Academic literature on the topic 'Sheaf of differential operators'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sheaf of differential operators.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Sheaf of differential operators"

1

Jones, A. G. "Rings of differential operators on toric varieties." Proceedings of the Edinburgh Mathematical Society 37, no. 1 (1994): 143–60. http://dx.doi.org/10.1017/s0013091500018770.

Full text
Abstract:
Let be a finite dimensional toric variety over an algebraically closed field of characteristic zero, k. Let be the sheaf of differential operators on . We show that the ring of global sections, is a finitely generated Noetherian k-algebra and that its generators can be explicitly found. We prove a similar result for the sheaf of differential operators with coefficients in a line bundle.
APA, Harvard, Vancouver, ISO, and other styles
2

Coutinho, S. C., та M. P. Holland. "Locally free (ℙn)-modules". Mathematical Proceedings of the Cambridge Philosophical Society 112, № 2 (1992): 233–45. http://dx.doi.org/10.1017/s0305004100070924.

Full text
Abstract:
The purpose of this paper is to study the structure of locally free modules over the ring of differential operators on projective space. Let be a non-singular, complex, algebraic variety. Denote by the sheaf of rings of differential operators over and by its ring of global sections. A -module M is called locally free if the associated sheaf ⊗ M is locally free as a sheaf of -modules. Locally free modules arise naturally in -module theory as inverse images of determined modules; see [1] for definitions and examples.
APA, Harvard, Vancouver, ISO, and other styles
3

Ardakov, Konstantin, та Simon J. Wadsley. "⌢𝒟-modules on rigid analytic spaces I". Journal für die reine und angewandte Mathematik (Crelles Journal) 2019, № 747 (2019): 221–75. http://dx.doi.org/10.1515/crelle-2016-0016.

Full text
Abstract:
Abstract We introduce a sheaf of infinite order differential operators {\overset{\frown}{\mathcal{D}}} on smooth rigid analytic spaces that is a rigid analytic quantisation of the cotangent bundle. We show that the sections of this sheaf over sufficiently small affinoid varieties are Fréchet–Stein algebras, and use this to define co-admissible sheaves of {\overset{\frown}{\mathcal{D}}} -modules. We prove analogues of Cartan’s Theorems A and B for co-admissible {\overset{\frown}{\mathcal{D}}} -modules.
APA, Harvard, Vancouver, ISO, and other styles
4

BODE, ANDREAS. "Completed tensor products and a global approach to p-adic analytic differential operators." Mathematical Proceedings of the Cambridge Philosophical Society 167, no. 02 (2018): 389–416. http://dx.doi.org/10.1017/s0305004118000415.

Full text
Abstract:
AbstractArdakov-Wadsley defined the sheaf $\wideparen{\Ncal{D}}$X of p-adic analytic differential operators on a smooth rigid analytic variety by restricting to the case where X is affinoid and the tangent sheaf admits a smooth Lie lattice. We generalise their results by dropping the assumption of a smooth Lie lattice throughout, which allows us to describe the sections of $\wideparen{\Ncal{D}}$ for arbitrary affinoid subdomains and not just on a suitable base of the topology. The structural results concerning $\wideparen{\Ncal{D}}$ and coadmissible $\wideparen{\Ncal{D}}$-modules can then be generalised in a natural way.The main ingredient for our proofs is a study of completed tensor products over normed K-algebras, for K a discretely valued field of mixed characteristic. Given a normed right module U over a normed K-algebra A, we provide several exactness criteria for the functor $U\widehat{\otimes}_A$ - applied to complexes of strict morphisms, including a necessary and sufficient condition in the case of short exact sequences.
APA, Harvard, Vancouver, ISO, and other styles
5

Aguirre, Leonardo, Giovanni Felder, and Alexander P. Veselov. "Gaudin subalgebras and stable rational curves." Compositio Mathematica 147, no. 5 (2011): 1463–78. http://dx.doi.org/10.1112/s0010437x11005306.

