Academic literature on the topic 'Shaped charge'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Shaped charge.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Shaped charge"
Racah, E. "Shaped Charge Jet Heating." Propellants, Explosives, Pyrotechnics 13, no. 6 (December 1988): 178–82. http://dx.doi.org/10.1002/prep.19880130605.
Full textMarkelov, G. E. "Effect of initial heating of shaped charge liners on shaped charge pentetration." Journal of Applied Mechanics and Technical Physics 41, no. 5 (September 2000): 788–91. http://dx.doi.org/10.1007/bf02468723.
Full textHristov, Hristo. "Modeling in Shaped Charge Design." Information & Security: An International Journal 12 (2003): 225–31. http://dx.doi.org/10.11610/isij.1213.
Full textMe-Bar, Yoav, and Yehuda Partom. "Shaped Charge Jet Tail Velocity." Propellants, Explosives, Pyrotechnics 22, no. 6 (December 1997): 355–59. http://dx.doi.org/10.1002/prep.19970220611.
Full textLiu, Yakun, Jianping Yin, Zhijun Wang, Xuepeng Zhang, and Guangjian Bi. "The EFP Formation and Penetration Capability of Double-Layer Shaped Charge with Wave Shaper." Materials 13, no. 20 (October 12, 2020): 4519. http://dx.doi.org/10.3390/ma13204519.
Full textZaki, S., Emad Uddin, B. Rashid, A. Mubashar, and Samiur R. Shah. "Effect of liner material and explosive type on penetration effectiveness of shaped charge." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 233, no. 7 (January 10, 2018): 1375–83. http://dx.doi.org/10.1177/1464420717753233.
Full textQu, Hong Fei, Feng Han, and Fang Chen. "The Numerical Simulation of Shaped Charge Jet under the Influence of Charge Structure." Applied Mechanics and Materials 444-445 (October 2013): 996–1000. http://dx.doi.org/10.4028/www.scientific.net/amm.444-445.996.
Full textTHANG, Dam, Vladimir BELIN, and Tran DOANH. "STUDIES OF THE SHAPED CHARGES EFFECT WITH A HEMISPHERICAL ECCENTRIC SHAPE RECESS FOR THE ROCKS DESTRUCTION." Sustainable Development of Mountain Territories 13, no. 2 (June 30, 2021): 281–91. http://dx.doi.org/10.21177/1998-4502-2021-13-2-281-291.
Full textHabera, Łukasz, and Kamil Hebda. "Badania porównawcze liniowych ładunków kumulacyjnych." Nafta-Gaz 77, no. 6 (June 2021): 366–75. http://dx.doi.org/10.18668/ng.2021.06.02.
Full textHebda, Kamil, Łukasz Habera, and Piotr Koślik. "Modelowanie numeryczne ładunków kumulacyjnych z wkładkami dzielonymi dwuczęściowymi." Nafta-Gaz 77, no. 4 (April 2021): 264–69. http://dx.doi.org/10.18668/ng.2021.04.06.
Full textDissertations / Theses on the topic "Shaped charge"
Gustafsson, Andreas. "Shaped Charge Design : Construction of a Miniaturized Shaped Charge." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-85465.
Full textRiktad sprängverkan (RSV)-laddningarna som finns på marknaden idag sträcker sig från ungefär 20 till 200 mm i diameter. Det finns dock ett behov för storlekar mindre än detta, till exempel i tillämpningar där en liten projektil med hög fart krävs, alternativt att utrusta eller sänka drönare med. Målet med detta examensarbete var att utveckla en miniatyriserad RSV-laddning med dimensioner mindre än vad som finns tillgängligt idag och helst med en diameter neråt tio mm. Projektet utfördes på Karlstads universitet i samarbete med Saab Dynamics AB. Processen som användes under detta projekt gick ut på att börja med en förstudie for att erhålla information om gränserna för mått för att undersöka hur små dimensioner som kan användas för höljet och linern med avseende på tillverkningsbarhet. Förstudien genomfördes genom att studera akademisk litteratur och kontakta företag med expertis inom tillverkningsområdet. En tidigare använd RSV-laddning användes som startpunkt och dimensionerna justerades i enlighet med målet. Påverkan av parametrar på prestanda undersöktes genom att använda γSPH modulen i IMPETUS Afea. Det använda materialet för linern begränsades till OFHC koppar och olika material för höljet testades. Två materialval gjordes för höljet med hjälp av Granta Edupack. Slutsatsen som kan dras utifrån arbetet är att det är möjligt att tillverka miniatyriserade RSV-laddningar med dimensioner neråt tio mm. Både en design för en strålbildande RSV-laddning och en projektilbildande RSV-laddning utvecklades under projektet. Den resulterande projektilen för den projektilbilande RSV-laddningen hade en fart på 2450 m/s, en längd av totalt 7.3 mm och 3.5 mm i diameter och den strålbildande RSV-laddningen hade en spetsfart på 7060 km/s och kunde penetrera 38 mm AISI 4340 stål enligt modellen som användes i IMPETUS Afea. En prototyp planerades men på grund av kostnadsrestriktioner lämnades det som framtida arbete.
Poole, Chris. "Penetration of a shaped charge." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419435.
Full textClipii, Tudor. "On mathematical modeling of shaped charge penetration." Thesis, Linköping University, Department of Management and Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11996.
Full textShaped charges are a well established type of projectile, subjected to a lot of research ever since emerging as a viable technology in the 1940s. The penetration achieved by shaped charges decreases with increased standoff distance. This is often attributed to the shaped charge jet losing its coherence. The Swedish Defence Research Agency however, noted no such loss of coherence in its experiments. An alternative explanation to the decrease of penetration was instead proposed. The object of this thesis was to investigate this proposed theory. To this end, the hydrocode Autodyn was used, modelling the impact of a high-velocity projectile into a generic target and analysing the resulting behaviour of the target. Several setups were used and several parameters were considered when evaluating the results. The conclusion of this thesis is that the alternative explanation offered is not supported by the observed behaviour of the target in the computer model.
Welsh, B. S. "High speed deformation and break-up of shaped charge jets." Thesis, University of Nottingham, 1993. http://eprints.nottingham.ac.uk/42489/.
Full textGurel, Eser. "Modeling And Simulation Of Shaped Charges." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610830/index.pdf.
Full textin the aspects of jet formation, breakup and penetration. The results are compared within themselves and with the data available in the literature. AUTODYN software is used for the numerical simulations. Different solver and modeling alternatives of AUTODYN are evaluated for jet formation and penetration problems. AUTODYN&rsquo
s Euler solver is used to understand how the jet formation is affected by the mesh size and shape and the presence of air as the surrounding medium. Jetting option in the AUTODYN-Euler simulations are used to simulate jet formation as an alternative to simulations performed using AUTODYN&rsquo
s Euler solver. In the jetting option liner elements are modeled as Lagrangian shell elements, rather than Eulerian elements. Analytical codes are written to study the jet formation, breakup and penetration processes. Many alternative formulas that can be used in the analytical calculations are listed and discussed. Parameters of these formulas are varied to investigate their effects on the results. Necessary constants for the analytical formulas are obtained using the results of AUTODYN simulations.
Abdelrahman, Hussain Alwany. "The use of polymer bonded explosives improved linear shaped charge designs." Thesis, Cranfield University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357744.
Full textLeung, Anthony Yat-Wah. "Molecular dynamics study of shaped charge penetration and crystal structure properties." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610707.
Full textElshenawy, Tamer Abdelazim. "Criteria of design improvement of shaped charges used as oil well perforators." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/criteria-of-design-improvement-of-shaped-charges-used-as-oil-well-perforators(d627c23e-a05b-42a2-86c3-6d67dfd7b7a7).html.
