Journal articles on the topic 'SHAP values'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'SHAP values.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zern, Artjom, Klaus Broelemann, and Gjergji Kasneci. "Interventional SHAP Values and Interaction Values for Piecewise Linear Regression Trees." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 9 (2023): 11164–73. http://dx.doi.org/10.1609/aaai.v37i9.26322.
Full textMatthews, Spencer, and Brian Hartman. "mSHAP: SHAP Values for Two-Part Models." Risks 10, no. 1 (2021): 3. http://dx.doi.org/10.3390/risks10010003.
Full textUtkin, Lev, and Andrei Konstantinov. "Ensembles of Random SHAPs." Algorithms 15, no. 11 (2022): 431. http://dx.doi.org/10.3390/a15110431.
Full textSharipov, D. K., and A. D. Saidov. "Modified SHAP approach for interpretable prediction of cardiovascular complications." Проблемы вычислительной и прикладной математики, no. 2(64) (May 15, 2025): 114–22. https://doi.org/10.71310/pcam.2_64.2025.10.
Full textLétoffé, Olivier, Xuanxiang Huang, and Joao Marques-Silva. "Towards Trustable SHAP Scores." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 17 (2025): 18198–208. https://doi.org/10.1609/aaai.v39i17.34002.
Full textSuresh, Tamilarasi, Assegie Tsehay Admassu, Sangeetha Ganesan, Tulasi Ravulapalli Lakshmi, Radha Mothukuri, and Salau Ayodeji Olalekan. "Explainable extreme boosting model for breast cancer diagnosis." International Journal of Electrical and Computer Engineering (IJECE) 13, no. 5 (2023): 5764–69. https://doi.org/10.11591/ijece.v13i5.pp5764-5769.
Full textSuresh, Tamilarasi, Tsehay Admassu Assegie, Sangeetha Ganesan, Ravulapalli Lakshmi Tulasi, Radha Mothukuri, and Ayodeji Olalekan Salau. "Explainable extreme boosting model for breast cancer diagnosis." International Journal of Electrical and Computer Engineering (IJECE) 13, no. 5 (2023): 5764. http://dx.doi.org/10.11591/ijece.v13i5.pp5764-5769.
Full textLamens, Alec, and Jürgen Bajorath. "Explaining Multiclass Compound Activity Predictions Using Counterfactuals and Shapley Values." Molecules 28, no. 14 (2023): 5601. http://dx.doi.org/10.3390/molecules28145601.
Full textGuo, Yaqiang, Fengying Ma, Peipei Li, et al. "Comprehensive SHAP Values and Single-Cell Sequencing Technology Reveal Key Cell Clusters in Bovine Skeletal Muscle." International Journal of Molecular Sciences 26, no. 5 (2025): 2054. https://doi.org/10.3390/ijms26052054.
Full textBaptista, Marcia L., Kai Goebel, and Elsa M. P. Henriques. "Relation between prognostics predictor evaluation metrics and local interpretability SHAP values." Artificial Intelligence 306 (May 2022): 103667. http://dx.doi.org/10.1016/j.artint.2022.103667.
Full textAymerich, María, Alejandra García-Baizán, Paolo Niccolò Franco, et al. "Radiomics-Based Classification of Clear Cell Renal Cell Carcinoma ISUP Grade: A Machine Learning Approach with SHAP-Enhanced Explainability." Diagnostics 15, no. 11 (2025): 1337. https://doi.org/10.3390/diagnostics15111337.
Full textScheda, Riccardo, and Stefano Diciotti. "Explanations of Machine Learning Models in Repeated Nested Cross-Validation: An Application in Age Prediction Using Brain Complexity Features." Applied Sciences 12, no. 13 (2022): 6681. http://dx.doi.org/10.3390/app12136681.
Full textMitchell, Rory, Eibe Frank, and Geoffrey Holmes. "GPUTreeShap: massively parallel exact calculation of SHAP scores for tree ensembles." PeerJ Computer Science 8 (April 5, 2022): e880. http://dx.doi.org/10.7717/peerj-cs.880.
