduseer word kan dan gebruik word in die “Gas-to-Liquids” (GTL) process om vloeistof brandstowwe te produseer. Dus sal ‘n omgewingsrisiko verminder word, ‘n energiebron word benuttig wat nooit van tevore benuttig is nie en fosiel brandstowwe kan gespaar word. Die maksimum waterstof wat geproduseer is, was 0.141 mol % in die gas fase met ‘n maksimum waarde vir koosltof monoksied van 1.896 mol % in die gas fase. Dit toon ‘n verbetering van 59 % vir waterstof, 92 % vir koolstof monoksied en ‘n vermindering van 49% in die koolstof dioksied wat deur Beyers (2011) geproduseer is. Die kinetiese studie het ondervind dat die “rate equation” van waterstof en koolstofmonoksied beskryf word deur nul-orde kinetika. Hierdie konstantes was 0.0146 (mol % waterstof/s) en 0.0183 (mol % waterstof/s) vir waterstof en koolstofmonoksied. Daar is ook gevind dat die grootste moontlik verandering in die hoe verwarmings waarde van die biomassa is ‘n skamele 0.27 mJ/kg van die oorspronklike waarde van 9.81 mJ/kg. Hierdie waarneming staaf dus die uitkoms dat die reaksie dus nie tot die einde verloop het nie. Die statistiese model het ‘n maksimum van 0.151 mol % voorspel wat 0.01 mol % meer was as die waarde wat gemeet is. Dit is ook gevind dat waterstof geproduseer word deur die sonoliese van water en dat hierdie bykomende waterstof deel uitmaak van die produkgas aangesien die slik grootliks uit water bestaan.Die hoveelheid waterstof in die gas fase wat geproduseer is tydens sonoliese van ‘n suiwer water monster, was 0.127 mol %. Die hoeveelheid waterstof in die gas fase wanneer die slik behandel is ten optimal kondisies, was 0.116 mol % gemiddeld. Die hitte degradering van kalsium karbonaat wat teenwoordig is in die kalk wat gebruik word om die pH van die produksie eenheid te reguleer, gevolg deur die Boudouard reaksie, het tot gevolg dat addisionele koolstof monoksied ook gevorm word. Ultrasoniese intensiteit kan gedefineer word as die hoeveelheid energy wat oorgedra word aan ‘n reaktant gebasseer op die oppervlak area aan die binnekant van die reaktor. Die intensiteit waarteen die voermateriaal blootgestel word aan die klankgolwe was laer as verwag met ‘n 36 % effektiwiteit. Die ontwerp spesifiseer ‘n intensiteit van 1.44 W/m2 en die intensiteit wat fisies gelewer is, was 0.521 W/m2. Die maksimum produksie van syngas was 0.00012 Nm3/kg, wat lei tot ‘n operasionele koste van R 19.98/Nm3 onder die kondisies van hierdie studie. Hierdie koste neem nie die oorsponkilke kapitaal vir die konstruksie, of die koste van verdere behandelik van die gas, in ag nie. Konvensionele stoom vergassing teen ‘n opbrengs van 0.67 Nm3/kg het ‘n operasionele koste van R 1.48/Nm3 tot gevolg. Die proses is dus ekonomies nie ‘n aantreklike opsie nie aangesien die kostes van syngas produksie met ultraklank meer as tien keer meer is as konvensionele stoom vergassing. Daar is tot die gevolgtrekking gekom dat die reaktor optimering suksesvol was en deur geen stuurstof te voer nie, die koolstofdioksied persentasie verminder is. Daar is ook tot die gevolgtrekking gekom dat die sonoliese van water, en die hitte degradering van kalsium karbonaat, gevolg deur die Boudouard reaksie, die syngas produksie supplementeer. Aangesien geen metaan gedurende hierdie studie geproduseer is nie, kan die sonochemiese proses inskakel by die GTL aanleg na die stoom hervormingseenhed. As gevolg van die hoe koolstofdioksied konsentrasie, sal die prosesstroom gemeng moet word met die produk stroom uit die stoom hervormings proses, wat gevoer word na die koolstofdioksied verwyderings eenheid. Hierdie eenheid is daarvoor verantwoordelik om die korrekte verhouding van gasse vir die GTL voer stroom te reguleer. Gebasseer op die baie lae syngas opbrengs, die lae waterstof tot koolstofmonoksied verhouding en die hoe energie behoeftes, is daar tot die gevolgtrekking gekom dat die parsiele oksidasdie van die biomassa in ‘n sonochemiese reaktor nie ‘n haalbare alternatief is vir konvensionele stoom vergassing nie. Die operasionele koste van die sonochemiese eenheid is ongeveer tien keer meer as die van stoom vergassing en daarom is die proses nie kompeterend nie. Daar word voorgestel dat die reaktor ontwerp hersien word om die gelewerde intensiteit te verbeter, sowel as om die kontak area waar die klankgolwe gekonsentreer is, te vergroot. Dit sal dooie sones uitskakel. Daar word ook voorgestel dat argon gas gedurende die eksperiment aanhoudende geborrel word deur die reaktant vloeistof in die reaktor om die ontgassingseffek uit te skakel sodra die klankgolwe aangeskakel word. Die gas uitlaat kan dan inlyn gekoppel word aan ‘n gas chromatograaf met ‘n termiese geleidings detektor (TCD) en ‘n vlam ionisasie detektor (FID) met metaan omskakeling, aangesien die TCD nie die monster vernietig nie. Hierdie opstelling behoort analitiese methodes te verbeter. Die produksie van koolstofmonoksied uit kalk sowel as die produksie van waterstof uit water gedurende sonoliese, moet verder ondersoek word. Die effek van radikale kan ook verder bestudeer word deur die gebruik van ‘n radikaal rower gedurende die proses. Daar word ook voorgestel dat die statistiese ontwerp herondersoek word sodat minder eksperimente gebruik kan word om soortgelyke resultate te bekom met minder data punte. Gebasseer op hierdie nuwe model en ‘n kinetiese studie, word dit aangeraai dat ‘n volledige ASPEN model gebou word om te simuleer hoe hierdie sonochemiese eenheid sal inskakel met die kommersiele eenheid. Dit sal dan moontlik wees om die energie benodighede van die proses te verstaan en gebasseer daarop, kan ‘n volledige haalbaarheid studie gedoen word wat kyk na oorspronklike installasie kostes, onderhouskostes, operasionele kostes sowel as die terugbetaling van die konstruksie kostes. Dan kan ‘n vergelyking getref word met die huidige kostes om van hierdie slik ontslae te raak en om die slik as ‘n brandstof te benut.
APA, Harvard, Vancouver, ISO, and other styles
13

Ganta, Madhuri. "Anaerobic digestion of pulp and paper mill solid wastes : evaluation of operational parameters and microbial diversity." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/27081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Lafitte-Trouque, Sandrine. "Enhanced anaerobic digestion of sewage sludge." Thesis, University of Birmingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wolfe, Christopher L. "Biological and physical treatment of crab processing industry wastewaters." Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-08042009-040526/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

An, Kyoung Jin. "Reduction of excess sludge in an oxic-settling-anaerobic (OSA) system : a modified activated sludge process /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202004%20AN.

Full text
Abstract:
Thesis (Ph. D.)--Hong Kong University of Science and Technology, 2004.
Includes bibliographical references (leaves 188-201). Also available in electronic version. Access restricted to campus users.
APA, Harvard, Vancouver, ISO, and other styles
17

Wong, Tak Ian. "Numerical flow simulations of an egg-shaped anaerobic sludge digester in wastewater treatment /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?EVNG%202005%20WONG.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Yan, Jing-Qing. "Anaerobic digestion of cheese whey in an upflow anaerobic sludge blanket reactor." Thesis, University of British Columbia, 1991. http://hdl.handle.net/2429/31898.

Full text
Abstract:
The anaerobic digestion of cheese whey was studied in an upfiow anaerobic sludge blanket reactor for its start-up characteristics, the effects of various process parameters, the effect of sulfate addition and the determination of optimal operating conditions. Start-up of an UASB reactor treating cheese whey was extremely difficult due to its tendency to acidify. Various start-up strategies were tested to facilitate start-up and to ensure stable operation. Among the operating parameters, sludge loading rate was the most critical for proper start-up of the UASB reactor. The initial sludge loading rate during start-up period should not exceed 0.25 g COD/g VSS. The response of whey digestion to several process parameters was investigated. Without pH-control, over 97% COD removal was obtained for influent concentrations from 5 to 28.8 g COD/1 and HRT of 5 days. However, instability was observed when the influent concentration was increased to 38.1 g COD/1. Gas production from whey is affected by organic loading rate (OLR). At an OLR less than 4 g COD/l-d, higher influent strength resulted in a higher methane production rate. When the OLR was greater than 6, higher strength feed or shorter hydraulic retention time (HRT) produced less methane. From the profiles of substrate concentration measured at various levels above the bottom of the reactor, two reaction stages, acidogenesis and methanogenesis were distinguished. It was experimentally illustrated that the rate of acidogenesis is much faster than the rate of methanogenesis in a whey anaerobic digestion system. The accumulation of VFAs in the first stage being faster than its assimilation in the second stage creates a distinct acidogenic phase in the bottom of the reactor. The instability caused by high influent concentration could be attributed to the accumulation of VFAs beyond the assimilative capacity of the methanogenic stage. A set of empirical models for accumulation and degradation of VFAs was developed using linear regression analysis. The requirement for maintaining this system in a dynamic balance was that the degradation capacity for VFA in the second stage be greater than the accumulation of VFA in the first stage. Based on this idea, the optimal influent concentration was given as between 25 to 30 g COD/1 for system stability. A hypothesis was proposed in this study that a proper amount of sulfate may be applied to moderate the detrimental influence of excess hydrogen on a stressed anaerobic reactor. The effect of sulfate was tested to study the biochemical mechanism. The permissible influent COD concentration was increased from 30 g COD/1 to 50 g COD/1 by using sulfate addition. The pH in the reactor was on the average 0.8 units higher and the concentration of butyric acid in the acidogenic phase much lower with added sulfate than without sulfate addition. The significant improvement of process stability and treatment efficiency made by the addition of sulfate clearly illustrated that sulfate acted like a stimulator which helped to maintain conditions favorable to methanogenesis. The mechanism of this stimulation is explained according to thermodynamics and hydrogen regulation which suggested that sulfate is able to promote the β-oxidation of VFAs by consuming hydrogen. A two-stage inhibition mechanism was proposed to explain the inhibition of high VFA concentrations and the stimulation of sulfate. Higher hydrogen pressure is the cause of preliminary inhibition, resulting in the accumulation of VFAs, which subsequently inhibit the activity and growth of methanogens in the second inhibition stage. The mechanism of inhibition of methanogens from VFAs was interpreted as being caused by the acidification of the internal cytoplasm and destruction of the pH gradient by non-ionized acids based on the theory of bacterial membrane transport. A new control strategy for stabilization of an anaerobic system is recommended. Under the optimal operating conditions based on the results in the first three steps, over 97% reduction of COD was achieved when the influent COD was 30 g /l using an HRT of 2 days, an OLR of 16.61 g COD/l-d and sulfate concentration of 0.2 g/1.
Applied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
19

Kwong, Tin-sang. "Anaerobic degradation of particulate starch in different reactors under mesophilic conditions /." Hong Kong : University of Hong Kong, 1995. http://sunzi.lib.hku.hk/hkuto/record.jsp?B1478693X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hamzawi, Nancy. "Anaerobic co-digestion of municipal solid waste and sewage sludge." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq21990.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Flisberg, Kristina. "Anaerobic Co-digestion of Sewage sludge, Algae and Coffee Ground." Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-10206.