Full text
Abstract:
AbstractGaudin subalgebras are abelian Lie subalgebras of maximal dimension spanned by generators of the Kohno–Drinfeld Lie algebra $\Xmathfrak {t}_{\hspace *{.3pt}n}$. We show that Gaudin subalgebras form a variety isomorphic to the moduli space $\bar M_{0,n+1}$ of stable curves of genus zero with n+1 marked points. In particular, this gives an embedding of $\bar M_{0,n+1}$ in a Grassmannian of (n−1)-planes in an n(n−1)/2-dimensional space. We show that the sheaf of Gaudin subalgebras over $\bar M_{0,n+1}$ is isomorphic to a sheaf of twisted first-order differential operators. For each representation of the Kohno–Drinfeld Lie algebra with fixed central character, we obtain a sheaf of commutative algebras whose spectrum is a coisotropic subscheme of a twisted version of the logarithmic cotangent bundle of $\bar M_{0,n+1}$.
APA, Harvard, Vancouver, ISO, and other styles
6

Sabbah, Claude. "On the comparison theorem for elementary irregular D-modules." Nagoya Mathematical Journal 141 (March 1996): 107–24. http://dx.doi.org/10.1017/s0027763000005547.

Full text
Abstract:
Let U be a smooth quasi-projective variety over C and let f be a regular function on U. Let DU be the sheaf of algebraic differential operators on U and let M be a regular holonomic DU-module: here, regular means that there exists some smooth compactification X of U and some extension of M as a DX-module which is regular holonomic on X (one also may avoid the use of a smooth compactification to define regularity, see [17]).
APA, Harvard, Vancouver, ISO, and other styles
7

Huyghe, Christine, та Tobias Schmidt. "𝒟-modules arithmétiques sur la variété de drapeaux". Journal für die reine und angewandte Mathematik (Crelles Journal) 2019, № 754 (2019): 1–15. http://dx.doi.org/10.1515/crelle-2017-0021.

Full text
Abstract:
Abstract Soient p un nombre premier, V un anneau de valuation discrète complet d’inégales caractéristiques (0,p) , et G un groupe réductif et deployé sur \operatorname{Spec}V . Nous obtenons un théorème de localisation, en utilisant les distributions arithmétiques, pour le faisceau des opérateurs différentiels arithmétiques sur la variété de drapeaux formelle de G. Nous donnons une application à la cohomologie rigide pour des ouverts dans la variété de drapeaux en caractéristique p. Let p be a prime number, V a complete discrete valuation ring of unequal characteristics (0,p) , and G a connected split reductive algebraic group over \operatorname{Spec}V . We obtain a localization theorem, involving arithmetic distributions, for the sheaf of arithmetic differential operators on the formal flag variety of G. We give an application to the rigid cohomology of open subsets in the characteristic p flag variety.
APA, Harvard, Vancouver, ISO, and other styles
8

Bezrukavnikov, Roman, Ivan Mirković, and Dmitriy Rumynin. "Singular Localization and Intertwining Functors for Reductive Lie Algebras in Prime Characteristic." Nagoya Mathematical Journal 183 (2006): 1–55. http://dx.doi.org/10.1017/s0027763000009302.

Full text
Abstract:
In [BMR] we observed that, on the level of derived categories, representations of the Lie algebra of a semisimple algebraic group over a field of finite characteristic with a given (generalized) regular central character can be identified with coherent sheaves on the formal neighborhood of the corresponding (generalized) Springer fiber. In the present paper we treat singular central characters.The basic step is the Beilinson-Bernstein localization of modules with a fixed (generalized) central character λ as sheaves on the partial flag variety corresponding to the singularity of λ. These sheaves are modules over a sheaf of algebras which is a version of twisted crystalline differential operators. We discuss translation functors and intertwining functors. The latter generate an action of the affine braid group on the derived category of modules with a regular (generalized) central character, which intertwines different localization functors. We also describe the standard duality on Lie algebra modules in terms of D-modules and coherent sheaves.
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Tsao-Hsien, and Xinwen Zhu. "Geometric Langlands in prime characteristic." Compositio Mathematica 153, no. 2 (2017): 395–452. http://dx.doi.org/10.1112/s0010437x16008113.