Full textFeretzakis, Georgios, Aikaterini Sakagianni, Athanasios Anastasiou, et al. "Integrating Shapley Values into Machine Learning Techniques for Enhanced Predictions of Hospital Admissions." Applied Sciences 14, no. 13 (2024): 5925. http://dx.doi.org/10.3390/app14135925.
Full textSultan, Youssef, Mohammad Hammad, and Kelly Lester. "Visualizing Type 2 Diabetes Prevalence: Localizing Model Feature Impacts." International Journal of Data Science 5, no. 2 (2024): 64–74. https://doi.org/10.18517/ijods.5.2.64-74.2024.
Full textKariyappa, Sanjay, Leonidas Tsepenekas, Freddy Lécué, and Daniele Magazzeni. "SHAP@k: Efficient and Probably Approximately Correct (PAC) Identification of Top-K Features." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 12 (2024): 13068–75. http://dx.doi.org/10.1609/aaai.v38i12.29205.
Full textLee, Jae-Min, Tae-In Kim, Chan-Jun Park, et al. "A Study on The Evaluation of SHAP Values for Ecotoxicity in Influent of WWTPs(Wastewater Treatment Plants) and Contribution by Water Quality Pollutants." Journal of the Korean Society for Environmental Technology 25, no. 2 (2024): 100–107. http://dx.doi.org/10.26511/jkset.25.2.3.
Full textErgenç, Cansu, and Rafet Aktaş. "Sector-specific financial forecasting with machine learning algorithm and SHAP interaction values." Financial Internet Quarterly 21, no. 1 (2025): 42–66. https://doi.org/10.2478/fiqf-2025-0004.
Full textRaghupathy, Bala Krishnan, Manyam Rajasekhar Reddy, Prasad Theeda, Elangovan Balasubramanian, Rajesh Kumar Namachivayam, and Manikandan Ganesan. "Harnessing Explainable Artificial Intelligence (XAI) based SHAPLEY Values and Ensemble Techniques for Accurate Alzheimer's Disease Diagnosis." Engineering, Technology & Applied Science Research 15, no. 2 (2025): 20743–47. https://doi.org/10.48084/etasr.9619.
Full textPezoa, R., L. Salinas, and C. Torres. "Explainability of High Energy Physics events classification using SHAP." Journal of Physics: Conference Series 2438, no. 1 (2023): 012082. http://dx.doi.org/10.1088/1742-6596/2438/1/012082.
Full textArenas, Marcelo, Pablo Barceló, Leopoldo Bertossi, and Mikaël Monet. "The Tractability of SHAP-Score-Based Explanations for Classification over Deterministic and Decomposable Boolean Circuits." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 8 (2021): 6670–78. http://dx.doi.org/10.1609/aaai.v35i8.16825.
Full textKee, Tris, and Winky K. O. Ho. "eXplainable Machine Learning for Real Estate: XGBoost and Shapley Values in Price Prediction." Civil Engineering Journal 11, no. 5 (2025): 2116–33. https://doi.org/10.28991/cej-2025-011-05-022.
Full textAlomari, Yazan, Marcia Baptista, and Mátyás Andó. "Integrating Network Theory and SHAP Analysis for Enhanced RUL Prediction in Aeronautics." PHM Society European Conference 8, no. 1 (2024): 15. http://dx.doi.org/10.36001/phme.2024.v8i1.4077.
Full text李, 珍玲. "Analysis of the Influencing Factors of Liquor Consumer Stickiness Based on MLP and SHAP Values." Operations Research and Fuzziology 13, no. 05 (2023): 5283–99. http://dx.doi.org/10.12677/orf.2023.135530.
Full textAntonini, Antonella S., Juan Tanzola, Lucía Asiain, et al. "Machine Learning model interpretability using SHAP values: Application to Igneous Rock Classification task." Applied Computing and Geosciences 23 (September 2024): 100178. http://dx.doi.org/10.1016/j.acags.2024.100178.
Full textChoi, Ho-Woong, and Sardor Abdirayimov. "Demonstrating the Power of SHAP Values in AI-Driven Classification of Marvel Characters." Journal of Multimedia Information System 11, no. 2 (2024): 167–72. http://dx.doi.org/10.33851/jmis.2024.11.2.167.