Full text
Abstract:
Energy shortfall and air pollution are some of the challenges the human kind is facing today. Fossil fuel is still the most widely used fuel, which is a non-renewable resource, increasing excess carbon dioxide into the air. To overcome these issues, and reduce the carbon footprint, a greater development of renewable energy from green and natural resources is required. Compared to fossil energy, renewable energy has the benefit to reduce greenhouse gas emissions. There are different solutions available for green and renewable energy. Biomass is all biologically produced matter. Through the biological breakdown of biomass, biogas can be produced through the process called anaerobic digestion. This work was focused on the production of biogas, using algal biomass, sewage sludge and coffee grounds in an anaerobic co-digestion system. The main goal of this study was to investigate the feasibility of combining these three substrates. Two different types of algae were employed; Chlorella vulgaris and Scenedesmus sp. and the investigations included even the cultivation and harvesting of algal biomass. The production of biogas was examined under anaerobic conditions using 5 batch reactors in duplicate under constant temperature of 37 °C in 30 days. The result showed that co-digestion of algal biomass with sewage sludge led to an enhanced biogas production by 75 % compared to that of just sewage sludge. This indicates the synergistic effects of co-digestion. However, the addition of coffee ground to the mixture lowered the biogas production. All mixtures except the two with coffee grounds were in neutral pH. Methanogens, involved in the last step in biogas production are very sensitive to pH, and pH around 7 is the optimal for their activity. Furthermore, the presence of caffeine in the coffee ground could also inhibit the biogas production.
APA, Harvard, Vancouver, ISO, and other styles
22

Webb, Jared A. "A Comparative Study of Anaerobic Digestion Processes for Sewage Sludge." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/41131.

Full text
Abstract:
The Blue Plains Wastewater Treatment Plant in Washington, D.C. is in the process of updating its anaerobic digesters, with a completion date set for 2008. This research was undertaken to aid designers at Blue Plains by evaluating alternative digestion approaches. The technologies applicable to the plant included thermophilic anaerobic digestion, acid/gas phased digestion, and temperature phased anaerobic digestion. To obtain design data, a year long study was conducted using bench scale digestion systems operating at different solids retention times (SRT) and organic loading rates (OLR). The digesters were fed with mixed primary and secondary waste (50/50 by weight) from the Blue Plains wastewater treatment facility. The digesters were operated until they reached steady state as observed by volatile solids reduction (VSR), methane production, and volatile fatty acid (VFA) levels. At this point, samples of digested waste sludge were analyzed for residual biological activity, dewatering properties and headspace organo-sulfur production. Results from the study demonstrated that the TPAD digestion process had the lowest residual biological activity (RBA) after digestion, and that the single stage thermophilic digesters had the highest RBA. Sludge from single stage mesophilic digestion had the highest odor potential, with headspace gas tests generating over 1400 mg organo-sulfur per m3 of headspace gas, while both single stage thermophilic and TPAD systems generated less than 400 mg/m3 at all SRTs studied.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
23

Silvestre, Tormo Gracia. "Sewage sludge anaerobic digestion : study of synergies and operational strategies of co-digestion." Doctoral thesis, Universitat Politècnica de Catalunya, 2015. http://hdl.handle.net/10803/334688.

Full text
Abstract:
Wastewater treatment plants (WWTPs) are characterized by their high organic matter and nutrient removal efficiency, but also by their high energy consumption. In the current context where resources are increasingly scarce, all feasible strategies to save energy emerge as an important issue for the sustainable management of WWTPs. In this thesis, sewage sludge (SS) anaerobic co-digestion with available organic wastes, coming from different sources and having different compositions, was proposed as an interesting strategy to approach an energy self-sufficient scenario for wastewater treatment by means of an improved biogas production. The studied co-digestion strategies were focused on the effect of the co-substrates composition -lipids, by adding grease waste (GW) from the dissolved air unit of the WWTP; alcohols, by adding crude glycerol (CGY) from a biodiesel facility; and of mixed composition, when adding the organic fraction of municipal solid waste (OFMSW)- and the effect of operational temperatures mesophilic and thermophilics on the general performance of the SS anaerobic digesters. This approach was evaluated in terms of methane yield and the stability of the process. Methane productivity increased 2.3 and 2.2 times in comparison with sewage sludge mono-digestion when the GW added amounted to 26% and 27% of the COD inlet under mesophilic and thermophilic temperature conditions, respectively. The addition of GGY showed a 2.5 increase in methane productivity under mesophilic temperature, while in thermophilic range the co-digestion showed great instability mainly due to volatile fatty acids accumulation. Addition of the OFMSW showed a 3 to 5 times increase in methane productivity compared to SS mono-digestion, when the OFMSW added amounted respectively to 51% and 33% of the COD inlet under mesophilic and thermophilic conditions respectively. The biomass acclimatization brought about by a slow increase of the influent dose of GW, could be a good strategy to increase fat degradation and reduce the inhibitory effect of LCFAs. Thermophilic co-digestion showed a lesser tolerance to LCFAs than mesophilic, and therefore, the adaptation time to grease waste was longer. Thermophilic anaerobic co-digestion of SS with CGY proved to be very unstable due to the extreme pH of CGY and its fast decomposition into volatile fatty acids. On the other hand, mesophilic co-digestion showed a good performance, concluding that doses above 2% v/v of CGY did not bring about an improvement on the methane yield. In this case, it can be concluded that the optimization strategy based on the C/N ratio must be modulated by other factors such as the characteristics of crude glycerol (particularly its pH and total alkalinity) and the operational temperature. The OFMSW was proved to be a suitable co-substrate both under mesophilic and thermophilic temperature conditions. Results suggest that the addition of the OFMSW could be an adequate strategy to promote the activity of thermophilic saturated fatty acid oxidizers and acetoclastics methanogenic bacteria. In addition, the evolution of specific activities was assessed and used as a feasible tool to explain and manage the response of the system, especially when conventional control parameters were not enough to explain the performance of the reactor. Within the obtained results, it has been demonstrated that co-digestion is a suitable approach to optimize the energy balance of a WWTP. But, depending on the composition of the organic waste and the temperature range of operation, different operational strategies should be put into practice to find the most stable process, and avoid inhibitory episodes. Based on the results obtained with the strategies studied in this PhD thesis, sewage sludge co-digestion with different organic wastes could be expected to represent an attractive alternative to attain energy self-sufficient wastewater treatment operations, and perhaps even net energy producing WWTPs
Les Estacions de Depuració d’Aigües Residuals (EDARs) es caracteritzen per la seva elevada eficiència en l’eliminació de la matèria orgànica i nutrients, però també per el seu elevat consum energètic. En aquesta tesis, la co-digestió anaeròbia de fangs d'EDAR amb residus orgànics de diferent orígens i composicions, s'ha proposat com una estratègia atractiva per apropar-se a un escenari de tractament d'aigües residuals autosostenible energèticament, per mitjà de la millora de la producció de biogàs. L’estudi de l'estratègia de co-digestió es va centrar en l'efecte de la composició dels co-substrats (lípids mitjançant l'adició de residus greixosos procedents de la unitat de flotació per aire dissolt -DAF- de l’EDAR, alcohols mitjançant l'adició de glicerina crua d'una industria de producció de biodièsel, i una composició mixta aportada per la fracció orgànica de residus municipals -FORM-), i l'efecte de la temperatura d'operació (mesòfil i termòfil) en el rendiment general del procés de digestió anaeròbia dels fangs d'EDAR. La producció de metà es va incrementar entre 2,3 i 2,2 vegades en comparació amb la mono-digestió dels fangs d'EDAR quan l'adició del residu greixós representava el 26% i el 27% de la DQO d’entrada, durant la digestió mesòfila i termòfila respectivament. L'adició de la glicerina crua va mostrar un increment en la producció de metà de 2,5 vegades durant la digestió mesòfila, mentre que el procés de co-digestió en condicions termòfiles va mostrar una elevada inestabilitat, principalment deguda a l’acumulació d’àcids grassos volàtils. L'adició de FORM va incrementar la producció de metà entre 3 i 5 vegades més que la mono-digestió dels fangs d'EDAR, quan l'adició de FORM va ser del 51% i el 33% de la DQO d'entrada, a temperatures de operació mesòfiles i termòfiles respectivament. L'adaptació de la biomassa mitjançant increments lents de la dosis del residu greixós, es va demostrar com una bona estratègia per incrementar la degradació dels lípids i reduir l'efecte inhibitori dels àcids greixosos de cadena llarga. La co-digestió termòfila va mostrar una menor tolerància als àcids greixosos de cadena llarga que la digestió mesòfila, i per tant, el temps d¿ adaptació de la biomassa termòfila va ser superior. La co-digestió anaeròbia termòfila dels fangs amb la glicerina crua va mostrar una gran inestabilitat degut al pH extrem que presentava la glicerina i la seva ràpida descomposició en àcids grassos volàtils. Per un altra banda, la co-digestió mesòfila va mostrar un bon rendiment, concloent que dosis addicionals de glicerina per damunt de 2% v/v no mostraren una millora en el rendiment de metà. L'estratègia d'optimització basada en la relació C/N cal que sigui modulada per altres factors com les característiques de la glicerina crua (especialment el pH i l’alcalinitat total) i la temperatura d'operació. La FORM es va mostrar com un co-substrat adequat per a treballar tant a rangs de temperatures mesòfiles com termòfiles. Els resultats obtinguts suggereixen que l'adició de la FORM podria ser una estratègia vàlida per fomentar l'activitat de les poblacions termòfiles oxidats d’àcids grassos saturats, i les poblacions metanogèniques acetoclàstiques. Així mateix, l'evolució de les activitats específiques es va avaluar com una eina viable per explicar i gestionar les respostes del sistema, especialment quan els paràmetres de control convencionals no van mostrar-se adequats per explicar el rendiment del reactor. Els resultats obtinguts han demostrat que la co-digestió es un bon enfocament per optimitzar el balanç energètic del les EDARs. Basant-se en els resultats obtinguts amb les estratègies de co-digestió de fangs d'EDAR estudiades en esta PhD tesis, s'espera que la co-digestió dels fangs amb diferents residus orgànics, representen una alternativa atractiva per aconseguir l’autosuficiència energètica de les EDARs, i fins i tot, que les EDARs es converteixin en instal·lacions productores netes d'energia.
APA, Harvard, Vancouver, ISO, and other styles
24