Full text
Abstract:
Let $G$ be a semi-simple algebraic group over an algebraically closed field $k$, whose characteristic is positive and does not divide the order of the Weyl group of $G$, and let $\breve{G}$ be its Langlands dual group over $k$. Let $C$ be a smooth projective curve over $k$ of genus at least two. Denote by $\operatorname{Bun}_{G}$ the moduli stack of $G$-bundles on $C$ and $\operatorname{LocSys}_{\breve{G}}$ the moduli stack of $\breve{G}$-local systems on $C$. Let $D_{\operatorname{Bun}_{G}}$ be the sheaf of crystalline differential operators on $\operatorname{Bun}_{G}$. In this paper we construct an equivalence between the bounded derived category $D^{b}(\operatorname{QCoh}(\operatorname{LocSys}_{\breve{G}}^{0}))$ of quasi-coherent sheaves on some open subset $\operatorname{LocSys}_{\breve{G}}^{0}\subset \operatorname{LocSys}_{\breve{G}}$ and bounded derived category $D^{b}(D_{\operatorname{Bun}_{G}}^{0}\text{-}\text{mod})$ of modules over some localization $D_{\operatorname{Bun}_{G}}^{0}$ of $D_{\operatorname{Bun}_{G}}$. This generalizes the work of Bezrukavnikov and Braverman in the $\operatorname{GL}_{n}$ case.
APA, Harvard, Vancouver, ISO, and other styles
10

Hasrati, Emad, Reza Ansari, and Jalal Torabi. "Nonlinear Forced Vibration Analysis of FG-CNTRC Cylindrical Shells Under Thermal Loading Using a Numerical Strategy." International Journal of Applied Mechanics 09, no. 08 (2017): 1750108. http://dx.doi.org/10.1142/s1758825117501083.

Full text
Abstract:
Employing an efficient numerical strategy, the nonlinear forced vibration analysis of composite cylindrical shells reinforced with single-walled carbon nanotubes (CNTs) is carried out. It is assumed that the distribution of CNTs along the thickness direction of the shell is uniform or functionally graded and the temperature dependency of the material properties is accounted. The governing equations are presented based on the first-order shear deformation theory along with von-Karman nonlinear strain-displacement relations. The vectorized form of energy functional is derived and directly discretized using numerical differential and integral operators. By the use of variational differential quadrature (VDQ) method, discretized nonlinear governing equations are obtained. Then, the time periodic differential operators are applied to perform the discretization procedure in time domain. Finally, the pseudo-arc length continuation method is employed to solve the nonlinear governing equations and trace the frequency response curve of the nanocomposite cylindrical shell. A comparison study is first presented to verify the efficiency and validity of the proposed numerical method. Comprehensive numerical results are then given to investigate the effects of the involved factors on the nonlinear forced vibration characteristics of the structure. The results show that the changes of fundamental vibrational mode shape have considerable effects on the frequency response curves of composite cylindrical shells reinforced with CNTs.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Sheaf of differential operators"

1

Fanney, Thomas R. "Closability of differential operators and subjordan operators." Diss., Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/54356.

Full text
Abstract:
A (bounded linear) operator J on a Hilbert space is said to be jordan if J = S + N where S = S* and N² = 0. The operator T is subjordan if T is the restriction of a jordan operator to an invariant subspace, and pure subjordan if no nonzero restriction of T to an invariant subspace is jordan. The main operator theoretic result of the paper is that a compact subset of the real line is the spectrum of some pure subjordan operator if and only if it is the closure of its interior. The result depends on understanding when the operator D = θ + d/dx : L²(μ) —> L²(v) is closable. Here θ is an L²(μ) function, μ and v are two finite regular Borel measures with compact support on the real line, and the domain of D is taken to be the polynomials. Approximation questions more general than what is needed for the operator theory result are also discussed. Specifically, an explicit characterization of the closure of the graph of D for a large class of (θ, μ, v) is obtained, and the closure of the graph of D in other topologies is analyzed. More general results concerning spectral synthesis in a certain class of Banach algebras and extensions to the complex domain are also indicated.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
2

Roberts, Graham. "Cochains of differential operators." Thesis, University of Liverpool, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bischof, Bryan E. "Deformations of differential operators." Diss., Kansas State University, 2014. http://hdl.handle.net/2097/17677.

Full text
Abstract:
Doctor of Philosophy
Department of Mathematics
Zongzhu Lin
The Weyl algebra is the algebra of differential operators on a commutative ring of polynomials in finitely many variables. In Hayashi1990, Hayashi defines an algebra which he refers to as the quantized n-th Weyl algebra given by a deformation of the classical Weyl algebra. In luntsdifferential, Lunts and Rosenberg define [beta] and quantum differential operators for localization of quantum groups by deforming the relations that algebras of differential operators satisfy. In Iyer2007, Iyer and Mccune compute the quantum differential operators on the polynomial algebra with n variables. One naturally wonders ``What is the relationship between the quantized Weyl algebra and the quantum differential operators on the polynomial algebra with n variables?" In this thesis we answer this question by comparing the natural representations of U[subscript]q(sl[subscript]2) emerging from each algebra. Additionally, we connect the differential operators on the big cell of the flag variety of U[subscript]q(sl[subscript]n) with our deformed algebras. We also show the relationship between these algebras of differential operators and those appearing in the quantum Beilinson-Bernstein equivalence. Next we discuss analogous results in the case of [beta]-differential operators, as introduced in luntsdifferential. We consider both deformations on the underlying coordinate rings, and of the algebra of differential operators. We relate these results to the gluing problem for differential operators on noncommutative coordinate rings. We collect some of the different deformations of the usual Weyl algebra, and compare them based on a common bicharacter [beta]. Finally, we show a geometric result need in order to be able to glue deformed spaces and have their algebras of deformed differential operators cohere.
APA, Harvard, Vancouver, ISO, and other styles
4

Buchholz, Thilo, and Bert-Wolfgang Schulze. "Volterra operators and parabolicity : anisotropic pseudo-differential operators." Universität Potsdam, 1998. http://opus.kobv.de/ubp/volltexte/2008/2523/.

Full text
Abstract:
Parabolic equations on manifolds with singularities require a new calculus of anisotropic pseudo-differential operators with operator-valued symbols. The paper develops this theory along the lines of sn abstract wedge calculus with strongly continuous groups of isomorphisms on the involved Banach spaces. The corresponding pseodo-diferential operators are continuous in anisotropic wedge Sobolev spaces, and they form an alegbra. There is then introduced the concept of anisotropic parameter-dependent ellipticity, based on an order reduction variant of the pseudo-differential calculus. The theory is appled to a class of parabolic differential operators, and it is proved the invertibility in Sobolev spaces with exponential weights at infinity in time direction.
APA, Harvard, Vancouver, ISO, and other styles
5

Traves, William Nathaniel. "Differential operators and Nakai's conjecture." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0010/NQ35345.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Turner, Simon Charles. "Differential operators on algebraic varieties." Thesis, University of Warwick, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Galstian, Anahit, and Karen Yagdjian. "Exponential function of pseudo-differential operators." Universität Potsdam, 1997. http://opus.kobv.de/ubp/volltexte/2008/2498/.

Full text
Abstract:
The paper is devoted to the construction of the exponential function of a matrix pseudo-differential operator which do not satisfy any of the known theorems (see, Sec.8 Ch.VIII and Sec.2 Ch.XI of [17]). The applications to the construction of the fundamental solution for the Cauchy problem for the hyperbolic operators with the characteristics of variable multiplicity are given, too.
APA, Harvard, Vancouver, ISO, and other styles
8

Fedosov, Boris. "Pseudo-differential operators and deformation quantization." Universität Potsdam, 1999. http://opus.kobv.de/ubp/volltexte/2008/2565/.

Full text
Abstract:
Using the Riemannian connection on a compact manifold X, we show that the algebra of classical pseudo-differential operators on X generates a canonical deformation quantization on the cotangent manifold T*X. The corresponding Abelian connection is calculated explicitly in terms of the of the exponential mapping. We prove also that the index theorem for elliptic operators may be obtained as a consequence of the index theorem for deformation quantization.
APA, Harvard, Vancouver, ISO, and other styles
9

Witt, Ingo. "Green formulae for cone differential operators." Universität Potsdam, 2003. http://opus.kobv.de/ubp/volltexte/2008/2663/.

Full text
Abstract:
Green formulae for elliptic cone differential operators are established. This is achieved by an accurate description of the maximal domain of an elliptic cone differential operator and its formal adjoint; thereby utilizing the concept of a discrete asymptotic type. From this description, the singular coefficients replacing the boundary traces in classical Green formulas are deduced.
APA, Harvard, Vancouver, ISO, and other styles
10

Gil, Resina Debora. "Geometric Differential Operators for Shape Modelling." Doctoral thesis, Universitat Autònoma de Barcelona, 2004. http://hdl.handle.net/10803/3042.

Full text
Abstract:
Les imatges médiques motiven la recerca en molts camps de visió per computador i processament d'imatges: filtratge, segmentació, modelat de formes, registració, recuperació i reconeixement de patrons. Degut a canvis de contrast febles i una gran diversitat d'artefactes i soroll, les tecniques basades en l'anàlisis de la geometria dels conjunts de nivell més que en la intensitat de la imatge donen resultats més robustos. Partint del tractament d'imatges intravasculars, aquesta Tesi es centra en el diseny de operadors diferencials per al procesament d'imatges basats en principis geometrics per a un modelat i recuperació de formes fiable. De entre totes les àrees que apliquen restauració de formes, ens centrarem en tecniques de filtratge i segementació d'objectes.
Per a obtenir uns bons resultats en imatges reals, el procés de segmentació ha de passar per tres etapes: eliminació del soroll, modelat de formes i parametrització de corbes. Aquest treball tractaels tres temes, encara que per tal de tenir algoritmes tant automatitzats com sigui possible, disenyarem tecniques que satisfaguin tres principis bàsics: a) esquemes iteratius convergint cap a estats no trivials per evitar imatges finals constants i obtenir models suaus de les imatges originals; b) un comportament asymptotic suau per asegurar l'estabilització del procés iteratiu; c) un conjunt fixe de parametres que garanteixin el mateix (independentment del domini de definició) rendiment dels algoritmes sia quina sia la imatge/corba inicial. El nostre tractament des d'un punt de vista geomètric de les equacions generals que modelen els diferents processos estudiats ens permet definir tecniques que compleixen els requeriments anteriors. Primer de tot, introduim un nou fluxe geometric per al suavitzament d'imatges que aconsegueix un compromis optim entre eliminació de soroll i semblança a la imatge original. Segon, descriurem una nova familia de operadors de difusió que en restringeixen els efectes a les corbes de nivell de la imatge i serveixen per a recuperar models complets i suaus de conjunts de punts inconnexos. Finalment, disenyarem una regularització del mapa de distàncies que asegura la convergència suau d'snakes cap a qualsevol corba tancada. Els experiments presentats mostren que el funcionamient de les tecniques proposades sobrepassa el que aconseguiexen les tecniques actuals.
Medical imaging feeds research in many computer vision and image processing fields: image filtering, segmentation, shape recovery, registration, retrieval and pattern matching. Because of their low contrast changes and large variety of artifacts and noise, medical imaging processing techniques relying on an analysis of the geometry of image level sets rather than on intensity values result in more robust treatment. From the starting point of treatment of intravascular images, this PhD thesis addresses the design of differential image operators based on geometric principles for a robust shapemodelling and restoration. Among all fields applying shape recovery, we approach filtering and segmentation of image objects.
For a successful use in real images, the segmentation process should go through three stages: noise removing, shape modelling and shape recovery. This PhD addresses all three topics, but for the sake of algorithms as automated as possible, techniques for image processing will be designed to satisfy three main principles: a) convergence of the iterative schemes to non-trivial states avoiding image degeneration to a constant image and representing smooth models of the originals; b) smooth asymptotic behavior ensuring stabilization of the iterative process; c) fixed parameter values ensuring equal (domain free) performance of the algorithms whatever initial images/shapes. Our geometric approach to the generic equations that model the different processes approached enables defining techniques satisfying all the former requirements. First, we introduce a new curvature-based geometric flow for image filtering achieving a good compromise between noise removing and resemblance to original images. Second, we describe a new family of diffusion operators that restrict their scope to image level curves and serve to restore smooth closed models from unconnected sets of points. Finally, we design a regularization of snake (distance) maps that ensures its smooth convergence towards any closed shape. Experiments show that performance of the techniques proposed overpasses that of state-of-the-art algorithms.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Sheaf of differential operators"

1

Lanczos, Cornelius. Linear differential operators. SIAM, 1996.

APA, Harvard, Vancouver, ISO, and other styles
2

Lanczos, Cornelius. Linear differential operators. Dover Publications, 1997.

APA, Harvard, Vancouver, ISO, and other styles
3

1924-, Everitt W. N., ed. Linear differential operators. Dover Publications, 2009.

APA, Harvard, Vancouver, ISO, and other styles
4

Brown, B. Malcolm. Periodic Differential Operators. Springer Basel, 2013.

APA, Harvard, Vancouver, ISO, and other styles
5

Nirenberg, Louis, ed. Pseudo-differential Operators. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11074-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brown, B. Malcolm, Michael S. P. Eastham, and Karl Michael Schmidt. Periodic Differential Operators. Springer Basel, 2013. http://dx.doi.org/10.1007/978-3-0348-0528-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Feichtinger, Hans G., Bernard Helffer, Michael P. Lamoureux, Nicolas Lerner, and Joachim Toft. Pseudo-Differential Operators. Edited by Luigi Rodino and M. W. Wong. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-68268-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cordes, Heinz O., Bernhard Gramsch, and Harold Widom, eds. Pseudo-Differential Operators. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0077734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Simanca, S. R. Pseudo-differential operators. Longman Scientific & Technical, 1990.

APA, Harvard, Vancouver, ISO, and other styles
10

Ilʹin, V. A. Spectral theory of differential operators: Self-adjoint differential operators. Consultants Bureau, 1995.

APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Sheaf of differential operators"

1

Whitefield, N. "The Diffraction of Elastic Shear Wave on the Circular Cylinder which is Situated in the Elastic Halfspace." In Differential Operators and Related Topics. Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8403-7_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Altenbach, Holm, Johannes Altenbach, and Wolfgang Kissing. "Differential Operators for Rectangular Plates (Shear Deformation Theory)." In Mechanics of Composite Structural Elements. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08589-9_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Altenbach, Holm, Johannes Altenbach, and Wolfgang Kissing. "Differential Operators for Circular Cylindrical Shells (Shear Deformation Theory)." In Mechanics of Composite Structural Elements. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08589-9_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Duplij, Steven, Joshua Feinberg, Moshe Moshe, et al. "Berezinian Sheaf, differential approach." In Concise Encyclopedia of Supersymmetry. Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gitman, D. M., I. V. Tyutin, and B. L. Voronov. "Differential Operators." In Self-adjoint Extensions in Quantum Mechanics. Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-4662-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Berezansky, Yurij M., Zinovij G. Sheftel, and Georgij F. Us. "Differential Operators." In Functional Analysis. Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-9024-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ramanan, S. "Differential operators." In Graduate Studies in Mathematics. American Mathematical Society, 2004. http://dx.doi.org/10.1090/gsm/065/02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Korányi, Adam. "Differential Operators." In Analysis and Geometry on Complex Homogeneous Domains. Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1366-6_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Krishan, Vinod. "Differential Operators." In Astrophysics and Space Science Library. Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4720-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Haase, Markus. "Differential Operators." In The Functional Calculus for Sectorial Operators. Birkhäuser Basel, 2006. http://dx.doi.org/10.1007/3-7643-7698-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Sheaf of differential operators"

1

Camargo, Rubens De Figueiredo, Eliana Contharteze Grigoletto, and Edmundo Capelas De Oliveira. "Fractional Differential Operators: Eigenfunctions." In CNMAC 2017 - XXXVII Congresso Nacional de Matemática Aplicada e Computacional. SBMAC, 2018. http://dx.doi.org/10.5540/03.2018.006.01.0368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

BOUZAR, CHIKH, and RACHID CHAILI. "ITERATES OF DIFFERENTIAL OPERATORS." In Proceedings of the 3rd ISAAC Congress. World Scientific Publishing Company, 2003. http://dx.doi.org/10.1142/9789812794253_0015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Carroll, Robert. "Remarks on Quantum Differential Operators." In Proceedings of the 4th International ISAAC Congress. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701732_0015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rosenkranz, Markus, and Georg Regensburger. "Integro-differential polynomials and operators." In the twenty-first international symposium. ACM Press, 2008. http://dx.doi.org/10.1145/1390768.1390805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Giesbrecht, Mark, Albert Heinle, and Viktor Levandovskyy. "Factoring linear differential operators innvariables." In the 39th International Symposium. ACM Press, 2014. http://dx.doi.org/10.1145/2608628.2608667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

AYELE, TSEGAYE G., and WORKU T. BITEW. "PARTIAL HYPOELLIPTICITY OF DIFFERENTIAL OPERATORS." In Proceedings of the 6th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812837332_0056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Mingbo, and Yong Luo. "Factorization of differential operators with ordinary differential polynomial coefficients." In the 37th International Symposium. ACM Press, 2012. http://dx.doi.org/10.1145/2442829.2442880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Došlá, Zuzana, Mariella Cecchi, and Mauro Marini. "Disconjugate operators and related differential equations." In The 6'th Colloquium on the Qualitative Theory of Differential Equations. Bolyai Institute, SZTE, 1999. http://dx.doi.org/10.14232/ejqtde.1999.5.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Podlubny, Igor, and YangQuan Chen. "Adjoint Fractional Differential Expressions and Operators." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35005.

Full text
Abstract:
In this article we present the notions of adjoint differential expressions for fractional-order differential expressions, adjoint boundary conditions for fractional differential equations, and adjoint fractional-order operators. These notions are based on new formulas obtained for various types of fractional derivatives. The introduced notions can be used in many fields of modelling and control of real dynamical systems and processes.
APA, Harvard, Vancouver, ISO, and other styles
10

Bronstein, Manuel, Thom Mulders, and Jacques-Arthur Weil. "On symmetric powers of differential operators." In the 1997 international symposium. ACM Press, 1997. http://dx.doi.org/10.1145/258726.258771.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Sheaf of differential operators"

1

Bao, Gang, and William W. Symes. Computation of Pseudo-Differential Operators. Defense Technical Information Center, 1992. http://dx.doi.org/10.21236/ada455455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ustunel, A. S. Hypoellipticity of the Stochastic Partial Differential Operators. Defense Technical Information Center, 1985. http://dx.doi.org/10.21236/ada170326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tygert, Mark. Fast Algorithms for the Solution of Eigenfunction Problems for One-Dimensional Self-Adjoint Linear Differential Operators. Defense Technical Information Center, 2005. http://dx.doi.org/10.21236/ada458901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography