To see the other types of publications on this topic, follow the link: Shack- Hartmann Sensor.

Journal articles on the topic 'Shack- Hartmann Sensor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Shack- Hartmann Sensor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Siv, Julie, Rafael Mayer, Guillaume Beaugrand, Guillaume Tison, Rémy Juvénal, and Guillaume Dovillaire. "Testing and characterization of challenging optics and optical systems with Shack Hartmann wavefront sensors." EPJ Web of Conferences 215 (2019): 06003. http://dx.doi.org/10.1051/epjconf/201921506003.

Full text
Abstract:
The Shack-Hartman wavefront sensor is a common metrology tool in the field of laser, adaptive optics and astronomy. However, this technique is still scarcely used in optics and optical system metrology. With the development of manufacturing techniques and the increasing need for optical characterization in the industry, the Shack-Hartmann wavefront sensor emerges as an efficient complementary tool to the well-established Fizeau interferometry for optical system metrology. Moreover, the raise of smart vehicles equipped with optical sensors and augmented reality, the optical characterization of glass and transparent flat materials becomes an issue that can be addressed with Shack-Hartmann sensors. Aberration measurements of challenging optics will be presented such as optical filters, thin flat optics, aspheric lenses and large optical assemblies.
APA, Harvard, Vancouver, ISO, and other styles
2

Seifert, L., J. Liesener, and H. J. Tiziani. "The adaptive Shack–Hartmann sensor." Optics Communications 216, no. 4-6 (February 2003): 313–19. http://dx.doi.org/10.1016/s0030-4018(02)02351-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rha, Jungtae. "Reconfigurable Shack-Hartmann wavefront sensor." Optical Engineering 43, no. 1 (January 1, 2004): 251. http://dx.doi.org/10.1117/1.1625950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jain, Prateek, and Jim Schwiegerling. "RGB Shack–Hartmann wavefront sensor." Journal of Modern Optics 55, no. 4-5 (February 20, 2008): 737–48. http://dx.doi.org/10.1080/09500340701467728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

MANSURIPUR, MASUD. "The Shack-Hartmann Wavefront Sensor." Optics and Photonics News 10, no. 4 (April 1, 1999): 48. http://dx.doi.org/10.1364/opn.10.4.000048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhao, Liping, Wenjiang Guo, Xiang Li, and I.-Ming Chen. "Reference-free Shack–Hartmann wavefront sensor." Optics Letters 36, no. 15 (July 19, 2011): 2752. http://dx.doi.org/10.1364/ol.36.002752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xia, Fei, David Sinefeld, Bo Li, and Chris Xu. "Two-photon Shack–Hartmann wavefront sensor." Optics Letters 42, no. 6 (March 10, 2017): 1141. http://dx.doi.org/10.1364/ol.42.001141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Podanchuk, Dmytro V. "Shack-Hartmann wavefront sensor with holographic memory." Optical Engineering 42, no. 11 (November 1, 2003): 3389. http://dx.doi.org/10.1117/1.1614264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pfund, Johannes, Norbert Lindlein, and Johannes Schwider. "Misalignment effects of the Shack–Hartmann sensor." Applied Optics 37, no. 1 (January 1, 1998): 22. http://dx.doi.org/10.1364/ao.37.000022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Basden, Alastair, Deli Geng, Dani Guzman, Tim Morris, Richard Myers, and Chris Saunter. "Shack-Hartmann sensor improvement using optical binning." Applied Optics 46, no. 24 (August 14, 2007): 6136. http://dx.doi.org/10.1364/ao.46.006136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Martínez-Cuenca, Raúl, Vicente Durán, Vicent Climent, Enrique Tajahuerce, Salvador Bará, Jorge Ares, Justo Arines, Manuel Martínez-Corral, and Jesús Lancis. "Reconfigurable Shack–Hartmann sensor without moving elements." Optics Letters 35, no. 9 (April 22, 2010): 1338. http://dx.doi.org/10.1364/ol.35.001338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Akondi, Vyas, and Alfredo Dubra. "Shack-Hartmann wavefront sensor optical dynamic range." Optics Express 29, no. 6 (March 3, 2021): 8417. http://dx.doi.org/10.1364/oe.419311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ko, Jonathan, and Christopher C. Davis. "Comparison of the plenoptic sensor and the Shack–Hartmann sensor." Applied Optics 56, no. 13 (April 24, 2017): 3689. http://dx.doi.org/10.1364/ao.56.003689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