Premier, Giuliano C. "Toward simple generic control in anaerobic digestion." Thesis, University of South Wales, 2003. https://pure.southwales.ac.uk/en/studentthesis/toward-simple-generic-control-in-anaerobic-digestion(eb3e3942-bb11-4eb3-9831-8585bd30936e).html.

Full text
Abstract:
The desirability of effective control of anaerobic digesters as a means of avoiding imbalance in the microbial population has become clearer and this can be seen from the literature in recent years. A number of published control strategies have been encouragingly successful, however the non-linear and time varying nature of the process generally requires a bespoke, engineered system dependant on the characteristics of the system. The 'cost of knowing' in employing control systems, is generally high. The ideal scenario for operators would be the availability of a generic control system at reasonable cost, which would be applicable to a large group of high rate reactor designs, operating on a limited (but broad) variety of waste streams. The system would be able to control from commissioning through to steady state and should be able to cope with reasonable expected shock loading conditions, albeit perhaps at some degree of sub-optimality. The aim of this work is to develop a control strategy, which will lead in future to this end. Bicarbonate alkalinity (BA) is a key parameter which indicates the buffering capacity of the anaerobic digestion system and which has the potential for helping to maintain a stable system in the face of changing organic and toxic load. This is particularly the case when used in association with other informative on-line parameters such as gas production rate, %CO2 concentration in the gas, TOC, pH and volatile fatty acids. All but the last of these have been investigated using a fluidised bed reactor and the degree to which the anaerobic process is non-linear and time varying has been assessed, as the level of complexity required to represent anaerobic digestion 'well enough' was not clear. Simple linear black box models of low order were investigated, predicting over a limited horizon and relying on current and recent data values to refine the prediction. Independent black box ARX models were identified for gas production rate, % CO 2 , bicarbonate alkalinity and Total Organic Carbon using on-line data from a fluidised bed reactor at varying organic load. Model predictions looked ahead one sample step (30 minutes) and when validated using data obtained in a different time period (separated by 4-8 weeks) gave significant predictions in each case. The non-linear nature of the process was found to have little effect over the operating conditions investigated. Also the variation of the process within 4-8 weeks period was not sufficient to cause the models to predict badly. The performance of three black box models which were parameterised and validated using data collected from the same laboratory scale fluidised bed anaerobic digester, were compared. The models investigated were all ARX (auto regressive with exogenous input) models, the first being a linear single input single output (SISO) model, the second a linear multi-input multi-output (MIMO) model and the third a non-linear neural network based model. The performances of the models were compared and it was found that the SISO model was the least able to predict the changes in the reactor parameters (bicarbonate alkalinity, gas production rate and % CO2 ). The MIMO and neural models both performed reasonably well. Though the neural model was shown to be superior overall to the MIMO model, the simplicity of the latter should be a consideration in choosing between them. A simulation with a horizon approaching 48 hours was performed using this model and showed that the method was not sufficiently accurate for use in situations where pure simulation was required. This thesis includes the use of a two population deterministic model calibrated using data from a fluidised bed reactor operating on a simulated yeast waste, in the development of a Model Reference Adaptive Control (MRAC) strategy. The strategy uses a three term adaption mechanism, which is described in the thesis as a Fast Adaption Trajectory (FAT) strategy, as it was found to be necessary to respond to catastrophic events over short time scales, in order to maintain the viability of the bacterial population. Numerical optimisation in a simulation environment was used to parameterise the controller, and this was done on the basis of only basic design information being available for the reactor which was to be controlled. The controller was tested on a significantly different Expanded Granular Sludge Blanket (EGSB) reactor operated on a sucrose based feed and which did not inform the controller design process beyond basic physical information. Two actuation strategies were explored over several months of operation, using a single on-line bicarbonate alkalinity monitor, which in the event proved to have significant reliability problems. Not withstanding the problems with the alkalinity monitor, which was dominant in determining the success or failure of the control strategy, it was found that the control strategy was able to maintain control during start-up, which was the ambition of this part of the experimentation. Both actuation methodologies showed promise although the variation of loading rate was not adequately tested by the experimentation, which was conducted. The actuation by dosing with bicarbonate proved to be better at maintaining control in the face of repeated and severe perturbations caused by failure in the bicarbonate monitor system. It is believed that the FAT controller is likely to be a transferable technique provided that unmodelled dynamics are not excessively dominant and that the reactor system is comparable to a CSTR design with predominantly soluble waste in the feed.
APA, Harvard, Vancouver, ISO, and other styles
25

Yeneneh, Anteneh Mesfin. "Study on performance enhancement of anaerobic digestion of municipal sewage sludge." Thesis, Curtin University, 2014. http://hdl.handle.net/20.500.11937/2056.

Full text
Abstract:
This research focuses on investigating effects of combined microwave-ultrasonic pretreatment of municipal sewage sludge on anaerobic digester performance. Application of a novel combined microwave-ultrasonic pretreatment on thickened excess activated and mixed sludge significantly improved methane production, volatile solid and COD reduction, digestion kinetics, pathogen removal and dewaterability. Effects of Organic loading rate, sludge retention time and sludge mixing ratio were studied. Microwave and ultrasonic pretreatment conditions and digester operational parameters were optimized using experimental and modelling techniques.
APA, Harvard, Vancouver, ISO, and other styles
26

Sharma, Keshab Raj. "High rate wastewater treatment using aerobic upflow sludge blanket (AUSB) with external oxygenation /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202003%20SHARMA.

Full text
Abstract:
Thesis (Ph. D.)--Hong Kong University of Science and Technology, 2003.
Includes bibliographical references (leaves 170-181). Also available in electronic version. Access restricted to campus users.
APA, Harvard, Vancouver, ISO, and other styles
27

Lau, G. Ngai. "Study on the role of sulfate reduction and autotrophic denitrification to achieve excess sludge minimization for Hong Kong sewage /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202005%20LAU.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Rodriguez, Chiang Lourdes Maria. "Methane potential of sewage sludge to increase biogas production." Thesis, KTH, VA-teknik, Vatten, Avlopp och Avfall, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-96294.

Full text
Abstract:
Sewage sludge is treated with the biological process of anaerobic digestion in which organic material of a substrate is degraded by microorganisms in the absence of oxygen. The result of this degradation is biogas, a mixture mainly of methane and carbon dioxide. Biochemical Methane Potential tests are used to provide a measure of the anaerobic degradability of a given substrate. This study aims to determine the methane potential in Sjöstadsverket’s sludge this will moreover determine the viability of recycling the digested sludge back into the anaerobic system for further digestion. Batch digestion tests were performed in both Sjöstadsverket’s (S1) and Henriksdal’s (H2) sludge, for a reliable comparison. An inoculum to substrate ratio of 2:1 based on VS content was used and BMP tests presented results that S1 and H2 in the 20 days of incubation produced 0.29 NLCH4/gVS and 0.33 NLCH4/gVS respectively. A second experiment considering the same amount of substrate (200ml) and inoculum (200ml) for each sample, showed that Control S1 had a higher methane potential than Control H2, 0.31 NL/gVS and 0.29 NL/gVS respectively. All the samples containing Sjöstadsverket’s inoculum presented a higher volume of total accumulated gas (measured in Normal Liters), however methane potentials are low. Results demonstrated that methane production in samples S1 and Control S1 was originating from the grams of VS in the inoculum itself after depletion of all the soluble organic material in the substrate. This suggested that Sjöstadsverket’s sludge can endure a higher organic load rate and that the digested sludge still has potential to produce biogas, hence the recycling of this can enhance the biogas production in the digestion system.
APA, Harvard, Vancouver, ISO, and other styles
29

Ozkan, Yucel Umay G. "Co-treatment Of Hazardous Compounds In Anaerobic Sewage Sludge Digesters." Phd thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609952/index.pdf.