Full textGupta, Pooja, Srabanti Maji, and Ritika Mehra. "Compound Facial Emotion Recognition based on Facial Action Coding System and SHAP Values." International Research Journal on Advanced Science Hub 5, Issue 05S (2023): 26–34. http://dx.doi.org/10.47392/irjash.2023.s004.
Full textSUBIANTO, MUHAMMAD, INA YATUL ULYA, EVI RAMADHANI, BAGUS SARTONO, and ALFIAN FUTUHUL HADI. "Application of SHAP on CatBoost classification for identification of variabels characterizing food insecurity occurrences in Aceh Province households." Jurnal Natural 23, no. 3 (2023): 230–44. http://dx.doi.org/10.24815/jn.v23i3.33548.
Full textVahed, Sepideh Zununi, Seyed Mahdi Hosseiniyan Khatibi, Yalda Rahbar Saadat, et al. "Introducing effective genes in lymph node metastasis of breast cancer patients using SHAP values based on the mRNA expression data." PLOS ONE 19, no. 8 (2024): e0308531. http://dx.doi.org/10.1371/journal.pone.0308531.
Full textIkushima, Hiroaki, Kousuke Watanabe, Aya Shinozaki-Ushiku, Katsutoshi Oda, and Hidenori Kage. "A retrospective machine learning–based analysis of nationwide cancer comprehensive genomic profiling data to identify features associated with recommendation of mutation-based therapy." Journal of Clinical Oncology 42, no. 16_suppl (2024): e13510-e13510. http://dx.doi.org/10.1200/jco.2024.42.16_suppl.e13510.
Full textChen, Jun-Wei, Hsin-An Chen, Tzu-Chi Liu, Tzu-En Wu, and Chi-Jie Lu. "The Potential of SHAP and Machine Learning for Personalized Explanations of Influencing Factors in Myopic Treatment for Children." Medicina 61, no. 1 (2024): 16. https://doi.org/10.3390/medicina61010016.
Full textPadarian, José, Alex B. McBratney, and Budiman Minasny. "Game theory interpretation of digital soil mapping convolutional neural networks." SOIL 6, no. 2 (2020): 389–97. http://dx.doi.org/10.5194/soil-6-389-2020.
Full textLi, Xuan, Chaofan Wu, Michael E. Meadows, et al. "Factors Underlying Spatiotemporal Variations in Atmospheric PM2.5 Concentrations in Zhejiang Province, China." Remote Sensing 13, no. 15 (2021): 3011. http://dx.doi.org/10.3390/rs13153011.
Full textLi, Richard, Ashwin Shinde, An Liu, et al. "Machine Learning–Based Interpretation and Visualization of Nonlinear Interactions in Prostate Cancer Survival." JCO Clinical Cancer Informatics, no. 4 (September 2020): 637–46. http://dx.doi.org/10.1200/cci.20.00002.
Full textKim, Donghyun, Gian Antariksa, Melia Putri Handayani, Sangbong Lee, and Jihwan Lee. "Explainable Anomaly Detection Framework for Maritime Main Engine Sensor Data." Sensors 21, no. 15 (2021): 5200. http://dx.doi.org/10.3390/s21155200.
Full textAssegie, Tsehay Admassu. "Evaluation of the Shapley Additive Explanation Technique for Ensemble Learning Methods." Proceedings of Engineering and Technology Innovation 21 (April 22, 2022): 20–26. http://dx.doi.org/10.46604/peti.2022.9025.
Full textQueiró Silva, R., D. Seoane-Mato, A. Laiz, et al. "POS1074 MINIMAL DISEASE ACTIVITY (MDA) IN PATIENTS WITH RECENT-ONSET PSORIATIC ARTHRITIS. PREDICTIVE MODEL BASED ON MACHINE LEARNING." Annals of the Rheumatic Diseases 81, Suppl 1 (2022): 861–62. http://dx.doi.org/10.1136/annrheumdis-2022-eular.1841.
Full textHe, Bo, Ping Ye, Marta Taghavi, et al. "A machine learning model to predict treatment initiation among new patients in a community oncology network." Journal of Clinical Oncology 41, no. 16_suppl (2023): e13539-e13539. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.e13539.