LI Wen-jie, 李文杰, 穆全全 MU Quan-quan, 王少鑫 WANG Shao-xin, 王海萍 WANG Hai-ping, 杨程亮 YANG Cheng-liang, 曹召良 CAO Zhao-liang, and 宣丽 XUAN Li. "High precision adjustable mechanism for Shack-Hartmann sensor." Optics and Precision Engineering 23, no. 10 (2015): 2852–59. http://dx.doi.org/10.3788/ope.20152310.2852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Yang Jinsheng, 杨金生, 饶学军 Rao Xuejun, and 饶长辉 Rao Changhui. "A Corneal Topography Based on Hartmann-Shack Sensor." Chinese Journal of Lasers 37, no. 3 (2010): 826–31. http://dx.doi.org/10.3788/cjl20103703.0826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Primot, Jérôme. "Theoretical description of Shack–Hartmann wave-front sensor." Optics Communications 222, no. 1-6 (July 2003): 81–92. http://dx.doi.org/10.1016/s0030-4018(03)01565-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Hampson, KM, SS Chin, and EAH Mallen. "Binocular Shack–Hartmann sensor for the human eye." Journal of Modern Optics 55, no. 4-5 (February 20, 2008): 703–16. http://dx.doi.org/10.1080/09500340701469674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Gong, Hai, Oleg Soloviev, Dean Wilding, Paolo Pozzi, Michel Verhaegen, and Gleb Vdovin. "Holographic imaging with a Shack-Hartmann wavefront sensor." Optics Express 24, no. 13 (June 13, 2016): 13729. http://dx.doi.org/10.1364/oe.24.013729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Xia, Mingliang, Chao Li, Lifa Hu, Zhaoliang Cao, Quanquan Mu, and Li Xuan. "Shack-Hartmann wavefront sensor with large dynamic range." Journal of Biomedical Optics 15, no. 2 (2010): 026009. http://dx.doi.org/10.1117/1.3369810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Arines, Justo, Paula Prado, and Salvador Bará. "Pupil tracking with a Hartmann-Shack wavefront sensor." Journal of Biomedical Optics 15, no. 3 (2010): 036022. http://dx.doi.org/10.1117/1.3447922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Li, Chao, Mingliang Xia, Zhaonan Liu, Dayu Li, and Li Xuan. "Optimization for high precision Shack–Hartmann wavefront sensor." Optics Communications 282, no. 22 (November 2009): 4333–38. http://dx.doi.org/10.1016/j.optcom.2009.07.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Seifert, L., H. J. Tiziani, and W. Osten. "Wavefront reconstruction with the adaptive Shack–Hartmann sensor." Optics Communications 245, no. 1-6 (January 2005): 255–69. http://dx.doi.org/10.1016/j.optcom.2004.09.074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zhariy, Mariya, Andreas Neubauer, Matthias Rosensteiner, and Ronny Ramlau. "Cumulative wavefront reconstructor for the Shack-Hartmann sensor." Inverse Problems & Imaging 5, no. 4 (2011): 893–913. http://dx.doi.org/10.3934/ipi.2011.5.893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Potanin, S. A., and P. S. Kotlyar. "Shack-Hartmann wavefront sensor in a convergent beam." Astronomy Letters 32, no. 6 (June 2006): 427–30. http://dx.doi.org/10.1134/s1063773706060077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lane, R. G., and M. Tallon. "Wave-front reconstruction using a Shack–Hartmann sensor." Applied Optics 31, no. 32 (November 10, 1992): 6902. http://dx.doi.org/10.1364/ao.31.006902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ma, Chenhao, Yuegang Fu, Wenjun He, Yan Liu, Mingzhao Ouyang, and Jiake Wang. "Hartmann–Shack sensor based micro-scanning image detection." Optik 126, no. 6 (March 2015): 609–13. http://dx.doi.org/10.1016/j.ijleo.2015.01.