Full text
Abstract:
Xenobiotic compounds, which are exclusively man made, are produced in large quantities every year and released to the environment. Besides, anaerobic sludge digestion offers advantage in co-treatment of hazardous substances produced by the industry. The performance of the digesters can be monitored by modeling efforts. In this study, Anaerobic Digestion Model No.1 (ADM1) was calibrated, and validated for full-scale digester, lab-scale digester, and lab-scale digester seeded with totally different anaerobic biomass than that of full-scale digester. The model xenobiotic compound, a mono azo dye RO107, was co-treated with sewage sludge in an anaerobic digester. High removal efficiencies as 98% was found for azo dye at standard operating conditions of anaerobic digesters. The digester performance was not effected from azo dye or its reduction products. The dye reduction mechanism was modeled by biochemical mechanism due to unspecific enzymes and by chemical mechanism due to sulfide reduction. Some of the dye metabolites were suggested to be degraded by aerobic biotreatment. The anaerobic reduction metabolites of RO107 were identified as 2-(4-aminophenylsulfonyl) ethanol and 2,5-diamino-4-formamidobenzenesulfonic acid, and sulfanilic acid.
APA, Harvard, Vancouver, ISO, and other styles
30

Wable, Milind Vishnd. "Investigation of hypothesized anaerobic stabilization mechanisms in biological phosphorus removal systems /." This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-05042006-164504/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Oyekola, Oluwaseun Oyekanmi. "The enzymology of sludge solubilisation under biosulphidogenic conditions : isolation, characterisation and partial purification of endoglucanases." Thesis, Rhodes University, 2004. http://hdl.handle.net/10962/d1003980.

Full text
Abstract:
Endoglucanases play an important function in cellulose hydrolysis and catalyse the initial attack on the polymer by randomly hydrolysing the β-1,4 glucosidic bonds within the amorphous regions of cellulose chains. Cellulolytic bacteria have been isolated and characterised from the sewage sludge and the activation of several hydrolytic enzymes under biosulphidogenic conditions of sewage hydrolysis has been reported. The aims of this study were to: identify, induce production, locate and isolate, characterise (physicochemical and kinetic) and purify endoglucanases from anaerobic biosulphidogenic sludge. The endoglucanase activities were shown to be associated with the pellet particulate matter and exhibited a pH optimum of 6 and temperature optimum of 50 °C. The enzymes were thermally more stable when immobilised to the floc matrix of the sludge than when they were released into the aqueous solution via sonication. For both immobilised and released enzymes, sulphate was slightly inhibitory; activity was reduced to 84 % and 77.5 % of the initial activity at sulphate concentrations between 200 and 1000 mg/l, respectively. Sulphite was stimulatory to the immobilised enzymes between 200 and 1000 mg/l. Sulphide stimulated the activities of the immobilised endoglucanases, but inhibited activities of the soluble enzymes above 200 mg/l. The enzyme fraction did not hydrolyse avicel (a crystalline substrate), indicating the absence of any exocellulase activity. For CMC (carboxymethylcellulose) and HEC (hydroxylethylcellulose) the enzyme had K_m,app_ values of 4 and 5.1 mg/ml respectively and V_max,app_ values of 0.297 and 0.185 μmol/min/ml respectively. Divalent ions (Cu²⁺, Ni²⁺ and Zn²⁺) proved to be inhibitory while Fe²⁺, Mg²⁺ and Ca²⁺ stimulated the enzyme at concentrations between 200 and 1000 mg/l. All the volatile fatty acids studied (acetic acid, butyric acid, propionic acid and valeric acid) inhibited the enzymes, with acetic acid eliciting the highest degree of inhibition. Sonication released ~74.9 % of the total enzyme activities into solution and this was partially purified by PEG 20 000 concentration followed by DEAE-Cellulose ion exchange chromatography, which resulted in an appreciable purity as measured by the purification factor, 25.4 fold.
APA, Harvard, Vancouver, ISO, and other styles
32

Gomez, Barrantes Eddie Francisco. "Biodegradation of bio-based plastics and anaerobic digestion of cavitated municipal sewage sludge." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1385467507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Shana, Achame. "Application of an innovative process for improving mesophilic anaerobic digestion of sewage sludge." Thesis, University of Surrey, 2016. http://epubs.surrey.ac.uk/809611/.

Full text
Abstract:
Over the last 18 years, different sludge pre-treatment processes have been used to improve the performance of sewage sludge anaerobic digestion efficiency. Some of these pre-treatment technologies, notably the Thermal Hydrolysis Process (THP), has significantly increased the sludge throughput and allowed more efficient utilisation of treatment assets without adversely impacting the biology of the anaerobic digestion process. However, the expected increase in Volatile Solid reduction (VSr) and the consequent increase of biogas production have not been fully realised. Specifically, to address this poor performance when the THP process is used and to overcome its limitations, its application as an Intermediate Thermal Hydrolysis Process (ITHP) was studied. The ITHP process configuration consists of a first stage conventional Mesophilic Anaerobic Digestion (MAD) followed by THP and then a second stage MAD (i.e. MAD+THP+MAD). The main aims of this research were therefore to evaluate the impact of the ITHP configuration on an already digested sludge constituents, namely, carbohydrates, proteins and lipids degradation and the extent of their conversion to biogas. The sludge constituents’ degradation as a result of thermal hydrolysis and Anaerobic Digestion (AD) followed a stepwise process where the initial faster degradation was followed by a second stage slower degradation process. The sludge constituents’ degradation kinetic rate constants showed that the use of ITHP can further enhance the already digested sludge degradation reducing the sludge mass and increasing its conversion to biogas. Furthermore, the ITHP configuration showed a significant impact on sludge Extracellular Polymeric Substance (EPS) content. The results obtained from laboratory scale experiments showed that the ITHP process configuration resulted in an overall average VSr of 62% in comparison with the THP configuration which provided a VSr of 47%. As a result, the overall biogas production from the ITHP process was found to be in excess of 478 m3/tonne dry solids (TDS) fed, compared with 345 m3/tds feed from the THP digestion configuration.
APA, Harvard, Vancouver, ISO, and other styles
34

Scheuerman, Phillip R., Samuel R. Farrah, and Gabriel Bitton. "Laboratory Studies of Virus Survival During Aerobic and Anaerobic Digestion of Sewage Sludge." Digital Commons @ East Tennessee State University, 1991. https://dc.etsu.edu/etsu-works/2870.

Full text
Abstract:
The survival of three enteroviruses (polio 1, coxsackie B3 and echo 1) and a rotavirus (SA-11) was studied under laboratory conditions. The effects of temperature, dissolved oxygen, detention time, sludge source and virus type on virus inactivation were determined. Temperature was the single most important factor influencing the rate of virus inactivation. No significant differences were found for virus inactivation rates at dissolved oxygen levels between 0.9 and 5.8 mg/l. However, the inactivation rate of the viruses under aerobic conditions was found to be significantly greater than the inactivation rate under anaerobic conditions (−0.77log10/day vs −0.33 log10/day). Sludge source, detention time and virus type did not significantly influence the rate of virus inactivation.
APA, Harvard, Vancouver, ISO, and other styles
35

com, herabudi@plasa, and Herawati Budiastuti. "Intensification of Single Stage Continuously Stirred Tank Anaerobic Digestion Process using Carriers." Murdoch University, 2004. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20051014.141638.

Full text
Abstract:
The Continuously fed Stirred Tank Reactor (CSTR) is a popular design for anaerobic treatment of wastewater. This reactor type is simple in design and operation, independent of biomass type and low in capital costs. The CSTR has, however, to be operated at long Hydraulic Retention Times (HRT) of the order of 16 to 30 days since biomass is continuously lost with the effluent. Various alternate concepts of reactor design have, therefore, been developed to allow more rapid treatment. Treatment can be enhanced by retaining biomass within the digester so that the HRT is decoupled from solid biomass retention time (SRT). Unlike in continuous stirred tank digesters where the SRT is equal to HRT, the SRT in other designs are much greater than the HRT. This allows the wastewater to be treated at high throughputs while retaining the biocatalyst (or biomass) mediating the treatment within the digester. In this study the operation of a CSTR was intensified by separating SRT from HRT while taking into account the economical aspects. The intensification of operation is defined as increasing wastewater throughput or organic loading rate while at the same time maintaining efficiency of treatment and robustness to reject disturbances (changes in wastewater concentration and flow rate). The operation of existing CSTR was intensified by addition of carriers. It is hypothesized that by providing surfaces (or carriers) for bacterial attachment within the continuous stirred tank digester, biomass will be better retained and the wastewater throughput can be increased. The carriers or surfaces employed in this study were light carrier elements (shredded granular rubber tire having a density of 0.96 g/cm3) that move gently with the water in the reactor. This carrier material is much cheaper compared with other commercial carrier materials. This reactor type, called an Anaerobic Moving Bed Reactor (AMBR), was applied in this study to treat high strength synthetic wastewater, containing molasses as the main substrate. The improvement of reactor performance was clearly shown by the capability of the system to be operated without any difficulties at HRT of 6 days at an OLR of 5.8 g COD/l/d or at HRT of 1 day at an OLR of 4 g COD/l/d. The carriers were shown to be effective in retaining biomass aggregates. The AMBR was further intensified by changing the feeding strategy. It was shown that in stirred tank digester without carriers an intermittent feeding strategy resulted in better microbial capacity to degrade higher chain volatile fatty acids like propionic and butyric acids than the continuous feeding mode. An increase in degrading capacity of the intermittently fed digester was shown via degradation rates of pulse additions of propionic and butyric acids and by its capability of handling all changes in loading rates imposed. The continuously fed digester, receiving constant feed, on the other hand, suffered more when loading rates were changed, and the degradation rates of propionic and butyric acids were slower. The intermittent feeding mode was then implemented on the AMBR, and it was operated as a sequencing batch reactor with a fill, react, settle and decant period in each cycle. The sequencing batch mode when applied to the AMBR (now called an Anaerobic Moving Bed Sequencing Batch Reactor or AMBSBR) could increase capability of the digester to handle higher shock loads. At 3.8 d HRT the AMBSBR could handle an OLR of 10.8 g COD/l/d as opposed to 7.4 g COD/l/d by the AMBR. At 2.5 d HRT the AMBSBR could handle an OLR of 6.4 g COD/l/d while the AMBR could only be loaded at an OLR of 4.2 g COD/l/d. The ratio of SRT to HRT was at least 15 for this reactor. The reactor was able to handle concentrated feed flow rates at longer cycles or more dilute feed flow rates at frequent shorter cycles. The proposed operational strategies were verified by using a structured mathematical model which was developed based on the IWA ADM1 model. Several modifications were implemented to the model to obtain better predictions. The modified model was capable in predicting all the trends of the operating variables from both continuously and intermittently fed reactors. None of the two model versions (ADM1 and modified models) was, however, able to predict the increased propionate degradation capacity in intermittently fed digesters. The reason for this was the assumption of fixed stoichiometry of fermentative reactions for glucose mineralisation. By modifying the fractions of glucose mineralisation a better fit between experimental results and the model could be obtained.
APA, Harvard, Vancouver, ISO, and other styles
36

Vaidya, Ramola Vinay. "Effect of Addition of High Strength Food Wastes on Anaerobic Digestion of Sewage Sludge." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/52936.