Full textBurgun, Alexandre. "Oxidative activation of iron- and ruthenium-alkynyl complexes : toward square-shaped molecules with four redox-active metal centres." Rennes 1, 2011. http://www.theses.fr/2011REN1S081.
Full textVestman, Christopher. "The rotation of a stored cylinder body by an outer rotating structure." Thesis, Luleå tekniska universitet, Rymdteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-75021.
Full textBooks on the topic "Shaped charge"
Cook, M. Systems tunnel linear shaped charge lightning strike: Final test report. Brigham City, UT: Thiokol Corp., Space Operations, 1989.
Find full textMillar, R. P. An investigation into the cutting of steel plate with a curvi-linear shaped charge. Manchester: UMIST, 1993.
Find full textAlan, Ticotsky, ed. The shape of change. 2nd ed. Acton, Mass: Creative Learning Exchange, 2005.
Find full textBusby, Nicola. The Shape of Change. Description : Abingdon, Oxon; New York, NY : Routledge, 2017.: Routledge, 2017. http://dx.doi.org/10.4324/9781315455457.
Full textHarper, Bob. Are you ready!: Take charge, lose weight, get in shape, and change your life forever. New York: Broadway Books, 2008.
Find full textHarper, Bob. Are you ready!: Take charge, lose weight, get in shape, and change your life forever. New York: Broadway Books, 2008.
Find full textKennedy, Debbe. Accountability: Establishing shared ownership. San Francisco: Berrett-Koehler Communications, 2000.
Find full textBook chapters on the topic "Shaped charge"
Fang, Qin, and Hao Wu. "Eroding Projectile and Shaped Charge Jet Penetrations." In Concrete Structures Under Projectile Impact, 165–210. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3620-0_5.
Full textFriedman, Avner. "Shaped charge jets and subsonic free-surface flow theory." In The IMA Volumes in Mathematics and Its Applications, 145–55. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4615-7402-6_16.
Full textWu, Hao, Yong Peng, and Xiangzhen Kong. "Impact Performance of Shaped Charge Formed Jet into Concrete Targets." In Notes on Projectile Impact Analyses, 167–240. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3253-1_4.
Full textHuang, Junqing, Yalong Ma, Kelei Huang, and Jianxun Zhao. "Analysis of Aperture Shape Changing Trend Base on the Shaped Charge Jet Penetration through the Steel Target." In AsiaSim 2012, 7–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34384-1_2.
Full textMa, Tianbao, Xiangzhao Xu, and Jianguo Ning. "Parallel Computation of Shaped Charge Jet Formation and Penetration by Multi-material Eulerian Method." In Communications in Computer and Information Science, 565–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-53962-6_51.
Full textDam, Trong Thang, Xuan-Nam Bui, Tri Ta Nguyen, and Duc Tho To. "Study on the Reasonable Parameters of the Concentric Hemisphere-Style Shaped Charge for Destroying Rock." In Lecture Notes in Civil Engineering, 45–68. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60839-2_3.
Full textCarlucci, Donald E., and Sidney S. Jacobson. "Shaped Charges." In Ballistics, 577–98. Third edition. | Boca Raton : Taylor & Francis, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/b22201-20.
Full textSchrooten, Ann F., and Barry P. Markovitz. "When a Patient and Family Forever Change Your World." In Shared Struggles, 173–79. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68020-6_34.
Full textDeconinck, Johan. "Electrode Shape Change." In Lecture Notes in Engineering, 164–220. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84716-5_4.
Full textAslan, Joseph E. "Platelet Shape Change." In Platelets in Thrombotic and Non-Thrombotic Disorders, 321–36. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47462-5_24.
Full textConference papers on the topic "Shaped charge"
Walters, William P., and Richard L. Summers. "Shaped charge jet particulation." In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46362.
Full textGao, Er-xin. "Boundary judgment on shaped charge." In San Diego - DL tentative, edited by Paul A. Jaanimagi. SPIE, 1992. http://dx.doi.org/10.1117/12.50549.
Full textWalker, James D. "Incoherence of shaped charge jets." In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46486.
Full textNovotney, David, and Meryl Mallery. "Historical Development of Linear Shaped Charge." In 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-5141.
Full textMulligan, Phillip, Catherine Johnson, Jason Ho, Cody Lough, and Edward Kinzel. "3D Printed Conical Shaped Charge Performance." In 2019 15th Hypervelocity Impact Symposium. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/hvis2019-110.
Full textShvetsov, G. A., A. D. Matrosov, S. V. Fedorov, and A. V. Babkin. "Magnetic Screening Against Shaped-Charge Action." In 2007 IEEE Pulsed Power Plasma Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4345913.
Full textShvetsov, G. A., A. D. Matrosov, S. V. Fedorov, A. V. Babkin, and S. V. Ladov. "Magnetic screening against shaped-charge action." In 2007 IEEE International Pulsed Power Plasma Science Conference (PPPS 2007). IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4651982.
Full textHeld, Manfred. "Direct observation of shaped-charge jets." In 20th International Congress on High Speed Photography and Photonics, edited by John M. Dewey and Roberto G. Racca. SPIE, 1993. http://dx.doi.org/10.1117/12.145725.
Full textHeld, Manfred. "Optical diagnostics of shaped-charge jets." In 25th international Congress on High-Speed photography and Photonics, edited by Claude Cavailler, Graham P. Haddleton, and Manfred Hugenschmidt. SPIE, 2003. http://dx.doi.org/10.1117/12.516940.
Full textWANG, SHUYOU, SHENGJIE SUN, LIGANG QIAO, and JIANWEI JIANG. "The Influence of Eccentric Wave-Shaper on Shaped Charge Jet Performance." In 31st International Symposium on Ballistics. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/ballistics2019/33246.
Full textReports on the topic "Shaped charge"
Walters, William P. The Shaped Charge Concept. Part 2. The History of Shaped Charges. Fort Belvoir, VA: Defense Technical Information Center, September 1990. http://dx.doi.org/10.21236/ada226772.
Full textVigil, M. G. Optimized conical shaped charge design using the SCAP (Shaped Charge Analysis Program) code. Office of Scientific and Technical Information (OSTI), September 1988. http://dx.doi.org/10.2172/6807425.
Full textBarnhill, Thomas, and Edward Horwath. Target and Shaped Charge Alignment. Fort Belvoir, VA: Defense Technical Information Center, August 1997. http://dx.doi.org/10.21236/ada329939.
Full textVigil, M. G. Design of linear shaped charges using the LESCA (Linear Explosive Shaped Charge Analysis) code. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/6907641.
Full textWeseloh, Wayne N. PAGOSA Sample Problem: Unconfined Shaped Charge. Office of Scientific and Technical Information (OSTI), February 2016. http://dx.doi.org/10.2172/1237251.
Full textMilinazzo, Jared Joseph. Energy Transfer of a Shaped Charge. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1334941.
Full textScheffler, Daniel R., and William P. Walters. A Shaped Charge with Dual Confinement. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada405843.
Full textMockler, Theodore, and Ian Fleming. TTMA Shaped Charge Assessment: TOW 2A. Office of Scientific and Technical Information (OSTI), July 2021. http://dx.doi.org/10.2172/1808804.
Full textVigil, M. G. Explosive shaped charge penetration into tuff rock. Office of Scientific and Technical Information (OSTI), October 1988. http://dx.doi.org/10.2172/6563055.
Full textBaker, Ernest L., James Pham, and Tan Vuong. An Empirical Shaped Charge Jet Breakup Model. Fort Belvoir, VA: Defense Technical Information Center, July 2014. http://dx.doi.org/10.21236/ada604020.
Full text