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Guthery, Charlotte E., and Michael Hart. "Pyramid and Shack–Hartmann hybrid wave-front sensor." Optics Letters 46, no. 5 (February 19, 2021): 1045. http://dx.doi.org/10.1364/ol.417305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Song Jingwei, 宋静威, 李常伟 Li Changwei, and 张思炯 Zhang Sijiong. "基于离焦型夏克-哈特曼传感器的定量相位成像技术." Acta Optica Sinica 41, no. 9 (2021): 0911002. http://dx.doi.org/10.3788/aos202141.0911002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Liang Chun, 梁春, 廖文和 Liao Wenhe, 沈建新 Shen Jianxin, and 周宇 Zhou Yu. "An Adaptive Detecting Centroid Method for Hartmann-Shack Wavefront Sensor." Chinese Journal of Lasers 36, no. 2 (2009): 430–34. http://dx.doi.org/10.3788/cjl20093602.0430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Roh, Kyung-Wan, Tae-Kyoung Uhm, Ji-Yeon Kim, Sung-Kie Youn, and Jun Ho Lee. "Noise-Insensitive Centroiding Algorithm for a Shack-Hartmann Sensor." Journal of the Korean Physical Society 52, no. 1 (January 15, 2008): 160–69. http://dx.doi.org/10.3938/jkps.52.160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Xie Hongsheng, 解洪升, 杨乐宝 Yang Lebao, 李大禹 Li Dayu, 宣丽 Xuan Li, and 夏明亮 Xia Mingliang. "Influence of Chromatic Aberration on Shack-Hartmann Wavefront Sensor." Laser & Optoelectronics Progress 52, no. 3 (2015): 030801. http://dx.doi.org/10.3788/lop52.030801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kanev, Fedor, Valerii Aksenov, and Igor Veretekhin. "Registration of Optical Vortices by the Shack – Hartmann Sensor." Vestnik RFFI 4, no. 100 (October 15, 2018): 8–10. http://dx.doi.org/10.22204/2410-4639-2018-100-04-8-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Baik, Sung-Hoon, Seung-Kyu Park, Cheol-Jung Kim, and Byungheon Cha. "A center detection algorithm for Shack–Hartmann wavefront sensor." Optics & Laser Technology 39, no. 2 (March 2007): 262–67. http://dx.doi.org/10.1016/j.optlastec.2005.08.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Carmon, Yuval, and Erez N. Ribak. "Phase retrieval by demodulation of a Hartmann–Shack sensor." Optics Communications 215, no. 4-6 (January 2003): 285–88. http://dx.doi.org/10.1016/s0030-4018(02)02254-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Oliveira, O. G., D. W. de Lima Monteiro, and R. F. O. Costa. "Optimized microlens-array geometry for Hartmann–Shack wavefront sensor." Optics and Lasers in Engineering 55 (April 2014): 155–61. http://dx.doi.org/10.1016/j.optlaseng.2013.11.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Akondi, Vyas, Claas Falldorf, Susana Marcos, and Brian Vohnsen. "Phase unwrapping with a virtual Hartmann-Shack wavefront sensor." Optics Express 23, no. 20 (September 21, 2015): 25425. http://dx.doi.org/10.1364/oe.23.025425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Aftab, Maham, Heejoo Choi, Rongguang Liang, and Dae Wook Kim. "Adaptive Shack-Hartmann wavefront sensor accommodating large wavefront variations." Optics Express 26, no. 26 (December 18, 2018): 34428. http://dx.doi.org/10.1364/oe.26.034428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Zou, Weiyao, Kevin P. Thompson, and Jannick P. Rolland. "Differential Shack-Hartmann curvature sensor: local principal curvature measurements." Journal of the Optical Society of America A 25, no. 9 (August 21, 2008): 2331. http://dx.doi.org/10.1364/josaa.25.002331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Tiziani, H. J., and J. H. Chen. "Shack-Hartmann sensor for fast infrared wave-front testing." Journal of Modern Optics 44, no. 3 (March 1997): 535–41. http://dx.doi.org/10.1080/09500349708232919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ares, M., S. Royo, and J. Caum. "Shack-Hartmann sensor based on a cylindrical microlens array." Optics Letters 32, no. 7 (March 5, 2007): 769. http://dx.doi.org/10.1364/ol.32.000769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Anugu, Narsireddy, and J. P. Lancelot. "Study of atmospheric turbulence with Shack Hartmann wavefront sensor." Journal of Optics 42, no. 2 (January 26, 2013): 128–40. http://dx.doi.org/10.1007/s12596-012-0112-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

YIN, XIAOMING, LIPING ZHAO, XIANG LI, and ZHONGPING FANG. "ONLINE SURFACE MEASUREMENT WITH DIGITAL SHACK–HARTMANN WAVEFRONT SENSOR." International Journal of Nanoscience 09, no. 03 (June 2010): 123–33. http://dx.doi.org/10.1142/s0219581x10006715.

Full text
Abstract:
Shack–Hartmann wavefront sensor splits the incident wavefront into many subsections and transfers the distorted wavefront detection into the centroid measurement. The accuracy of the centroid measurement determines the accuracy of the SHWS. In this paper, we have presented an automatic centroid measurement method based on the image processing technology for practical applications of the digital SHWS in surface profile measurement. The method can detect the centroid of each focal spot accurately and robustly by eliminating the influences of various noises. Based on this centroid detection method, we have developed a digital SHWS system which can automatically detect centroids of focal spots, reconstruct the wavefront, and measure the 3D profile of the surface. The experimental results demonstrate that the system has good accuracy, repeatability and compatibility to optical misalignment. The system is suitable for online applications of surface measurement.
APA, Harvard, Vancouver, ISO, and other styles
43

Liang, C., W. H. Liao, and J. X. Sheng. "Parameter Calibration of Hartmann-Shack Wavefront Sensor Based on Mode-Construction Algorithm." Key Engineering Materials 426-427 (January 2010): 638–42. http://dx.doi.org/10.4028/www.scientific.net/kem.426-427.638.

Full text
Abstract:
The principle of Hartmann-Shack wavefront sensor decided that the distance between micro-lens array and the CCD is the essence of reconstruction algorithm. Because of lacking way to measure the parameter and the existing of assembly error, it will obviously cause error by using the micro-lens focus instead of actual parameter. After analyzing the Zernike polynomial for describing wavrfront aberration, a new Self-reference method is given in this paper to calibrate the parameter. The method is based on the truth that the primary aberration of point light source is defocusing amount. Through this way, the requirement of sensor assembly-precision is reduced, and the detection accuracy of Hartmann-Shack sensor is also improved in the meanwhile. Satisfying results has been achieved under the normal experimental condition using the method given in this paper.
APA, Harvard, Vancouver, ISO, and other styles
44

Canales Pacheco, Benito. "Sensor nulo de Shack-Hartmann para evaluar una superficie cóncava esférica y una parabólica / Null Shack-Hartmann Sensor for evaluating a concave spherical surface and a satellite dish." RECI Revista Iberoamericana de las Ciencias Computacionales e Informática 4, no. 8 (January 14, 2016): 49. http://dx.doi.org/10.23913/reci.v4i8.32.

Full text
Abstract:
Actualmente existen muchas pruebas ópticas que analizan una superficie o un sistema óptico. Según la literatura científica las hay de dos clases, dependiendo del método que utilicen: las denominadas no interferométrícas, es decir, la prueba de Hartmann, Alambre, Estrella, Foucault, Ronchi [1]. Dichas pruebas permiten obtener información sobre la derivada del frente de onda (∂w/∂y). Por otro lado, están las denominadas pruebas interferométricas, por ejemplo: el Interferómetro de Tyman Green, Fizeau, Newton, Murty (desplazamiento lateral) [2]. Con este tipo de pruebas se obtiene información directa del frente de onda (W). El presente trabajo utiliza el principio físico de la prueba de Hartmann para construir un sensor de frente de onda tipo Shack-Hartmann, que permita evaluar una superficie óptica esférica y una parabólica.
APA, Harvard, Vancouver, ISO, and other styles
45

Abecassis, Úrsula, Davies de Lima Monteiro, Luciana Salles, Carlos de Moraes Cruz, and Pablo Agra Belmonte. "Impact of CMOS Pixel and Electronic Circuitry in the Performance of a Hartmann-Shack Wavefront Sensor." Sensors 18, no. 10 (September 29, 2018): 3282. http://dx.doi.org/10.3390/s18103282.