Full text
Abstract:
Anaerobic co-digestion of municipal sludge and food wastes high in chemical oxygen demand (COD) has been an area of interest for waste water treatment facilities looking to increase methane production, and at the same time, dispose of the wastes and increase the revenue. However, addition of food wastes containing fats, oils and grease (FOG) to the conventional anaerobic digestion process can be difficult and pose challenges to utilities. Incorporating these wastes into the treatment plants can potentially inhibit the digestion process. In this study four lab-scale, anaerobic digesters were operated under mesophilic conditions and fed municipal sludge. One of them served as the control, while the other three digesters were fed with different volumetric loadings of juice processing waste, cheese processing waste (whey), dissolved air flotation waste (DAF) from a food processor, and grease trap waste (GTW), in addition to the municipal sludge. The impact of these high strength wastes (HSWs) on digester performance was analyzed for a total period of 150 days. Among the parameters analyzed were pH, total and soluble COD (tCOD and sCOD), Total and Total Volatile Solids (TS and TVS), Total Ammonia Nitrogen (TAN), Total Kjeldahl Nitrogen (TKN), Volatile Fatty Acids (VFA), Long Chain Fatty Acids (LCFA), and alkalinity. Biogas was collected and analyzed for methane content. The dewatering characteristics of digested sludge were also studied. Volatile organic sulfur compounds were analyzed on the dewatered sludge in order to monitor odors. This study showed that different high strength wastes have different impacts on digester performance. HSWs have the ability to degrade along with municipal sludge and to increase biogas production. However, anaerobic digestion can be inhibited by the presence of FOG, and addition of these wastes might not always be cost effective. Careful selection of these wastes is necessary to ensure stable digester operation, while bringing about increases in gas production. Utilities need to be cautious before adding any high strength wastes to their digesters.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
37

Soares, Ana Cristina Fermino 1964. "Occurrence of enteroviruses and Giardia cysts in sewage sludge before and after anaerobic digestion." Thesis, The University of Arizona, 1990. http://hdl.handle.net/10150/278627.

Full text
Abstract:
The disposal of anaerobically digested sewage sludge onto farmland in Pima county has created the need to evaluate the potential public health impact of pathogens which are indigenous to sewage and may be present in sludge. The occurrence of enteroviruses and Giardia cysts in sewage sludge before and after anaerobic digestion was monitored for a period of 14 months. This study showed that significant concentrations of enteroviruses and Giardia cysts are present in anaerobically digested sewage sludge being applied to farmland in Pima County. The concentration of Giardia cysts ranged from 1.33 x 103 to 8.6 x 104 per liter of raw sludge and 2.0 x 103 to 2.8 x 104 per liter of treated sludge. The concentration of enteroviruses in sludge ranged from 1.74 x 102 to 1.28 x 104 per liter before anaerobic digestion and from <2 to 5.63 x 10 2 per liter after treatment. The percentage of virus removal after anaerobic sludge digestion varied from 73% to >99.95%. Methods to study the fate of enteroviruses in the sludge-soil matrix were also evaluated. An increase in the ratio of eluant to solids seemed to enhance virus recoveries from sludge:soil mixtures.
APA, Harvard, Vancouver, ISO, and other styles
38

Wang, Kai. "Review on increasing efficiency of biogas production from sewage sludge." Thesis, KTH, VA-teknik, Vatten, Avlopp och Avfall, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-99357.

Full text
Abstract:
Sewage sludge is widely used as an important source for biogas production through digestion. Developing the high performance processes has a significant goal in order to promote energy efficiency and reduce the cost sewage sludge treatment. The problem of sewage sludge disposal is becoming top one which almost cost 50 % of running fee for a municipal wastewater treatment plant. This paper basically introduces three methods to improve the conventional digestion. However, they enhance the conventional digestion from different aspects. For examples, Two-phase anaerobic digestion enables to exhibit the merit of thermophilic anaerobic digestion and avoid the weak points of conventional digestion regarding odor problem. In two-phase anaerobic digestion, the acid and methane producing stages are separated. Extended solids retention time is an approach to separate the hydraulic retention time and solids retention time in an anaerobic digester by using recycle thickening. This method could benefit further de-composing the organics and increase methane formation. Dewaterability is the final step of anaerobic digestion process. Enhancing this part of process is an efficient way to increase the solid content of sludge that would reduce the transportation costs. In a nutshell, no matter on saving cost or energy perspectives, these three methods all promote biogas production efficiency up to a better performance, but various requirement of energy and cost are demanded. The paper displays and compares the advantages and disadvantages among three methods. There is no certain answer to which method is the best one; however, they can be chose to enhance digestion in different condition.
APA, Harvard, Vancouver, ISO, and other styles
39

Deng, Hong. "Combined anaerobic respiration (CAD) of sewage sludge and other urban solid wastes." Thesis, Loughborough University, 2006. https://dspace.lboro.ac.uk/2134/8025.

Full text
Abstract:
The UK buries about 100 million tonnes of waste a year, of which 25% is municipal solid waste (refuse). The environmental impacts from gas and leachate releases are known and direct risks to health from landfill are reported. Europe has agreed to a Landfill Directive which has set targets for the stepwise reduction in biodegradable municipal waste going to landfill. The anaerobic digestion of municipal solid waste in controlled bioreactors is an area that could play an important role in overall evolution towards sustainability by recovering biogas and organic matter. Separated hydrolysis and subsequent anaerobic codigestion was demonstrated from the literature review to have the best potential for biodegradable municipal waste diverted from landfill. The rate of hydrolysis of solids wastes remains an outstanding problem. In this research, firstly the codigestion of industrial effluent (coffee wastewater), food wastes and garden wastes were investigated for their impact on hydrolysis and digestion. The results show that there were no treatability problems for coffee wastes up to 37.5% of volume feed per day at the HRT of 9 days. The results supported the view that dilute biodegradable streams such as coffee waste may improve digestion by promoting mixing. Fruit and vegetable wastes were highly biodegradable and can have a major improvement in biogas production of the whole codigestion process, whereas garden waste was not as successful as a cosubstrate, probably because of the predominant celluloses and lignocelluloses with a low biodegradability. The literature review also revealed that washing or elutriation can remove organic matter from municipal waste. This is an important hydrolytic process in which a solubilised acidic organic matter is obtained. The codigestion of refuse hydrolysate with sewage sludge was therefore studied. A control digester treating sewage sludge only was compared with an experimental reactor fed mixed refuse hydrolysate with sewage sludge. It was possible to add the solubilised hydrolysate to existing anaerobic digesters designed at a standard sludge solids loading rate without causing overloading. (Continues...).
APA, Harvard, Vancouver, ISO, and other styles
40

Chan, Lau Chi. "Bioleaching of heavy metals from anaerobically digested sewage sludge using isolated indigenous iron- and sulphur-oxidizing bacteria." HKBU Institutional Repository, 2001. http://repository.hkbu.edu.hk/etd_ra/279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Shi, Manyuan. "Characterization of sulfate-reducing and denitrifying microbial community in sulfate reduction, autotrophic denitrification and nitrification integrated process (SANI process) /." View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202009%20SHI.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ek, Anders. "Ultrasonic treatment of sewage sludge in order to increase biogas yields." Thesis, Linköping University, Department of Water and Environmental Studies, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-4581.

Full text
Abstract:

Biogas, a mixture of methane and carbon dioxide, is produced in the anaerobic digestion of sewage sludge. After anaerobic digestion, the digested sludge is often allowed to degas for one or two days. This gas is seldom utilised, but if the degassing could be accelerated, utilisation would be easier. Ultrasound can be used as a pretreatment method for waste activated sludge. It has a disintegrating effect on the sludge and causes lysis of bacteria in the sludge. It also speeds up the hydrolysis; the limiting step of anaerobic digestion of waste activated sludge. Ultrasound can be used to degas waterbased liquids. Ultrasonic degassing of sewage sludge has not been examined previously. The present study aims to investigate the effect of ultrasound on waste activated sludge as well as the potential of ultrasound to speed up the degassing of digested sludge. A semi-continuous, lab-scale digestion experiment was performed with four reactors: two receiving untreated sludge and two receiving treated sludge. The effect of the sonicator was 420 W and the treatment time was 6 min, which corresponds to an energy input of 8.4 kWh/m3. Total solids (TS) of the waste activated sludge was ~3.5 %. The ultrasonic treatment caused an increase in gas production of 13 %. There was no difference in methane content. The concentration of filterable chemical oxygen demand (fCOD) increased 375 %, or from 2.8 % to 11 % of total COD. In terms of energy loss/gain the increase in gas production resulted in a loss of 2.7 kWh/m3, i.e. more energy is needed to treat the sludge than the potential energy of the increased gas production. However, if the sludge is thickened to a TS >5 %, a net energy gain should be reached. The effect of ultrasound on the degassing of digested sludge was examined in three barrels. The degassing was measured with and without circulation as well as with ultrasonic treatment. The digested sludge had a gas emission rate of 115 L/(m3 day). No direct burst of gas occurred due to ultrasonic treatment. Over two days more gas was emitted from the barrel equipped with ultrasound, probably due to an induced post-digestion. Thus, ultrasonic pretreatment of waste activated sludge increases the biogas yield. It is inconclusive, whether ultrasonic treatment of digested sludge effects the degassing or not.

APA, Harvard, Vancouver, ISO, and other styles
43

Galí, Serra Alexandre. "Optimisation of biological nitrogen removal processes to treat reject water from anaerobic digestion of sewage sludge." Doctoral thesis, Universitat de Barcelona, 2006. http://hdl.handle.net/10803/1527.