Full textAbd Karim, Shahiratul Amalina, Ummul Hanan Mohamad, and Puteri Nor Ellyza Nohuddin. "Discovery of Interpretable Patterns of Breast Cancer Diagnosis via Class Association Rule Mining (CARM) With SHAP-Based Explainable AI (XAI)." Malaysian Journal of Fundamental and Applied Sciences 21, no. 3 (2025): 2008–31. https://doi.org/10.11113/mjfas.v21n3.3792.
Full textAzadi, Mohammad, and Mahmood Matin. "Interpretation of fatigue lifetime prediction by machine learning modeling in piston aluminum alloys under different manufacturing and loading conditions." Frattura ed Integrità Strutturale 18, no. 68 (2024): 357–70. http://dx.doi.org/10.3221/igf-esis.68.24.
Full textLiu, Wei, Zhangxin Chen, Yuan Hu, and Jun Zhang. "Forecasting pipeline safety and remaining life with machine learning methods and SHAP interaction values." International Journal of Pressure Vessels and Piping 205 (October 2023): 105000. http://dx.doi.org/10.1016/j.ijpvp.2023.105000.
Full textLiu, Peili, Song Han, and Na Rong. "Frequency stability prediction of renewable energy penetrated power systems using CoAtNet and SHAP values." Engineering Applications of Artificial Intelligence 123 (August 2023): 106403. http://dx.doi.org/10.1016/j.engappai.2023.106403.
Full textJose, Blessy Jayaron, Preeti Jain, and T. Raja Rani. "A Data-driven Approach to Understanding Energy Losses using COMSOL Simulation and SHAP Values." WSEAS TRANSACTIONS ON ENVIRONMENT AND DEVELOPMENT 21 (May 26, 2025): 552–73. https://doi.org/10.37394/232015.2025.21.46.
Full textHanani, Ahmad A., Turker Berk Donmez, Mustafa Kutlu, and Mohammed Mansour. "Predicting thyroid cancer recurrence using supervised CatBoost: A SHAP-based explainable AI approach." Medicine 104, no. 22 (2025): e42667. https://doi.org/10.1097/md.0000000000042667.
Full textLiu, Shuxian, Yang Liu, Zhigang Chu, et al. "Evaluation of Tropical Cyclone Disaster Loss Using Machine Learning Algorithms with an eXplainable Artificial Intelligence Approach." Sustainability 15, no. 16 (2023): 12261. http://dx.doi.org/10.3390/su151612261.
Full textSarder Abdulla Al Shiam, Md Mahdi Hasan, Md Jubair Pantho, et al. "Credit Risk Prediction Using Explainable AI." Journal of Business and Management Studies 6, no. 2 (2024): 61–66. http://dx.doi.org/10.32996/jbms.2024.6.2.6.
Full textCynthia, C., Debayani Ghosh, and Gopal Krishna Kamath. "Detection of DDoS Attacks Using SHAP-Based Feature Reduction." International Journal of Machine Learning 13, no. 4 (2023): 173–80. http://dx.doi.org/10.18178/ijml.2023.13.4.1147.
Full textCao, Mengru, and Chunhui Li. "Prediction of In-Hospital Mortality in Non-ST-Segment Elevation Myocardial Infarction, Based on Interpretable Machine Learning." Applied Sciences 15, no. 8 (2025): 4226. https://doi.org/10.3390/app15084226.
Full textHartati, Hartati, Rudy Herteno, Mohammad Reza Faisal, Fatma Indriani, and Friska Abadi. "Recursive Feature Elimination Optimization Using Shapley Additive Explanations in Software Defect Prediction with LightGBM Classification." JURNAL INFOTEL 17, no. 1 (2025): 1–16. https://doi.org/10.20895/infotel.v17i1.1159.
Full textThanathamathee, Putthiporn, Siriporn Sawangarreerak, Siripinyo Chantamunee, and Dinna Nina Mohd Nizam. "SHAP-Instance Weighted and Anchor Explainable AI: Enhancing XGBoost for Financial Fraud Detection." Emerging Science Journal 8, no. 6 (2024): 2404–30. https://doi.org/10.28991/esj-2024-08-06-016.
Full text