Academic literature on the topic 'Sheaf of differential operators'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sheaf of differential operators.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Sheaf of differential operators"
Jones, A. G. "Rings of differential operators on toric varieties." Proceedings of the Edinburgh Mathematical Society 37, no. 1 (1994): 143–60. http://dx.doi.org/10.1017/s0013091500018770.
Full textCoutinho, S. C., та M. P. Holland. "Locally free (ℙn)-modules". Mathematical Proceedings of the Cambridge Philosophical Society 112, № 2 (1992): 233–45. http://dx.doi.org/10.1017/s0305004100070924.
Full textArdakov, Konstantin, та Simon J. Wadsley. "⌢𝒟-modules on rigid analytic spaces I". Journal für die reine und angewandte Mathematik (Crelles Journal) 2019, № 747 (2019): 221–75. http://dx.doi.org/10.1515/crelle-2016-0016.
Full textBODE, ANDREAS. "Completed tensor products and a global approach to p-adic analytic differential operators." Mathematical Proceedings of the Cambridge Philosophical Society 167, no. 02 (2018): 389–416. http://dx.doi.org/10.1017/s0305004118000415.
Full textAguirre, Leonardo, Giovanni Felder, and Alexander P. Veselov. "Gaudin subalgebras and stable rational curves." Compositio Mathematica 147, no. 5 (2011): 1463–78. http://dx.doi.org/10.1112/s0010437x11005306.
Full textSabbah, Claude. "On the comparison theorem for elementary irregular D-modules." Nagoya Mathematical Journal 141 (March 1996): 107–24. http://dx.doi.org/10.1017/s0027763000005547.
Full textHuyghe, Christine, та Tobias Schmidt. "𝒟-modules arithmétiques sur la variété de drapeaux". Journal für die reine und angewandte Mathematik (Crelles Journal) 2019, № 754 (2019): 1–15. http://dx.doi.org/10.1515/crelle-2017-0021.
Full textBezrukavnikov, Roman, Ivan Mirković, and Dmitriy Rumynin. "Singular Localization and Intertwining Functors for Reductive Lie Algebras in Prime Characteristic." Nagoya Mathematical Journal 183 (2006): 1–55. http://dx.doi.org/10.1017/s0027763000009302.
Full textChen, Tsao-Hsien, and Xinwen Zhu. "Geometric Langlands in prime characteristic." Compositio Mathematica 153, no. 2 (2017): 395–452. http://dx.doi.org/10.1112/s0010437x16008113.
Full textHasrati, Emad, Reza Ansari, and Jalal Torabi. "Nonlinear Forced Vibration Analysis of FG-CNTRC Cylindrical Shells Under Thermal Loading Using a Numerical Strategy." International Journal of Applied Mechanics 09, no. 08 (2017): 1750108. http://dx.doi.org/10.1142/s1758825117501083.
Full textDissertations / Theses on the topic "Sheaf of differential operators"
Fanney, Thomas R. "Closability of differential operators and subjordan operators." Diss., Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/54356.
Full textPh. D.
Roberts, Graham. "Cochains of differential operators." Thesis, University of Liverpool, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368677.
Full textBischof, Bryan E. "Deformations of differential operators." Diss., Kansas State University, 2014. http://hdl.handle.net/2097/17677.
Full textDepartment of Mathematics
Zongzhu Lin
The Weyl algebra is the algebra of differential operators on a commutative ring of polynomials in finitely many variables. In Hayashi1990, Hayashi defines an algebra which he refers to as the quantized n-th Weyl algebra given by a deformation of the classical Weyl algebra. In luntsdifferential, Lunts and Rosenberg define [beta] and quantum differential operators for localization of quantum groups by deforming the relations that algebras of differential operators satisfy. In Iyer2007, Iyer and Mccune compute the quantum differential operators on the polynomial algebra with n variables. One naturally wonders ``What is the relationship between the quantized Weyl algebra and the quantum differential operators on the polynomial algebra with n variables?" In this thesis we answer this question by comparing the natural representations of U[subscript]q(sl[subscript]2) emerging from each algebra. Additionally, we connect the differential operators on the big cell of the flag variety of U[subscript]q(sl[subscript]n) with our deformed algebras. We also show the relationship between these algebras of differential operators and those appearing in the quantum Beilinson-Bernstein equivalence. Next we discuss analogous results in the case of [beta]-differential operators, as introduced in luntsdifferential. We consider both deformations on the underlying coordinate rings, and of the algebra of differential operators. We relate these results to the gluing problem for differential operators on noncommutative coordinate rings. We collect some of the different deformations of the usual Weyl algebra, and compare them based on a common bicharacter [beta]. Finally, we show a geometric result need in order to be able to glue deformed spaces and have their algebras of deformed differential operators cohere.
Buchholz, Thilo, and Bert-Wolfgang Schulze. "Volterra operators and parabolicity : anisotropic pseudo-differential operators." Universität Potsdam, 1998. http://opus.kobv.de/ubp/volltexte/2008/2523/.
Full textTraves, William Nathaniel. "Differential operators and Nakai's conjecture." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0010/NQ35345.pdf.
Full textTurner, Simon Charles. "Differential operators on algebraic varieties." Thesis, University of Warwick, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386865.
Full textGalstian, Anahit, and Karen Yagdjian. "Exponential function of pseudo-differential operators." Universität Potsdam, 1997. http://opus.kobv.de/ubp/volltexte/2008/2498/.
Full textFedosov, Boris. "Pseudo-differential operators and deformation quantization." Universität Potsdam, 1999. http://opus.kobv.de/ubp/volltexte/2008/2565/.
Full textWitt, Ingo. "Green formulae for cone differential operators." Universität Potsdam, 2003. http://opus.kobv.de/ubp/volltexte/2008/2663/.
Full textGil, Resina Debora. "Geometric Differential Operators for Shape Modelling." Doctoral thesis, Universitat Autònoma de Barcelona, 2004. http://hdl.handle.net/10803/3042.
Full textPer a obtenir uns bons resultats en imatges reals, el procés de segmentació ha de passar per tres etapes: eliminació del soroll, modelat de formes i parametrització de corbes. Aquest treball tractaels tres temes, encara que per tal de tenir algoritmes tant automatitzats com sigui possible, disenyarem tecniques que satisfaguin tres principis bàsics: a) esquemes iteratius convergint cap a estats no trivials per evitar imatges finals constants i obtenir models suaus de les imatges originals; b) un comportament asymptotic suau per asegurar l'estabilització del procés iteratiu; c) un conjunt fixe de parametres que garanteixin el mateix (independentment del domini de definició) rendiment dels algoritmes sia quina sia la imatge/corba inicial. El nostre tractament des d'un punt de vista geomètric de les equacions generals que modelen els diferents processos estudiats ens permet definir tecniques que compleixen els requeriments anteriors. Primer de tot, introduim un nou fluxe geometric per al suavitzament d'imatges que aconsegueix un compromis optim entre eliminació de soroll i semblança a la imatge original. Segon, descriurem una nova familia de operadors de difusió que en restringeixen els efectes a les corbes de nivell de la imatge i serveixen per a recuperar models complets i suaus de conjunts de punts inconnexos. Finalment, disenyarem una regularització del mapa de distàncies que asegura la convergència suau d'snakes cap a qualsevol corba tancada. Els experiments presentats mostren que el funcionamient de les tecniques proposades sobrepassa el que aconseguiexen les tecniques actuals.
Medical imaging feeds research in many computer vision and image processing fields: image filtering, segmentation, shape recovery, registration, retrieval and pattern matching. Because of their low contrast changes and large variety of artifacts and noise, medical imaging processing techniques relying on an analysis of the geometry of image level sets rather than on intensity values result in more robust treatment. From the starting point of treatment of intravascular images, this PhD thesis addresses the design of differential image operators based on geometric principles for a robust shapemodelling and restoration. Among all fields applying shape recovery, we approach filtering and segmentation of image objects.
For a successful use in real images, the segmentation process should go through three stages: noise removing, shape modelling and shape recovery. This PhD addresses all three topics, but for the sake of algorithms as automated as possible, techniques for image processing will be designed to satisfy three main principles: a) convergence of the iterative schemes to non-trivial states avoiding image degeneration to a constant image and representing smooth models of the originals; b) smooth asymptotic behavior ensuring stabilization of the iterative process; c) fixed parameter values ensuring equal (domain free) performance of the algorithms whatever initial images/shapes. Our geometric approach to the generic equations that model the different processes approached enables defining techniques satisfying all the former requirements. First, we introduce a new curvature-based geometric flow for image filtering achieving a good compromise between noise removing and resemblance to original images. Second, we describe a new family of diffusion operators that restrict their scope to image level curves and serve to restore smooth closed models from unconnected sets of points. Finally, we design a regularization of snake (distance) maps that ensures its smooth convergence towards any closed shape. Experiments show that performance of the techniques proposed overpasses that of state-of-the-art algorithms.
Books on the topic "Sheaf of differential operators"
Lanczos, Cornelius. Linear differential operators. SIAM, 1996.
Lanczos, Cornelius. Linear differential operators. Dover Publications, 1997.
1924-, Everitt W. N., ed. Linear differential operators. Dover Publications, 2009.
Brown, B. Malcolm. Periodic Differential Operators. Springer Basel, 2013.
Nirenberg, Louis, ed. Pseudo-differential Operators. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11074-0.
Full textBrown, B. Malcolm, Michael S. P. Eastham, and Karl Michael Schmidt. Periodic Differential Operators. Springer Basel, 2013. http://dx.doi.org/10.1007/978-3-0348-0528-5.
Full textFeichtinger, Hans G., Bernard Helffer, Michael P. Lamoureux, Nicolas Lerner, and Joachim Toft. Pseudo-Differential Operators. Edited by Luigi Rodino and M. W. Wong. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-68268-4.
Full textCordes, Heinz O., Bernhard Gramsch, and Harold Widom, eds. Pseudo-Differential Operators. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0077734.
Full textSimanca, S. R. Pseudo-differential operators. Longman Scientific & Technical, 1990.
Ilʹin, V. A. Spectral theory of differential operators: Self-adjoint differential operators. Consultants Bureau, 1995.
Book chapters on the topic "Sheaf of differential operators"
Whitefield, N. "The Diffraction of Elastic Shear Wave on the Circular Cylinder which is Situated in the Elastic Halfspace." In Differential Operators and Related Topics. Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8403-7_29.
Full textAltenbach, Holm, Johannes Altenbach, and Wolfgang Kissing. "Differential Operators for Rectangular Plates (Shear Deformation Theory)." In Mechanics of Composite Structural Elements. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08589-9_15.
Full textAltenbach, Holm, Johannes Altenbach, and Wolfgang Kissing. "Differential Operators for Circular Cylindrical Shells (Shear Deformation Theory)." In Mechanics of Composite Structural Elements. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08589-9_17.
Full textDuplij, Steven, Joshua Feinberg, Moshe Moshe, et al. "Berezinian Sheaf, differential approach." In Concise Encyclopedia of Supersymmetry. Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_53.
Full textGitman, D. M., I. V. Tyutin, and B. L. Voronov. "Differential Operators." In Self-adjoint Extensions in Quantum Mechanics. Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-4662-2_4.
Full textBerezansky, Yurij M., Zinovij G. Sheftel, and Georgij F. Us. "Differential Operators." In Functional Analysis. Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-9024-3_5.
Full textRamanan, S. "Differential operators." In Graduate Studies in Mathematics. American Mathematical Society, 2004. http://dx.doi.org/10.1090/gsm/065/02.
Full textKorányi, Adam. "Differential Operators." In Analysis and Geometry on Complex Homogeneous Domains. Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1366-6_18.
Full textKrishan, Vinod. "Differential Operators." In Astrophysics and Space Science Library. Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4720-0_10.
Full textHaase, Markus. "Differential Operators." In The Functional Calculus for Sectorial Operators. Birkhäuser Basel, 2006. http://dx.doi.org/10.1007/3-7643-7698-8_8.
Full textConference papers on the topic "Sheaf of differential operators"
Camargo, Rubens De Figueiredo, Eliana Contharteze Grigoletto, and Edmundo Capelas De Oliveira. "Fractional Differential Operators: Eigenfunctions." In CNMAC 2017 - XXXVII Congresso Nacional de Matemática Aplicada e Computacional. SBMAC, 2018. http://dx.doi.org/10.5540/03.2018.006.01.0368.
Full textBOUZAR, CHIKH, and RACHID CHAILI. "ITERATES OF DIFFERENTIAL OPERATORS." In Proceedings of the 3rd ISAAC Congress. World Scientific Publishing Company, 2003. http://dx.doi.org/10.1142/9789812794253_0015.
Full textCarroll, Robert. "Remarks on Quantum Differential Operators." In Proceedings of the 4th International ISAAC Congress. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701732_0015.
Full textRosenkranz, Markus, and Georg Regensburger. "Integro-differential polynomials and operators." In the twenty-first international symposium. ACM Press, 2008. http://dx.doi.org/10.1145/1390768.1390805.
Full textGiesbrecht, Mark, Albert Heinle, and Viktor Levandovskyy. "Factoring linear differential operators innvariables." In the 39th International Symposium. ACM Press, 2014. http://dx.doi.org/10.1145/2608628.2608667.
Full textAYELE, TSEGAYE G., and WORKU T. BITEW. "PARTIAL HYPOELLIPTICITY OF DIFFERENTIAL OPERATORS." In Proceedings of the 6th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812837332_0056.
Full textZhang, Mingbo, and Yong Luo. "Factorization of differential operators with ordinary differential polynomial coefficients." In the 37th International Symposium. ACM Press, 2012. http://dx.doi.org/10.1145/2442829.2442880.
Full textDošlá, Zuzana, Mariella Cecchi, and Mauro Marini. "Disconjugate operators and related differential equations." In The 6'th Colloquium on the Qualitative Theory of Differential Equations. Bolyai Institute, SZTE, 1999. http://dx.doi.org/10.14232/ejqtde.1999.5.4.
Full textPodlubny, Igor, and YangQuan Chen. "Adjoint Fractional Differential Expressions and Operators." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35005.
Full textBronstein, Manuel, Thom Mulders, and Jacques-Arthur Weil. "On symmetric powers of differential operators." In the 1997 international symposium. ACM Press, 1997. http://dx.doi.org/10.1145/258726.258771.
Full textReports on the topic "Sheaf of differential operators"
Bao, Gang, and William W. Symes. Computation of Pseudo-Differential Operators. Defense Technical Information Center, 1992. http://dx.doi.org/10.21236/ada455455.
Full textUstunel, A. S. Hypoellipticity of the Stochastic Partial Differential Operators. Defense Technical Information Center, 1985. http://dx.doi.org/10.21236/ada170326.
Full textTygert, Mark. Fast Algorithms for the Solution of Eigenfunction Problems for One-Dimensional Self-Adjoint Linear Differential Operators. Defense Technical Information Center, 2005. http://dx.doi.org/10.21236/ada458901.
Full text