Full text
Abstract:
In the present work, the biological treatment of real reject water (800 mg NH4+-N L-1) from anaerobic digestion of sewage sludge from a waste water treatment plant (WWTP) is carried out.
The process was optimised with a Sequencing Batch Reactors (SBR) of 3 L using methanol for denitrification due to the lack of a readily biodegradable organic carbon source. Process kinetics were compared through the specific Ammonium Uptake Rate (sAUR) finding the appropriate operational sequence at 32ºC with an 8 hour cycle length. Every operational cycle was carried out with a solid retention time (SRT) of 11 days, hydraulic retention time (HRT) of 1 day and 2500 mg VSS L-1. In order to avoid nitrate formation, and thus to save costs, the oxygen concentration was maintained below 1 mg L-1 during the aerobic periods and pH remained within an optimal range (7.5-8.5) alternating different aerobic/anoxic sub-cycles inside the operational cycle. The total nitrogen removal was 0.8-0.9 kg N day-1 m-3. In order to make the process more economical metanol was substitute for the primary hidrolysate of the own WWTP obtaining a total nitrogen removal of 0.7 kg N day-1 m-3. The use of primary hidrolysate would lead to a cost reduction of 0.2-0.3 kg -1 N removed.
The next step was to compare the SBR technology to obtain the nitrite route with the continuous technology using a chemostat reactor. In that a chemostat SHARON (Single-reactor High activity Ammonia Removal Over Nitrite) continuous reactor (4 L) was operated to develop the biological nitrogen removal via nitrite of reject water at 33 ºC. Methanol was added for denitrification In the same chemostat took place nitrification and denitrification alternating periods of 1 hour with a total HRT of 2. As a conclusion, the SBR would be a slightly cheaper process (1.01 versus 1.28 kg -1 N) due to the higher volumetric reaction rates and the SHARON process is a more stable system.
APA, Harvard, Vancouver, ISO, and other styles
44

Van, Rensburg Pierre. "Integrated biological, chemical and physical processes kinetic model for the anaerobic digestion of primary sewage sludge." Master's thesis, University of Cape Town, 2001. http://hdl.handle.net/11427/4996.

Full text
Abstract:
Includes bibliographical references.
Despite its wide application, the design, operation and control of anaerobic digesters treating sewage sludges still is largely based on experience, or empirical guidelines. To aid the design, operation and control of (and research into) anaerobic digestion, a mathematical model would be an invaluable process evaluation tool.
APA, Harvard, Vancouver, ISO, and other styles
45

Oliveira, Ivo Miguel Delgado Bandeira. "Evaluation of sewage digested sludge conditioning and dewatering through qualitative and quantitative laboratory methodologies towards process monitoring." Thesis, University of South Wales, 2017. https://pure.southwales.ac.uk/en/studentthesis/evaluation-of-sewage-digested-sludge-conditioning-and-dewatering-through-qualitative-and-quantitative-laboratory-methodologies-towards-process-monitoring(5a847c8f-77dc-47c8-86cf-20a64900fb42).html.

Full text
Abstract:
This thesis reports on investigations that have contributed to an advancement in the applied and fundamental understanding on how the nature, related storage and processing of digested sewage sludge can influence polymer conditioning and dewatering. The work concentrated more specifically on evaluating the impact of thermal hydrolysis as a pre-treatment to anaerobic digestion (AD) of mainly secondary sewage sludges (Advanced AD, AAD plants) in comparison with conventional mesophilic AD (CMAD) on conditioning and dewatering of the digestate, as this knowledge seemed to be lacking for an AAD technology that is increasingly being implemented. An additional contribution to knowledge from this study relates to the evaluation of how polymer conditioning and dewatering of digested sludges could be monitored using rheometric measurements. It was concluded that digested sludge biofloc characteristics (size, shear viscosity and organic matter composition) affected the most the conditioning and dewatering results but these varied depending on the process conditions i.e. AAD versus CMAD and digestate handling conditions. The reduction in particle size and shear viscosity (η[0.1 s-1]) per g Total Solids as well as the increased solubilization of protein, organically bound nitrogen and chemical oxygen demand of the digestates which contributed to the increased conditioning requirements affected also the dewatering rate and the strength of the flocs produced after conditioning. The changes in the digested sludge biofloc characteristics were detected by rheometric measurements which were well correlated with changes in organic matter composition and polymer conditioning requirements (r of 0.9 and 0.8). It was proposed that the variations in η[0.1 s-1] and organic matter content such as soluble protein could be used to predict polymer dose requirements to achieve good filterability (R2 of 0.7; significance F and p < 0.05). Future work is however required in order to consolidate these findings by monitoring conditioning, dewatering and η[0.1 s-1] of the digestate at full scale.
APA, Harvard, Vancouver, ISO, and other styles
46

Paterakis, Nikolaos. "An evaluation of the fate and behaviour of endocrine disrupting chemicals during anaerobic digestion of sewage sludge." Thesis, Cranfield University, 2009. http://dspace.lib.cranfield.ac.uk/handle/1826/4575.

Full text
Abstract:
Endocrine disrupting chemicals such as steroid estrogens and alkylphenol polyethoxylates entering the environment via regular domestic or industrial discharges have been demonstrated to cause feminization of aquatic organisms at trace levels. Despite these discharges, the solid-end product of wastewater treatment i.e. digested sludge, poses a potential source of these compounds in the environment when sewage sludge is recycled onto land. Greater concentrations of alkylphenolic metabolites such as alkylphenols and short-chained one to three ethoxy units, ethoxylates have been reported to occur in digested sludge than the parent compounds. This study investigates the fate and behaviour of these chemicals in mesophilic and thermophilic anaerobic digestion by using primary sludge and a mixture of primary and secondary sewage sludges. The analytical methodologies used for the determination of these endocrine disrupting compounds allowed accurate quantification at microgram per kilo of dry-sludge weight concentrations in the complex sludge matrices. Four mesophilic and two thermophilic semi-continuous lab-scale anaerobic digesters were examined. In addition, acclimated sludges were dosed with high nonylphenolic concentrations to observe the capacity of biomass to remove these compounds. Cont/d.
APA, Harvard, Vancouver, ISO, and other styles
47

Zhu, Kuang. "Effect of Long Chain Fatty Acids on Anaerobic Digestion of Municiapal Sewage Sludge in Completely Mixed Reactors." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/23192.

Full text
Abstract:
Fats, oil and grease (FOG) are generated in large amounts by cooking and food processing. Anaerobic co-digestion with municipal sewage sludge has proven to be one of best alternatives for FOG disposal due to its high potential for biogas production. However, excessive addition of long chain fatty acid, the major content of FOG, has been reported to have inhibitory effects on the anaerobic digestion process and to cause operational challenges. In this study, high purity long chain fatty acids (LCFAs) including linoleic acid, oleic acid, and a mixture of oleic acid and stearic acid were added to laboratory completed mixed anaerobic digesters. The performance of the digesters in terms of solids destruction, COD degradation, LCFAs accumulation and gas production was investigated. After reaching steady state, a large amount of palmitic acid was found in the reactors with oleic acid addition and mixture of stearic and oleic acid addition. In the meantime, no palmitic acid increase was observed in reactors where linoleic acid was added. A better solids and COD reduction and a higher biogas production were observed in reactors with higher LCFAs addition. For reactors with the same dosage of LCFAs addition, linoleic acid addition resulted in the greatest improvement in digester performance; the mixture of stearic acid and oleic acid achieved the least increase in biogas production and solids and COD reduction. A high concentration of both palmitic and stearic acid in the reactors with oleic acid addition and with 20% mixed acid addition was observed. In contrast, linoleic acid and 30% mixed acid addition did not lead to a greater palmitic or stearic acid concentrations. Up to 30% of pure linoleic acid, oleic acid and mixed acid addition are able to enhance the performance of anaerobic digesters. It is recommended that the dosage of oleic acid be below 30% to avoid LCFAs accumulation and to increase reactor stability.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
48

Lloyd, Magaretha Hester. "Anaerobic digestion application in the treatment of gelatin-manufacturing effluent." Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51582.

Full text
Abstract:
Thesis (MSc)--Stellenbosch University, 2000.
ENGLISH ABSTRACT: A severely polluted industrial effluent is generated by the local gelatinmanufacturing industry. Due to increasingly stringent restrictions on discharge qualities enforced by the National Water Act of 1998 and National Environmental Management Act of 1998, as well as increasing trade-effluent charges implemented via the Local Municipal Bylaws, the industry is compelled to consider a system to pre-treat the polluted effluent. A study was undertaken to examine the viability of anaerobic treatment of the gelatin-manufacturing effluent, since the anaerobic digestion technology is well recognised for the high success rate in the treatment of high-strength, complex wastewaters. Various laboratory and pilot-scale studies were done, using different hybrid Upflow Anaerobic Sludge Blanket (UASB) and contact designs. Two mesophilic laboratory-scale hybrid UASB digester designs, fitted with polyethylene (AD-1) and polyurethane (AD-2), performed well at a hydraulic retention time (HRT) of 1.0 d. Chemical oxygen demand (COD) removal efficiencies of up to 90% (avg. 53%) for AD-1 and 83% (avg. 60%) for AD-2 at organic loading rates (OLR) of 9.56 and 4.62 kg COD.m-3.d-1, respectively, were obtained. High sulphate (S04) removal efficiencies of up to 96% (avg. 86%) for AD-1 and 98% (avg. 82%) for AD-2 were also achieved, respectively. A maximum total solid (TS) removal of 65% (avg. 25%) for AD-1 and 62% (avg. 28%) for AD-2 was reported. An average methane content of 80% (AD-1) and 79% (AD-2) with average methane yields per COD removed of 2.19 and 1.86 m3. kg CODremoved.df-o1r AD-1 and AD-2 were found, respectively. When the same digesters (AD-1 and AD-2) were combined in a muItiphase series configuration, a total COD removal efficiency of up to 97% (avg. 80%) at an OLR of 8.32 kg COD.m-3.d-1,was achieved. Excellent total S04 removals of 96% (avg. 69%) were accomplished. Up to 82% TS (avg. 29%) was also removed during this study and the biogas consisted of 89% methane (avg. 79%). For this multi-phase combination up to 92% volatile fatty acids (VFA) (avg. 48%) were removed, indicating possible selective phase separation of the respective fatty acid producing/utilising bacterial populations. The use of a laboratory-scale UASB bioreactor with recirculation, resulted in COD removal efficiencies of up to 96% (avg. 51%) at an HRT of 3.0 d, and 95% (avg. 54%) at a HRT of 1.0 d. Low performances were generally found, with average S04 and TS removals of 59% (max. 97%) and 26% (max. 67%), respectively at an HRT of 1.0 d. The biogas production was very low throughout the study (0.05 - 0.63 I,d-1 ). A pilot-scale UASB reactor (300 I) was constructed and performed satisfactory with a 58% average COD removal and maximum of 96%. S04 and TS removals up to 96% (avg. 44%) and 93% (avg. 63%), respectively, were obtained. The methane content of the biogas was 85%. The pilot-scale studies were conducted under actual field conditions, where various shock and organic loads had to be absorbed by the system. The pilot-scale contact configuration (300 I) did not perform satisfactory as a result of continuous blockages experienced in the feed and recirculation lines. Maximum COD, S04, VFA and TS removal efficiencies of 41% (avg. 27%), 62% (avg. 41%), 64% (avg. 27%) and 39% (avg. 21%), respectively, were obtained. The results of all the studies indicated acceptable COD removals with increasing OLR's. Indications of the presence of active methanogenic and sulphate-reducing bacterial populations were apparent throughout the studies. One possibility for the successful start-up and commissioning of the anaerobic reactors was the use of a well-adjusted biomass, which consisted of highly selected and adapted microbial consortium for the specific gelatinmanufacturing effluent. It was clear from this study that gelatin-manufacturing effluent can be treated successfully, especially with the use of the UASB design. A welldefined data base was constructed which could be of great value for further upscaling to a full-scale digester.
AFRIKAANSE OPSOMMING: 'n Hoogs besoedelde industriele uitvloeisel word gegenereer deur die plaaslike gelatien-vervaardigings industrie. As gevolg van toenemende streng beperkings op die kwaliteit van uitvloeisels wat bepaal word deur die Nasionale Water Wet van 1998 en Nasionale Omgewings Bestuurs Wet van 1998, asook toenemende munisipale heffings wat geimplementeer word via Plaaslike Munisipale Wette, word die industrie verplig om die uitvloeisel vooraf te behandel. 'n Studie is onderneem om die lewensvatbaarheid van anaërobe behandeling van gelatien-vervaardigings uitvloeisel te ondersoek, aangesien anaërobe verterings tegnologie alombekend is vir die goeie sukses behaal in die behandeling van hoë-sterkte, komplekse uitvloeisels. Verskeie laboratorium- en loods-skaal studies is gedoen, met verskillende hibried Opvloei Anaërobe Slykkombers (OAS) en kontak ontwerpe. Goeie werksverrigting was verkry by 'n hidroliese retensie tyd (HRT) van 1.0 d met twee mesofiliese laboratorium-skaal hibried OAS verteerder ontwerpe wat uitgevoer was met poli-etileen (AD-1) en poli-uretaan (AD-2) materiaal. Chemiese suurstof behoefte (CSB) verwyderings van so hoog as 90% (gem. 53%) vir AD-1 en 83% (gem. 60%) vir AD-2 by organiese ladingstempo's (OLT) van 9.56 en 4.62 kg CSB.m-3.d-1,was onderskeidelik verkry. Hoë sulfaat (S04) verwyderings van tot 96% (gem. 86%) vir AD-1 en 98% (gem. 82%) vir AD-2 was ook onderskeidelik verkry. 'n Maksimum totale vaste stof (TVS) verwydering van 65% (gem. 25%) vir AD-1 en 62% (gem. 28%) vir AD-2 is gerapporteer. 'n Gemiddelde metaan inhoud van 80% (AD-1) en 79% (AD-2) met 'n gemiddelde metaan opbrengs per CSB verwyder van 2.19 en 1.86 m3.kg CSBverwyder.dv-i1r AD-1 en AD-2, was onderskeidelik gevind. Met die aanwending van dieselfde twee verteerders (AD-1 en AD-2) in 'n series gekoppelde multi-fase konfigurasie, is 'n totale CSB verwydering so hoog as 97% (gem. 80%) verkry by 'n OLT van 8.32 kg CSB.m-3.d-1. Uitstekende totale S04 verwydering van 96% (gem. 69%) is behaal. Tot 82% TVS (gem. 29%) was vewyder gedurende die studie en die biogas het uit 89% metaan (gem. 79%) bestaan. Vir die multi-fase kombinasie is 'n maksimum van 92% vlugtige vetsure (WS) (gem. 48%) verwyder, wat dui op die moontlike skeiding van selektiewe fases van die onderskeie vetsuur produserende/verbruiker bakteriële populasies. CSB verwydering van tot 96% (gem. 51%) by 'n HRT van 3.0 d en 95% (gem. 54%) met 'n HRT van 1.0 d was verkry, tydens die gebruik van In laboratorium-skaal OAS bioreaktor met hersirkulasie. Lae werksverrigting was oor die algemeen waargeneem, met gemiddelde S04 en TVS verwyderings van 59% (maks. 97%) en 26% (maks. 67%) by In HRT van 1.0 d. Die biogas produksie was baie laag gedurende die studie (0.05 - 0.63 I,d-\ In Loods-skaal OAS verteerder was opgerig en bevredigende resultate was verkry met In gemiddeld van 58% CSB verwydering en maksimum van 96%. S04 en TVS verwyderings so hoog as 96% (gem. 44%) en 93% (gem. 63%) is onderskeidelik verkry. Die metaan inhoud van die biogas was 85%. Die loods-skaal studie was uitgevoer gedurende ware veld kondisies, waartydens verskeie skok en organiese ladings deur die sisteem geabsorbeer is. Die loods-skaal kontak konfigurasie (300 I) het nie bevredigende resultate getoon nie, as gevolg van voortdurende blokkasies wat ondervind is in die toevoer en hersirkulasie pype. Maksimum CSB, S04, WS en TVS verwyderings van 41% (gem. 27%), 62% (gem. 41%), 64% (gem. 27%) en 39% (gem. 21%) was onderskeidelik verkry. Die resultate van al die studies het aanvaarbare CSB verwydering aangedui by toenemende OLT's. Indikasies van aktiewe metanogene en sulfaat-reduserende bakteriële populasies was ook teenwoordig gedurende die studies. Die suksesvolle aansit-prosedure en begin van die anaërobe verteerders kan toegeskryf word aan die gebruik van In goed aangepaste biomassa, wat uit hoogs selektiewe en aangepaste mikrobiese populasies vir die spesifieke uitvloeisel bestaan. Hierdie studie het getoon dat gelatien-vervaardigings uitvloeisel suksesvol met die OAS ontwerp behandel kan word. In Goed gedefinieerde data basis kan voorsien word, wat van groot waarde sal wees vir verdere opgradering na In volskaalse verteerder.
APA, Harvard, Vancouver, ISO, and other styles
49

Ferrer, i. Martí Ivet. "Study of the effect of process parameters on the thermophilic anaerobic digestion of sewage sludge, evaluation of a thermal sludge pre-treatment and overall energetic assessment." Doctoral thesis, Universitat Autònoma de Barcelona, 2008. http://hdl.handle.net/10803/5323.

Full text
Abstract:
El consum energètic representa un 30 % dels costos d'operació en sistemes intensius de tractament d'aigües residuals urbanes. En depuradores convencionals que utilitzin un sistema de fangs activats, entorn al 15-20 % de l'energia és consumida en la línia dels fangs, que inclou el bombeig, l'espessiment, l'estabilització i la deshidratació. Per tant, la optimització de la gestió dels fangs pot contribuir substancialment en la reducció dels costos de tractament d'aigües residuals. La digestió anaeròbia termofílica és més eficient que la mesofílica i pscicrofílica, en termes de producció de biogàs i metà, eliminació de sòlids volàtils (SV) i destrucció de patògens. El procés es pot accelerar mitjançant el pre¬tractament dels fangs, afavorint la seva solubilització i hidròlisi.
L'objecte d'aquesta Tesi Doctoral fou estudiar l'impacte dels paràmetres del procés en la digestió anaeròbia termofílica dels fangs de depuradora urbana, avaluar l'efecte del pre-tractament tèrmic dels fangs a baixa temperatura, i valorar processos alternatius des del punt de vista energètic.
Els resultats experimentals presentats s'obtingueren mitjançant l'operació de dos reactors de laboratori durant prop de dos anys. En aquest període es va estudiar l'efecte de la temperatura del procés, del temps de retenció dels fangs (TRF), de la velocitat de càrrega orgànica (VCO) i del pre-tractament a 70 ºC en la digestió anaeròbia dels fangs de depuradora. El procés fou avaluat en termes de la producció d'energia (biogàs i metà) i de la qualitat del fang digerit (contingut de SV i d'àcids grassos volàtils (AGV), facilitat de deshidratació i higienització). S'analitzà l'estabilitat del procés a mesura que es reduïa el TRF i s'incrementava la VCO, i es comparà l'eficiència en períodes d'estabilitat corresponents a les diferents condicions operacionals. Finalment, s'avaluaren els resultats des del punt de vista energètic, mitjançant el càlcul de balanços i ratis energètics teòrics, que es compararen amb els resultats obtinguts a partir de dades experimentals d'altres estudis. També s'utilitzà un model cinètic de primer ordre. Les conclusions que es desprenen d'aquest treball es resumeixen a continuació:
Durant la digestió anaeròbia dels fangs, la transició d'un reactor mesophilic (43 ºC) a termofílic (50 ºC) es podria dur a terme sense alterar el procés, treballant a TRF elevats (≥ 30 dies) i VCO baixes (≤ 0.5 kg SV m-3reactor d-1). En aquestes condicions, les principals diferències entre reactors termofílics (50-55 ºC) i mesofílics (38-43 ºC) fan referència a una certa acumulació d'AGV (0.5-2.5 g L-1) i millora de la destrucció de patògens (E. coli ≤ 102 UFC mL-1). La digestió termofílica a 50 ºC i 55 ºC dóna lloc a resultats similars pel que fa a la producció de biogàs, estabilització, higienització i facilitat de deshidratació de l'efluent, si no varien els altres paràmetres operacionals.
La producció de metà tendeix a incrementar proporcionalment a la VCO, és a dir al TRF i el contingut de SV als fangs alimentats. Així mateix, la qualitat de l'efluent (contingut de SV i AGV, facilitat de deshidratació dels fangs) també depèn de la VCO. D'acord amb els resultats obtinguts a 55 ºC, la producció de metà s'incrementà 2-3 vegades (de 0.2 a 0.4-0.6 m3CH4 m3reactor d-1) en disminuir el TRF de 30 a 15-10 dies, incrementant la VCO de 0.5 a 2.5-3.5 kg SV m3reactor d-1. En canvi, el procés es desestabilitzà amb la reducció del TRF a 6 dies i VCO per sobre de 5 kg SV m3reactor d-1. Les següents concentracions poden ser útils per detectar i prevenir la desestabilització d'un digestor termofílic de fangs: AGV totals
(2.5 g L-1), acetat (0.5 g L-1), rati acetat/propionat (0.5), alcalinitat intermèdia (1.8 g CaCO3 L-1), rati alcalinitat intermèdia/alcalinitat parcial (0.9), rati alcalinitat intermèdia/alcalinitat total (0.5), contingut de metà al biogàs (55 %).
El pre-tractament a 70 ºC afavoreix la solubilització dels fangs, incrementant la proporció de matèria orgànica soluble respecte la matèria orgànica total del 5 % al 50 % en 9-24 h; seguit d'una progressiva generació d'AGV després de 24h. Durant la subseqüent digestió anaeròbia de fangs pre¬tractats (9-48 h), s'incremetà la producció de biogàs en un 30-40 %, treballant a 55 ºC i 10 dies de TRF. El rendiment de producció de biogàs fou un 30 % superior amb fangs pre-tractats (0.28-0.30 vs. 0.22 L·gVS¬1) i el contingut de metà al biogàs també fou superior (69 % vs. 64 %).
La digestió anaeròbia termofílica de fangs pot donar lloc a una producció neta d'energia, durant estacions fredes i càlides, si s'utilitzen reactors amb aïllament tèrmic de les parets i amb recuperació energètica a partir del biogàs i dels fangs digerits. En aquest cas, l'eficiència energètica de reactors termofílics treballant a la meitat de TRF (10-15 dies) que reactors mesofílics (20-30 dies) seria similar, per la qual cosa el cabal diari podria ser doblat, o el volum del reactor reduït, amb el conseqüent estalvi en el cost de tractament dels fangs. A més, un sistema en dues etapes (70/55 ºC) produiria més energia neta que un sistema en una sola etapa (55 ºC) amb un TRF de 10 dies. De totes maneres, la quantitat d'energia neta generada augmenta amb el volum del digestor donat que, malgrat la disminució en la producció de metà a TRF creixents, la producció d'energia segueix essent superior al consum, i per tant com més quantitat de fangs hi hagi al digestor, més energia es produirà.
Energy consumption accounts for some 30 % of the total operating costs of intensive sewage treatment systems. In conventional wastewater treatment plants employing an activated sludge process, around 15-20 % of this energy is used in the sludge treatment line, including sludge pumping, thickening, stabilisation and dewatering. Therefore, optimisation of sludge management can substantially contribute in the reduction of wastewater treatment costs. Thermophilic anaerobic digestion is more efficient than mesophilic anaerobic digestion, in terms of biogas production, volatile solids (VS) removal and pathogens destruction. The process might be further accelerated by sludge pre-treatment, promoting sludge solubilization and hydrolysis.
The aim of this PhD Thesis was to study the impact of process parameters on the thermophilic anaerobic digestion of sewage sludge, to evaluate the effect of implementing a low temperature pre¬treatment step, and to assess alternative processes from an energy perspective.
The experimental results presented were obtained by operating two lab-scale reactors for almost two years. During this period, the effect of process temperature, sludge retention time (SRT), organic loading rate (OLR) and 70 ºC sludge pre-treatment on the anaerobic digestion of sewage sludge was studied. The process was evaluated in terms of energy production (i.e. biogas and methane production) and the quality of the effluent sludge (i.e. VS and volatile fatty acids (VFA) content, sludge dewaterability and hygienisation). Focus was put on the stability of the process at decreasing SRT and increasing OLR. Process efficiency during stable performance under each operating condition assayed was compared. Finally, the results were assessed from an energy perspective, by means of theoretical energy balances and ratios; and compared to the results obtained with experimental data from other studies. A first order kinetic model was also used. The conclusions drawn from the different issues dealt in this work are summarised as follows:
During anaerobic sludge digestion, the transition from a mesophilic (43 ºC) to a thermophilic operation (50 ºC) may be carried out without disturbing the process, by operating the reactors at high SRT ( ≥ 30 days) and low OLR (≤ 0.5 kg VS m-3reactor d-1). Under such conditions, some VFA accumulation (0.5-2.5 g L-1) and enhanced pathogen destruction (residual E. coli ≤ 102 CFU mL-1) would be the main differences of thermophilic (50-55 ºC) compared to mesophilic (38-43 ºC) reactors. Thermophilic sludge digestion at 50 ºC and 55 ºC should be similar in terms of biogas production and effluent stabilisation, hygienisation and dewaterability; provided that other process parameters are the same.
Methane production rate tends to increase proportionally to the OLR, thus to the SRT and VS concentration in the feed sludge. Similarly, the quality of the effluent sludge (VS content, VFA content and sludge dewaterability) is also affected by the OLR. According to the results obtained at 55 ºC, methane production rate increased by 2-3 times (from 0.2 to 0.4-0.6 m3CH4 m3reactor d-1) by decreasing the SRT from 30 to 15-10 days; increasing the OLR from 0.5 to 2.5-3.5 kg VS m3reactor d-1. However, process unbalance resulted from SRT reduction to 6 days, with OLR above 5 kg VS m3reactor d-1. The following concentrations might be useful to detect and prevent digester failure during thermophilic sludge digestion: total VFA (2.5 g L-1), acetate (0.5 g L-1), acetate/propionate ratio (0.5), intermediate alkalinity (1.8 g CaCO3 L-1), intermediate alkalinity/partial alkalinity ratio (0.9), intermediate alkalinity/total alkalinity ratio (0.5), methane content in biogas (55 %).
The 70 ºC sludge pre-treatment may initially promote sludge solubilization, increasing the concentration of soluble to total organic matter from 5 to 50 % within 9-24 h; which is followed by a progressive VFA generation after 24 h. Subsequent anaerobic digestion of pre-treated sludge samples (9¬48 h) could increase biogas production by 30-40 % working at 55 ºC with a SRT of 10 days. Biogas yield is some 30 % higher with pre-treated sludge (0.28-0.30 vs. 0.22 L·gVSfed-1) and methane content in biogas is also higher with pre-treated sludge (69 vs. 64 %).
Thermophilic anaerobic sludge digestion would result in net energy production, during cold and warm seasons, provided that digesters with wall insulation and with energy recovery from both the biogas produced and the effluent sludge are used. In this case, the energetic efficiency would be similar for thermophilic digesters working at half the SRT (10-15 days) of mesophilic digesters (20-30 days), meaning that the sludge daily flow rate could be doubled, or the reactor volume reduced, with subsequent savings in terms of sludge treatment costs. Furthermore, two-stage systems (70/55 ºC) may result in higher net energy production compared to single-stage systems (55 ºC) at 10 days SRT. However, the amount of surplus energy generated increases with digester volume. In spite of the decrease in methane production rate at increasing SRT, energy production is still higher than energy consumption, and therefore the bigger the amount of sludge in the digester, the higher the energy production.
APA, Harvard, Vancouver, ISO, and other styles
50

Sherif, Ranya. "Microaerobic pretreatment of extended air sewage sludge for the enhanced destruction of pathogenic bacteria in aerobic digestion." Thesis, University of Ottawa (Canada), 2007. http://hdl.handle.net/10393/27919.

Full text
Abstract:
The inactivation of pathogens in sewage sludge reduces the risks of infection through contaminant pathways associated with handling and disposal. Domestic sludge sourced from a rural treatment plant was found to contain high levels of the indicator microoganisms E. coli and fecal coliforms and pathogenic bacteria Salmonella spp., Shigella spp., and C. perfringens. An effective and simple approach to enhance pathogen removal in a rural treatment setting was desired. Existing literature suggested that draw/fill staged configurations tended to yield better inactivation rates. Other literature suggested that the build-up of inhibitory compounds such as VFAs were detrimental to pathogens and that VFAs could be accumulated in higher temperature microaerobic conditions. The investigation of microaerobic pretreatment was trialed as a novel approach to staged digestion for improved pathogen removal. Microaerobic pretreatment of aerobically digested sludge improved inactivation of aerobic bacteria but the inactivation of persistent spores of C. perfringens were inconclusive. Microaerobic pretreatment alone was investigated in three phases of the experiments and did not result in inactivation greater than one log reduction for any bacteria monitored. In Phase I where feed solids concentration was varied across four reactors, the lowest solids loading of 1.1% TS showed the best removal rates of pathogens. In Phase II, contact time was evaluated in terms of feeding frequency and residence time. It was found that less frequent feeding and longer residence times were more effective in removing pathogens as expected from the reactor kinetics and suggested by the literature. The impact after digestion was found to be significant in Phase III for fecal coliforms, E. coli, Salmonella spp. and Shigella spp. It appeared that changes to the sludge matrix in microaerobic pretreatment improved digester performance in terms of pathogen removal. Operating variables were monitored to gain an understanding of the factors impacting performance. Statistical analyses were performed at the 90% confidence interval to determine which if any factors differed significantly between systems and stages. The major findings were that mesophilic pretreatment (35°C) with air supplied at 0.06vvm yielded significantly higher ammonia levels after pretreatment than did pretreatment at ambient temperatures. This was hypothesized to account for the significantly greater extent of nitrification observed in downstream aerobic digestion over the effluents from digestion without pretreatment and those that were pretreated under ambient microaerobic conditions. Accordingly, the pH in those digesters was significantly lower than after digestion without pretreatment and after digestion with ambient microaerobic pretreatment. This enhanced depression in pH was hypothesized to account for the significantly enhanced inactivation in pathogens.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography