Academic literature on the topic 'Sheet metal forming, hot stamping, formability'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sheet metal forming, hot stamping, formability.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Sheet metal forming, hot stamping, formability"
Yu, Hai Yan, Li Bao, You Zhi Deng, and Wei Cao. "Forming Response of Ultra High Strength Steel Sheet to Stamping Speed during Hot Forming." Advanced Materials Research 160-162 (November 2010): 123–29. http://dx.doi.org/10.4028/www.scientific.net/amr.160-162.123.
Full textYou, Kang Ho, and Heung-Kyu Kim. "A Study on the Effect of Process and Material Variables on the Hot Stamping Formability of Automotive Body Parts." Metals 11, no. 7 (June 26, 2021): 1029. http://dx.doi.org/10.3390/met11071029.
Full textHu, X., C. Creighton, P. Zhang, N. Müller, T. Reincke, R. Taube, and M. Weiss. "Formability of roll-formed carbon fibre reinforced metal hybrid components and its experimental validation." IOP Conference Series: Materials Science and Engineering 1238, no. 1 (May 1, 2022): 012026. http://dx.doi.org/10.1088/1757-899x/1238/1/012026.
Full textLiu, Han Wu, Zhao Hui Liu, Hui Xiao Li, and Shao Bo Ping. "Computer Simulation of Hot Stamping Process of DP Steel Car Bumper Chain Based on Dynaform." Applied Mechanics and Materials 178-181 (May 2012): 2877–80. http://dx.doi.org/10.4028/www.scientific.net/amm.178-181.2877.
Full textLuan, Xi, Omer El Fakir, Hao Xiang Gao, Jun Liu, and Li Liang Wang. "Formability of AA6082-T6 at Warm and Hot Stamping Conditions." Key Engineering Materials 716 (October 2016): 107–13. http://dx.doi.org/10.4028/www.scientific.net/kem.716.107.
Full textJung, Dong Won. "A New Engineering Technique in Roller Design to Prevent Thinning of Sheet in Roll Forming Process." Applied Mechanics and Materials 873 (November 2017): 42–47. http://dx.doi.org/10.4028/www.scientific.net/amm.873.42.
Full textKo, Dae-Cheol, Dae-Hoon Ko, Jae-Hong Kim, and Joon-Hong Park. "Development of a partition panel of an Al6061 sheet metal part for the improvement of formability and mechanical properties by hot forming quenching." Advances in Mechanical Engineering 9, no. 2 (February 2017): 168781401769121. http://dx.doi.org/10.1177/1687814017691213.
Full textVenema, Jenny, Javad Hazrati, David Matthews, and Ton van den Boogaard. "An Insight in Friction and Wear Mechanisms during Hot Stamping." Key Engineering Materials 767 (April 2018): 131–38. http://dx.doi.org/10.4028/www.scientific.net/kem.767.131.
Full textMohamed, Mohamed, Sherif Elatriby, Zhusheng Shi, and Jian Guo Lin. "Prediction of Forming Limit Diagram for AA5754 Using Artificial Neural Network Modelling." Key Engineering Materials 716 (October 2016): 770–78. http://dx.doi.org/10.4028/www.scientific.net/kem.716.770.
Full textOta, Eiichi, Yasuhiro Yogo, Takamichi Iwata, Noritoshi Iwata, Kenjiro Ishida, and Kenichi Takeda. "Formability Improvement Technique for Heated Sheet Metal Forming by Partial Cooling." Key Engineering Materials 622-623 (September 2014): 279–83. http://dx.doi.org/10.4028/www.scientific.net/kem.622-623.279.
Full textDissertations / Theses on the topic "Sheet metal forming, hot stamping, formability"
Turetta, Alberto. "Investigation on thermal, mechanical and microstructural properties of quenchenable high strenght steels in hot stamping operations." Doctoral thesis, Università degli studi di Padova, 2008. http://hdl.handle.net/11577/3425096.
Full textMichieletto, Francesco. "Innovative forming processes of aluminium alloys sheets and tubes at elevated temperature." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424956.
Full textNegli ultimi decenni, la comunità internazionale è alla continua ricerca di provvedimenti per salvaguardare l’atmosfera e l’ambiente terrestre. In campo automobilistico e dei trasporti la produzione di biossido di carbonio dai gas di scarico delle autovetture, meglio conosciuto come CO2, è ritenuto tra i maggiori responsabili del rafforzamento dell’effetto serra e dunque dell’innalzamento del clima terrestre. Per porre un concreto rimedio e regolamentare l’efficienza sul consumo medio di un autoveicolo, con il protocollo di Kyoto stipulato nel 1997 ed entrato in vigore nel 2005, la comunità internazionale si è impegnata legalmente alla produzioni di veicoli in grado di rispettare il limite di emissione di 95 g di CO2 per kilometro entro l’anno 2020. L’alleggerimento complessivo di un automobile è sicuramente tra le soluzioni più immediate per la riduzione delle particelle inquinanti, in quanto veicoli più leggeri richiedono minore forza motrice e di conseguenza minore consumo di energia. Per questo motivo le compagnie automobilistiche negli ultimi anni sono alla ricerca di materiali innovativi per sostituire l’acciaio che comunemente è impiegato per la realizzazione di telai e parti di carrozzeria, senza pregiudicare la sicurezza dei passeggeri. Gli acciai alto resistenziali ma soprattutto le leghe leggere, hanno dimostrato essere delle ottime alternative grazie alle loro proprietà di bassa densità, resistenza alla corrosione, ed ottimo rapporto rigidezza-peso. Con l’utilizzo di parti stampate ma anche di elementi tubolari in lega di alluminio il peso medio della sola scocca di una vettura può essere ridotto del 15 – 20 %, portando ad un conseguente ridimensionamento di tutte gli organi connessi ed ad una sostanziale riduzione delle emissioni dannose. La principale limitazione nella lavorazione delle leghe di alluminio è la loro scarsa attitudine a subire deformazione plastica a temperatura ambiente collegata oltretutto ad un elevato ritorno elastico. Per far fronte a questa problematica, numerosi processi innovativi utilizzanti alta temperatura sono stati o sono tuttora in fase di studio con l’obiettivo principale di incrementare la formabilità del materiale. I confermati processi di deformazione di lamiera di alluminio quali Superplastic Forming e Quick Plastic Forming, hanno dimostrato sicuramente un vantaggio in termini di formabilità riuscendo oltretutto a generare parti complesse, ma sono d’altro canto estremamente costosi e soggetti a tempi molto lunghi di processo, per cui non applicabili per produzioni in larga scala. L’idroformatura a freddo e a tiepido, invece, che rappresenta l’attuale tecnologia all’avanguardia per la sagomatura di parti cave, oltre a necessitare di elevati costi iniziali connessi alle elevate pressioni del fluido necessarie per la deformazione e alle presse ad alto tonnellaggio richieste per la chiusura degli stampi durante l’iniezione del liquido stesso, presenta severi limiti nella temperatura massima di processo. Infatti le emulsioni acqua olio generalmente impiegate come mezzo deformante risultano infiammabili al di sopra del campo tiepido per l’alluminio, limitando dunque il range termico utilizzabile per il processo e di conseguenza la formabilità del materiale. In questo lavoro di ricerca sono stati studiati processi innovativi per la produzione di componenti di alluminio in lamiera e tubolari che superassero i limiti di processo delle attuali tecnologie produttive. In particolare la tecnologia dello stampaggio a caldo (Hot Stamping), oggigiorno applicata agli acciai alto resistenziali, è stata applicata con successo su lamiere di alluminio serie 5xxx e 6xxx, e validata con test industriali eseguiti su una vera linea di stampaggio producendo un componente automobilistico. Inoltre è stato realizzato e sviluppato un prototipo in grado di operare con la tecnologia innovativa del Hot Metal Gas Forming, che utilizza gas in pressione invece di fluidi per deformare componenti tubolari al alta temperatura. Prove di formabilità su tubi di alluminio serie 6xxx, ma anche la realizzazione di componenti in stampo, hanno permesso inoltre lo studio di numerosi aspetti critici per il processo. In fine, la sagomatura di un componente industriale in collaborazione con una azienda, curando oltretutto la qualità estetica del formato, ha permesso di verificare l’applicabilità e l’efficacia di questo processo anche a livello industriale.
Singhal, Hitansh. "Formability Evaluation of Tailor Welded Blanks (TWBs)." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1594916942734335.
Full textAl-Obaidi, Amar Baker Salim. "Induction Assisted Single Point Incremental Forming of Advanced High Strength Steels." Universitätsverlag der Technischen Universität Chemnitz, 2018. https://monarch.qucosa.de/id/qucosa%3A31527.
Full textDie induktionsgestützte, inkrementelle Blechumformung (englisch: Induction Assisted Single-Point Incremental Forming IASPIF) ist Warmumformprozess, bei dem keine komplexen Werkzeuge wie beim Tiefziehen und Biegen benötigt werden. Inhalt dieser Arbeit ist die inkrementelle Umformung eines Bleches mit gleichzeitig ablaufender induktiver Erwärmung. Das Forschungsziel bestand in der Verbesserung der Umformbarkeit von hochfesten Stahlwerkstoffen wie DP600, DP980 und 22MnB5 durch eine gezielte partielle Erwärmung. Der prinzipielle Aufbau des Versuchsstandes besteht aus einem Spuleninduktor, der unterhalb des umzuformenden Blechs platziert ist, und der synchron mit dem Werkzeug – einem Drückdorn – während des Umformvorganges verfährt. Ein wesentlicher Untersuchungsschwerpunkt bestand in der Ermittlung der Einflussgrößen auf den untersuchten IASPIF-Prozess. Für die Bewertung der Umformbarkeit wurden hierbei der maximal erreichbare Teilwandwinkel und die Profiltiefe, die in einem Umformdurchgang herstellbar waren, ermittelt und ausgewertet. Darüber hinaus konnten im Rahmen der Arbeit die Induktionsleistung des Generators, der Werkzeugdurchmesser und die Werkzeugvorschubgeschwindigkeit als relevante Prozessparameter identifiziert werden. Im Ergebnis der durchgeführten Untersuchungen zeigten die Werkzeugvorschubgeschwindigkeit und die Induktionsleistung einen wesentlichen Einfluss auf die erreichbare Profiltiefe. Aufbauend auf den erzielten Ergebnissen konnte eine prozessangepasste Umformstrategie entwickelt werden, bei der eine konstante Erwärmungstemperatur durch das Koppeln der momentanen Profiltiefe mit einer sukzessiv steigenden Werkzeugvorschubgeschwindigkeit erreicht wird. Weiterhin ließen sich die Kräfte bei der Umformung eines Stahlbleches aus DP980 von 7 kN (bei Raumtemperatur) auf 2,5 kN (bei erhöhter Temperatur) reduzieren. Aufgrund des mit einem Streckziehvorgang vergleichbaren Spannungszustandes während des Umformprozesses war eine starke Verringerung der resultierenden Wanddicke zu beobachten. Als neue Erkenntnis in dieser Untersuchung konnte die umgekehrte Beziehung zwischen der Zustelltiefe und dem Dickenreduktionsprozentsatz abgleitet werden. Aus der Finite - Elemente - Simulation des vorgestellten Umformprozesses wurde erkennbar, dass die Erhöhung der Erwärmungstemperatur einen direkten Einfluss auf die plastische Dehnung von 0,2 (bei Raumtemperatur) auf 1,02 (bei 800 °C) hat. Mittels der numerischen Simulation und der nachfolgenden experimentellen Validierung erfolgte darüber hinaus die Bestimmung der maximalen wahren Dehnung, die in der resultierenden Wanddicke erreicht wurde. Bei den Versuchen mit der größten Zustellung ließ sich durch die Bestimmung der Teileformgenauigkeit die höchste Abweichung von der Sollgeometrie CAD Modell feststellen. Abschließend wurde nachgewiesen, dass der IASPIF Prozess auch zur Einstellung maßgeschneiderter Bauteileigenschaften wie der resultierenden mechanischen Eigenschaften des Blechmaterials aus 22MnB5 einsetzbar ist. Zu diesem Zweck wurden die Bleche während des Umformprozesses lokal induktiv erwärmt und anschließend zur Einstellung des gewünschten Gefüges bei unterschiedlichen Abkühlgeschwindigkeiten abgeschreckt.
Books on the topic "Sheet metal forming, hot stamping, formability"
Hu, Ping. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming: Analysis, Simulation and Engineering Applications. London: Springer London, 2013.
Find full textMa, Ning, Ping Hu, Li-zhong Liu, and Yi-guo Zhu. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming: Analysis, Simulation and Engineering Applications. Springer London, Limited, 2012.
Find full textMa, Ning, Ping Hu, Li-zhong Liu, and Yi-guo Zhu. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming: Analysis, Simulation and Engineering Applications. Springer, 2014.
Find full textBook chapters on the topic "Sheet metal forming, hot stamping, formability"
Singh, Amarjeet Kumar, and K. Narasimhan. "Artificial Neural Network (ANN) Based Formability Prediction Model for 22MnB5 Steel under Hot Stamping Conditions." In Metal Forming Processes, 1–9. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003226703-1.
Full textHu, Ping, Liang Ying, and Bin He. "The Basis of Sheet Metal Forming Technology." In Hot Stamping Advanced Manufacturing Technology of Lightweight Car Body, 1–18. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2401-6_1.
Full textYang, Xiaoming, Baoyu Wang, and Chuanbao Zhu. "An Investigation on Formability of Ti6Al4V Alloy in the Three-Layer Sheet Hot Stamping Process." In Forming the Future, 2819–27. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75381-8_234.
Full textHorn, Alexander, and Marion Merklein. "Analysis of the Thermomechanical Flow Behavior of Carburized Sheet Metal in Hot Stamping." In Forming the Future, 789–800. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75381-8_65.
Full textNaganathan, A., and L. Penter. "Hot Stamping." In Sheet Metal Forming, 133–56. ASM International, 2012. http://dx.doi.org/10.31399/asm.tb.smfpa.t53500133.
Full text"Tensile Testing for Determining Sheet Formability." In Tensile Testing, 101–14. 2nd ed. ASM International, 2004. http://dx.doi.org/10.31399/asm.tb.tt2.t51060101.
Full textConference papers on the topic "Sheet metal forming, hot stamping, formability"
Bohn, M. L., S. G. Xu, K. J. Weinmann, C. C. Chen, and A. Chandra. "Improving Formability in Sheet Metal Stamping With Active Drawbead Technology." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1884.
Full textHussain, G., L. Gao, Wang Hui, and N. U. Dar. "A Fundamental Investigation on the Formability of a Commercially-Pure Titanium Sheet-Metal in the Incremental Forming and Stamping Processes." In ASME 2007 International Manufacturing Science and Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/msec2007-31138.
Full textChen, Z. H., Y. Wen, and C. H. Sun. "Formability Prediction for Thermal Stamping of Magnesium Alloy Sheet Based on M-K Model." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62539.
Full textKaribeeran, Shanmuga Sundaram, and Rajiv Selvam. "Experimental Study on Electromagnetic Forming of Copper Sheets." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63433.
Full textYang, Shiyong, and Kikuo Nezu. "Concurrent Engineering Design of Sheet Stamping by Using an Inverse FE Approach." In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/dtm-3901.
Full textNourani, Mohamadreza, Hossein Aliverdilu, Hossein Monajati Zadeh, Hamid Khorsand, Ali Shokuhfar, and Abbas S. Milani. "A Study on the Formability of IF and Plain Carbon Mild Steels." In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-29173.
Full textBatoz, J. L. "Formability Predictions in Stamping and Process Parameter Optimization Based on the Inverse Approach Code Fast_Stamp." In NUMISHEET 2005: Proceedings of the 6th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Process. AIP, 2005. http://dx.doi.org/10.1063/1.2011325.
Full textKan, Dongbin, Lizhong Liu, Ping Hu, Ning Ma, Guozhe Shen, Xiaoqiang Han, and Liang Ying. "Numerical Prediction of Microstructure and Mechanical Properties During the Hot Stamping Process." In THE 8TH INTERNATIONAL CONFERENCE AND WORKSHOP ON NUMERICAL SIMULATION OF 3D SHEET METAL FORMING PROCESSES (NUMISHEET 2011). AIP, 2011. http://dx.doi.org/10.1063/1.3623663.
Full textAmbrogio, G., L. Fratini, and F. Micari. "Incremental Forming of Friction Stir Welded Taylored Sheets." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95375.
Full textShih, Hua-Chu, Ming F. Shi, Z. Cedric Xia, and Danielle Zeng. "Experimental Study on Shear Fracture of Advanced High Strength Steels: Part II." In ASME 2009 International Manufacturing Science and Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/msec2009-84070.
Full text