Full text
Abstract:
This work presents a numerical simulation of a Hartmann-Shack wavefront sensor (WFS) that assesses the impact of integrated electronic circuitry on the sensor performance, by evaluating a full detection chain encompassing wavefront sampling, photodetection, electronic circuitry and wavefront reconstruction. This platform links dedicated C algorithms for WFS to a SPICE circuit simulator for integrated electronics. The complete codes can be easily replaced in order to represent different detection or reconstruction methods, while the circuit simulator employs reliable models of either off-the-shelf circuit components or custom integrated circuit modules. The most relevant role of this platform is to enable the evaluation of the applicability and constraints of the focal plane of a given wavefront sensor prior to the actual fabrication of the detector chip. In this paper, we will present the simulation results for a Hartmann-Shack wavefront sensor with an orthogonal array of quad-cells (QC) integrated along with active-pixel (active-pixel sensor (APS)) circuitry and analog-to-digital converters (ADC) on a “complementary metal oxide semiconductor” (CMOS) process and deploying a modal wavefront reconstructor. This extended simulation capability for wavefront sensors enables the test and verification of different photosensitive and circuitry topologies for position-sensitive detectors combined with the simulation of sampling microlenses and reconstruction algorithms, with the goal of enhancing the accuracy in the prediction of the wavefront-sensor performance before a detector CMOS chip is actually fabricated.
APA, Harvard, Vancouver, ISO, and other styles
46

Li Jing, 李晶, and 巩岩 Gong Yan. "Insert Algorithm of Wavefront Reconstructions for Hartmann-Shack Wavefront Sensor." Laser & Optoelectronics Progress 49, no. 12 (2012): 120101. http://dx.doi.org/10.3788/lop49.120101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Xu, A. C., J. B. Chen, P. M. Zhang, and J. J. Wu. "Off-Axis Aberration Measurement Based on the Hartmann-Shack Sensor." Advanced Materials Research 670 (March 2013): 183–92. http://dx.doi.org/10.4028/www.scientific.net/amr.670.183.

Full text
Abstract:
Human eyes is an imperfect imaging system that has various aberrations such as on axis and off axis aberrations, which often affect the imaging quality of retina. However, the available aberration methods are mainly concerned with on-axis aberration measurement, which include defocusing, astigmation, and some higher order aberration measurements. Therefore, off-axis aberration measurement under the principle of Hartmann-Shack sensor is proposed in this paper with an empirical study, the results of which showed that the imaging quality of human eyes’ peripheral field decreased with the enlargement of off axis angle. The enlargement of human eyes’ off axis aberration and the decrease of photosensory cell density of the peripheral field are two reasons for such a result.
APA, Harvard, Vancouver, ISO, and other styles
48

Zhang Jinping, 张金平, 张忠玉 Zhang Zhongyu, 张学军 Zhang Xuejun, and 李锐钢 Li Ruigang. "Algorithm for Extending Dynamic Range of Shack-Hartmann Wavefront Sensor." Acta Optica Sinica 31, no. 8 (2011): 0812006. http://dx.doi.org/10.3788/aos201131.0812006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Dai, Yang, Faquan Li, Xuewu Cheng, Zhiling Jiang, and Shunsheng Gong. "Analysis on Shack–Hartmann wave-front sensor with Fourier optics." Optics & Laser Technology 39, no. 7 (October 2007): 1374–79. http://dx.doi.org/10.1016/j.optlastec.2006.10.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zheng Hanqing, 郑翰清, 饶长辉 Rao Changhui, 饶学军 Rao Xuejun, 姜文汉 Jiang Wenhan, and 杨金生 Yang Jinsheng. "Wavefront Stitching Detection Method Based on Hartmann-Shack Wavefront Sensor." Acta Optica Sinica 29, no. 12 (2009): 3385–90. http://dx.doi.org/10.3788/aos20092912.3385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography