Academic literature on the topic 'Sheet metal forming, hot stamping, formability'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sheet metal forming, hot stamping, formability.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Sheet metal forming, hot stamping, formability"

1

Yu, Hai Yan, Li Bao, You Zhi Deng, and Wei Cao. "Forming Response of Ultra High Strength Steel Sheet to Stamping Speed during Hot Forming." Advanced Materials Research 160-162 (November 2010): 123–29. http://dx.doi.org/10.4028/www.scientific.net/amr.160-162.123.

Full text
Abstract:
Stamping speed is an important parameter in sheet metal forming especially in hot forming. In this study, hot forming of a U-shaped part made of ultra high strength boron steel (22MnB5) sheet is simulated with solid elements. The mechanical properties of 22MnB5 steel sheet and the key process parameters are introduced in detail. Emphasis is laid on the forming response of the boron steel sheet to stamping speeds of 3.25m/s, 0.325m/s and 0.0325m/s. The mechanism of stamping speed acting on hot formability and temperature field of the stamped part is analyzed. It is demonstrated that stamping speed affects both formability and the heat transferred from blank to tools and to environment during hot forming. And the coupling effect of material properties, the heat produced during plastic deformation and heat boundary condition decides the formability and temperature field. An appropriate stamping speed is more important for hot forming than that for common cold forming.
APA, Harvard, Vancouver, ISO, and other styles
2

You, Kang Ho, and Heung-Kyu Kim. "A Study on the Effect of Process and Material Variables on the Hot Stamping Formability of Automotive Body Parts." Metals 11, no. 7 (June 26, 2021): 1029. http://dx.doi.org/10.3390/met11071029.

Full text
Abstract:
Hot stamping is a method capable of manufacturing high-strength automotive body parts by inducing a martensitic phase transformation through forming and die quenching after heating a metal sheet into a high temperature austenite phase. However, it is not easy to solve various formability problems occurring in the hot stamping process due to the complexity of the process and material behavior during high temperature forming. In this study, fracture-related forming limits and martensite phase ratio were selected as criteria for evaluating hot stamping formability. First, a hot stamping test was performed on a T-type part that simplified the B-pillar, an automotive body part, and the fracture behavior according to the temperature and thickness of the sheet blank was investigated. Additionally, forming analysis was performed on the hot stamping process of mass-produced B-pillar parts by varying the temperature of the sheet blank, the thickness of the sheet blank, the die-blank friction coefficient, and the strain-rate sensitivity of material among various process and material variables. Based on the analysis results, the effect of each process and material variable on the hot stamping formability of B-pillar parts was quantitatively analyzed. By utilizing the results of this study, it will be possible to solve the formability problem that occurs in the mass-production hot stamping process for automotive body parts and improve the quality of parts in the future.
APA, Harvard, Vancouver, ISO, and other styles
3

Hu, X., C. Creighton, P. Zhang, N. Müller, T. Reincke, R. Taube, and M. Weiss. "Formability of roll-formed carbon fibre reinforced metal hybrid components and its experimental validation." IOP Conference Series: Materials Science and Engineering 1238, no. 1 (May 1, 2022): 012026. http://dx.doi.org/10.1088/1757-899x/1238/1/012026.

Full text
Abstract:
Abstract Carbon Fibre Reinforced Metal Hybrid (CFRMH) materials that combine a sheet metal substrate with a reinforcing carbon fibre patch represent a promising solution to reduce weight while increasing the structural and crash performance of future automotive vehicles. CFRMHs cannot be formed with conventional stamping processes and at high volumes. This currently reduces their widespread application. Roll forming is increasingly used in the automobile industry for the forming of lightweight and high-strength metal structural components. The major deformation mode in roll forming is simple bending and this reduces interlaminar shear and compressive stresses that lead to fibre failure and delamination issues when stamping CFRMH sheet materials. This work analyses the potential of applying the conventional roll forming process for the manufacture of a simple top hat section shape from CFRMH sheet. For this, first, the material is produced in a hot press and then formed to shape in a laboratory roll forming facility at room temperature. Different layup sequences are tested, and component quality is analysed after roll forming by visual inspection. The results suggest that roll forming presents a promising manufacturing method for the production of automotive components from CFRMH sheets. The roll formed open shells are joined to produce crash box structure and tested in 3-point bending. The results show that depending on the fibre orientation a significant increase in weight specific strength is achieved.
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Han Wu, Zhao Hui Liu, Hui Xiao Li, and Shao Bo Ping. "Computer Simulation of Hot Stamping Process of DP Steel Car Bumper Chain Based on Dynaform." Applied Mechanics and Materials 178-181 (May 2012): 2877–80. http://dx.doi.org/10.4028/www.scientific.net/amm.178-181.2877.

Full text
Abstract:
Owing to the advantages of weight loss and security, duplex steel plate has been the priority for the saloon car body instead of ordinary one among a majority of engine factories. While there are undesirable phenomena because of its high strength at normal temperature, such as its formability is worsened dramatically, and failure and fracture always occur in the stamping. So hot stamping process must be adopted to make the formability available. Based on the Bumper chain of Beijing Hyundai Reina and taken DP600 high strength steel as research object, this paper analyzes the distributions of stress, strain and thickness changes during the process of sheet metal forming by using eta/DYNAFORM software, simulates the spring-back quantity after hot stamping forming, and the numerical simulation of the temperature field distribution with time during stamping process was done. The result shows that duplex steel plate can meet the performance requirements of automotive chain forming, which offers theory basis for the production of such parts.
APA, Harvard, Vancouver, ISO, and other styles
5

Luan, Xi, Omer El Fakir, Hao Xiang Gao, Jun Liu, and Li Liang Wang. "Formability of AA6082-T6 at Warm and Hot Stamping Conditions." Key Engineering Materials 716 (October 2016): 107–13. http://dx.doi.org/10.4028/www.scientific.net/kem.716.107.

Full text
Abstract:
Forming limit diagrams (FLDs) of AA6082 at warm/hot stamping conditions were determined by using a specially designed test rig. The tests were carried out at various temperatures from 300 to 450°C and forming speeds ranging from 75 to 400 mm/s. The strain was visualized and measured using ARGUS software provided by GOM. The results clearly show that the formability of AA6082-T6 sheet metal, in terms of the limit major strain, increased by 38.9 % when the forming temperature was increased from 300°C to 450°C at a speed of 250 mm/s, and increased by 42.4 % when the forming speed was decreased from 400 to 75 mm/s at a temperature of 400°C. It was verified that hot stamping is a promising technology for manufacturing complex-shaped components.
APA, Harvard, Vancouver, ISO, and other styles
6

Jung, Dong Won. "A New Engineering Technique in Roller Design to Prevent Thinning of Sheet in Roll Forming Process." Applied Mechanics and Materials 873 (November 2017): 42–47. http://dx.doi.org/10.4028/www.scientific.net/amm.873.42.

Full text
Abstract:
These days sheet metal forming is a widely used in different industrial fields with large production volumes. Formability of metal sheets is limited by localized necking and plastic instability. In sheet metal forming processes like drawing and stamping the main challenge is thinning of the metal sheet in some regions. To reduce thinning of the sheet product, roll forming has been suggested instead of stamping process. Thinning strain can cause necking, tearing or wrinkling which are failure of the metal sheet. In this study a new engineering technique is proposed in order to prevent thinning of the steel galvanized hot coil commercial (SGHC) in roll forming process. An explicit finite element code, ABAQUS software, was used to simulate the roll forming process. The results show that the proposed technique has an important effect on thinning of the sheet and can reduce it significantly. Investigation on the second and third and fourth rollers show the effect of modified roller dimension as on reducing the thickness. These reductions in second, third and fourth rollers are from 4 percent to 0.5 percent, 2.8 to 1.4 percent and from 1.4 to 0.7 percent respectively. The reasons of the new techniques effect were also discussed.
APA, Harvard, Vancouver, ISO, and other styles
7

Ko, Dae-Cheol, Dae-Hoon Ko, Jae-Hong Kim, and Joon-Hong Park. "Development of a partition panel of an Al6061 sheet metal part for the improvement of formability and mechanical properties by hot forming quenching." Advances in Mechanical Engineering 9, no. 2 (February 2017): 168781401769121. http://dx.doi.org/10.1177/1687814017691213.

Full text
Abstract:
In this study, the hot forming quenching process was investigated to improve the deficiencies that arise in materials subjected to conventional cold stamping, such as low formability and undesirable mechanical properties. The hot forming quenching process was mainly discussed in terms of formability and mechanical properties in this study and was first evaluated by preliminary tests. To examine formability, an evaluation was conducted using hot-tensile and hemispherical-dome stretching tests at temperatures of 350°C and 450°C, respectively. In addition, the mechanical properties of the formed part were predicted using quench factor analysis, which was based on the cooling temperature during the die quenching process. These preliminary test results were then used to predict the formability and hardness of the partition panel of an automotive part, where the analytical results indicated high performance of the hot forming quenching process, in contrast to conventional forming. Finally, the hot forming quenching experiment of the partition panel was carried out to validate the predicted results and the obtained formability and hardness values were compared with conventional forming at room temperature using T4 and T6 heat-treated sheets. The analytical and experimental results indicate that the hot forming quenching process is a very effective method for obtaining desirable formability and mechanical properties in the forming of aluminum sheets.
APA, Harvard, Vancouver, ISO, and other styles
8

Venema, Jenny, Javad Hazrati, David Matthews, and Ton van den Boogaard. "An Insight in Friction and Wear Mechanisms during Hot Stamping." Key Engineering Materials 767 (April 2018): 131–38. http://dx.doi.org/10.4028/www.scientific.net/kem.767.131.

Full text
Abstract:
Hot stamping is often used in the automotive industry to combine formability and strength. However, during forming process at high temperatures, friction and tool wear are determining factors that can affect the efficiency of the whole process. The goal of this paper is to investigate the effects of temperature on the local coefficient of friction and tool wear and to provide an insight in the phenomena which take place at the tool-sheet metal interface during hot stamping processes. For this purpose, hot friction draw tests between uncoated tool steel and Al-Si coated press hardening steel were carried out at several temperatures between 500-700°C. Consecutive tests were performed to mimic industrial hot stamping process and to investigate the effect of tool wear on the friction phenomenon. Finally, tool-sheet metal tribological behavior and the interaction between the friction and tool wear mechanisms were analyzed using different imaging and chemical characterization techniques. The results show that several stages can be distinguished at the interface between tool and sheet metal coating during hot stamping: flattening due to initial normal contact, ploughing of tool asperities through coating, secondary ploughing in the coating by adhered material on the tooling, and abrasive wear in the tool by embedded particles in the sheet metal coating. Furthermore, tool wear shows some major differences in the temperature range of 500-700°C. At high temperature a larger abrasive area and more severe compaction galling occurs that can be explained by material properties of Al-Si coating at elevated temperatures. The results of this study can be used for more efficient process design and a more realistic modelling of the hot stamping process.
APA, Harvard, Vancouver, ISO, and other styles
9

Mohamed, Mohamed, Sherif Elatriby, Zhusheng Shi, and Jian Guo Lin. "Prediction of Forming Limit Diagram for AA5754 Using Artificial Neural Network Modelling." Key Engineering Materials 716 (October 2016): 770–78. http://dx.doi.org/10.4028/www.scientific.net/kem.716.770.

Full text
Abstract:
Warm stamping techniques have been employed to solve the formability problem in forming aluminium alloy panels. The formability of sheet metal is a crucial measure of its ability for forming complex-shaped panel components and is often evaluated by forming limit diagram (FLD). Although the forming limit is a simple tool to predict the formability of material, determining FLD experimentally at warm/hot forming condition is quite difficult. This paper presents the artificial neural network (ANN) modelling of the process based on experimental results (different temperature, 20°C-300°C and different forming rates, 5-300 mm.s-1) is introduced to predict FLDs. It is shown that the ANN can predict the FLDs at extreme conditions, which are out of the defined boundaries for training the ANN. According to comparisons, there is a good agreement between experimental and neural network results
APA, Harvard, Vancouver, ISO, and other styles
10

Ota, Eiichi, Yasuhiro Yogo, Takamichi Iwata, Noritoshi Iwata, Kenjiro Ishida, and Kenichi Takeda. "Formability Improvement Technique for Heated Sheet Metal Forming by Partial Cooling." Key Engineering Materials 622-623 (September 2014): 279–83. http://dx.doi.org/10.4028/www.scientific.net/kem.622-623.279.

Full text
Abstract:
A forming process for heated sheet metal, such as hot-stamping, has limited use in deformable shapes. Higher temperature areas which have not yet come into contact with dies are more easily deformed; therefore, local deformation occurs at these areas which leads to breakage. To improve the formability of heated sheet metal, a deformation control technique utilizing the temperature dependence of flow stress is proposed. This technique can suppress local deformation by partial cooling around potential cracking areas to harden them before forming. In order to apply this technique to a variety of product shapes, a procedure to determine a suitable initial temperature distribution for deep drawing and biaxial stretching was developed with a coupled thermal structural simulation. In this procedure, finite elements exceeding forming limit strain are highlighted, and an initial temperature distribution is defined with areas of decreased temperature around the elements to increase their resistance to deformation. Subsequently, the partial cooling technique was applied to a deep drawing test with a heated steel sheet. The results of the experiment showed that the proposed technique improved 71% in the forming limit depth compared with results obtained using a uniform initial temperature distribution.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Sheet metal forming, hot stamping, formability"

1

Turetta, Alberto. "Investigation on thermal, mechanical and microstructural properties of quenchenable high strenght steels in hot stamping operations." Doctoral thesis, Università degli studi di Padova, 2008. http://hdl.handle.net/11577/3425096.

Full text
Abstract:
Sheet metal working operations at elevated temperature have gained in the last years even more importance due to the possibility of producing parts characterized by high strength-to-mass ratio. In particular, the hot stamping of ultra high strength quenchenable steels is nowadays widely used in the automotive industry to produce body-in-white structural components with enhanced crash resistance and geometrical accuracy. The optimization of the process, where deformation takes place simultaneously with cooling, and of the final component performances requires the utilization of FE-based codes where the forming and quenching phases have to be represented by fully thermo-mechanical-metallurgical models. The accurate calibration of such models, in terms of material behaviour, tribology, heat transfer, phase transformation kinetics and formability, is therefore a strong requirement to gain reliable results from the numerical simulations and offer noticeable time and cost savings to product and process engineers. The main target of this PhD thesis is the development of an innovative approach based on the design of integrated experimental procedures and modelling tools in order to accurately investigate and describe both the mechanical and microstructural material properties and the interface phenomena due to the thermal and mechanical events that occur during the industrial press hardening process. To this aim, a new testing apparatus was developed to evaluate the influence of temperature and strain rate on the sheet metal elasto-plastic properties and to study the influence of applied stress and strain of the material phase transformation kinetics. Furthermore, an innovative experimental setup, based on the Nakazima concept, was designed and developed to evaluate sheet formability at elevated temperature by controlling the thermo-mechanical parameters of the test and reproducing the conditions that govern the microstructural evolution during press hardening. This equipment was utilized both to determine isothermal forming limit curves at high temperature and to perform a physical simulation of hot forming operations. Finally, a thermo-mechanical-metallurgical model was implemented in a commercial FE-code and accurately calibrated to perform fully coupled numerical simulations of the reference process. The material investigated in this work is the Al-Si pre-coated quenchenable steel 22MnB5, well known with the commercial name of USIBOR 1500P’®, and the developed approach proves to be suitable to proper evaluate high strength steels behaviour in terms of mechanical, thermal and microstructural properties, and to precisely calibrate coupled numerical models when they are applied to this innovative manufacturing technology. The work presented in this thesis has been carried out at DIMEG labs, University of Padova, Italy, from January 2005 to December 2007 under the supervision of Prof. Paolo F. Bariani.
APA, Harvard, Vancouver, ISO, and other styles
2

Michieletto, Francesco. "Innovative forming processes of aluminium alloys sheets and tubes at elevated temperature." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424956.

Full text
Abstract:
In the last two decades the international community has been looking for solutions to preserve the environment, and in particular the atmosphere, from the CO2 emissions through the car exhausts, considered one of the main responsible of the greenhouse effect and, therefore, of the Earth temperature increase. Rules and limits were fixed in the 1997 with the Kyoto Protocol that entered in force in 2005, by which the international community signed the legal responsibility for producing vehicles with CO2 emission limited to 95g/km to be reached in 2020. The production of cars using lightweight materials can represent an optimal solution because the lower weight means lower energy consumption. Therefore, the automotive companies are now investigating the feasibility of producing parts made of lightweight materials to replace conventional steels for the car chassis and body-in-white components, but without decreasing the passenger safety. High resistance steels and aluminium alloys have demonstrated to be the best solution thanks to their low density, high corrosion resistance and excellent stiffness-to-weight ratio. In case of use of aluminium alloy sheets and tubes, it is possible to reduce the car weight of about 15–20 % with also a consequent weight reduction of all the connected vehicle parts and therefore a substantial reduction of the pollutant exhausts. The main limit of light alloys is the poor formability and the high springback exhibited during room temperature deformation. Temperature assisted processes have proven to increase material formability: Superplastic and Quick Plastic Forming, already used for shaping aluminium sheets, have shown a relevant increase in the material formability allowing to form very complex parts but are extremely expensive due to the very long process times, therefore not applicable for mass production. On the other hand, cold and warm hydroforming processes, nowadays at the state-of-the-art for shaping hollow components, exhibit very high initial investment cost due to the high pressure of the fluid used as deformable mean and to the high tons presses needed for keeping the dies closed during the process. Moreover, a strict forming temperature limit is fixed by the fluid boil and burst temperatures, which may limit the material formability. In this research work, innovative forming processes were investigated to prove the feasibility of shaping aluminium sheets and tubes at high temperature, exceeding the limits of the already available process technologies. In particular, the Hot Stamping (HS) technology was applied to form 5xxx and 6xxx series aluminium alloys proving the capability of stamping an automotive component on a hot stamping industrial plant, and thus validating the laboratory tests results. An experimental apparatus able to work with the innovative technology of the Hot Metal Gas Forming (HMGF) process was designed and developed to form aluminium alloy tubes. In doing so, resistance heating was used as heating system and cold air in pressure was used to bulge-up the tubes during the process. The formability of different 6xxx series aluminium alloys tubes was investigated by means of free bulging tests and, afterwards, shaping component inside a die, evaluating the influence of the most important process parameters. Finally, in collaboration with an industrial company, the shaping of an aesthetic component with also the evaluation of the surface appearance was carried out demonstrating the applicability of the new process to form an industrial part.
Negli ultimi decenni, la comunità internazionale è alla continua ricerca di provvedimenti per salvaguardare l’atmosfera e l’ambiente terrestre. In campo automobilistico e dei trasporti la produzione di biossido di carbonio dai gas di scarico delle autovetture, meglio conosciuto come CO2, è ritenuto tra i maggiori responsabili del rafforzamento dell’effetto serra e dunque dell’innalzamento del clima terrestre. Per porre un concreto rimedio e regolamentare l’efficienza sul consumo medio di un autoveicolo, con il protocollo di Kyoto stipulato nel 1997 ed entrato in vigore nel 2005, la comunità internazionale si è impegnata legalmente alla produzioni di veicoli in grado di rispettare il limite di emissione di 95 g di CO2 per kilometro entro l’anno 2020. L’alleggerimento complessivo di un automobile è sicuramente tra le soluzioni più immediate per la riduzione delle particelle inquinanti, in quanto veicoli più leggeri richiedono minore forza motrice e di conseguenza minore consumo di energia. Per questo motivo le compagnie automobilistiche negli ultimi anni sono alla ricerca di materiali innovativi per sostituire l’acciaio che comunemente è impiegato per la realizzazione di telai e parti di carrozzeria, senza pregiudicare la sicurezza dei passeggeri. Gli acciai alto resistenziali ma soprattutto le leghe leggere, hanno dimostrato essere delle ottime alternative grazie alle loro proprietà di bassa densità, resistenza alla corrosione, ed ottimo rapporto rigidezza-peso. Con l’utilizzo di parti stampate ma anche di elementi tubolari in lega di alluminio il peso medio della sola scocca di una vettura può essere ridotto del 15 – 20 %, portando ad un conseguente ridimensionamento di tutte gli organi connessi ed ad una sostanziale riduzione delle emissioni dannose. La principale limitazione nella lavorazione delle leghe di alluminio è la loro scarsa attitudine a subire deformazione plastica a temperatura ambiente collegata oltretutto ad un elevato ritorno elastico. Per far fronte a questa problematica, numerosi processi innovativi utilizzanti alta temperatura sono stati o sono tuttora in fase di studio con l’obiettivo principale di incrementare la formabilità del materiale. I confermati processi di deformazione di lamiera di alluminio quali Superplastic Forming e Quick Plastic Forming, hanno dimostrato sicuramente un vantaggio in termini di formabilità riuscendo oltretutto a generare parti complesse, ma sono d’altro canto estremamente costosi e soggetti a tempi molto lunghi di processo, per cui non applicabili per produzioni in larga scala. L’idroformatura a freddo e a tiepido, invece, che rappresenta l’attuale tecnologia all’avanguardia per la sagomatura di parti cave, oltre a necessitare di elevati costi iniziali connessi alle elevate pressioni del fluido necessarie per la deformazione e alle presse ad alto tonnellaggio richieste per la chiusura degli stampi durante l’iniezione del liquido stesso, presenta severi limiti nella temperatura massima di processo. Infatti le emulsioni acqua olio generalmente impiegate come mezzo deformante risultano infiammabili al di sopra del campo tiepido per l’alluminio, limitando dunque il range termico utilizzabile per il processo e di conseguenza la formabilità del materiale. In questo lavoro di ricerca sono stati studiati processi innovativi per la produzione di componenti di alluminio in lamiera e tubolari che superassero i limiti di processo delle attuali tecnologie produttive. In particolare la tecnologia dello stampaggio a caldo (Hot Stamping), oggigiorno applicata agli acciai alto resistenziali, è stata applicata con successo su lamiere di alluminio serie 5xxx e 6xxx, e validata con test industriali eseguiti su una vera linea di stampaggio producendo un componente automobilistico. Inoltre è stato realizzato e sviluppato un prototipo in grado di operare con la tecnologia innovativa del Hot Metal Gas Forming, che utilizza gas in pressione invece di fluidi per deformare componenti tubolari al alta temperatura. Prove di formabilità su tubi di alluminio serie 6xxx, ma anche la realizzazione di componenti in stampo, hanno permesso inoltre lo studio di numerosi aspetti critici per il processo. In fine, la sagomatura di un componente industriale in collaborazione con una azienda, curando oltretutto la qualità estetica del formato, ha permesso di verificare l’applicabilità e l’efficacia di questo processo anche a livello industriale.
APA, Harvard, Vancouver, ISO, and other styles
3

Singhal, Hitansh. "Formability Evaluation of Tailor Welded Blanks (TWBs)." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1594916942734335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Al-Obaidi, Amar Baker Salim. "Induction Assisted Single Point Incremental Forming of Advanced High Strength Steels." Universitätsverlag der Technischen Universität Chemnitz, 2018. https://monarch.qucosa.de/id/qucosa%3A31527.

Full text
Abstract:
Induction Assisted Single Point Incremental Forming (IASPIF) is a die-less hot sheet metal forming. The IASPIF does not apply characteristic complex tooling like those applied in deep drawing and bending. In this thesis, induction heating was used to heat up the sheet while simultaneously forming with a tool. The research goal is to improve the formability of high strength steels by heating. The IASPIF consists of non-complicated set up that allows induction heating to be utilized through the coil inductor moved under the sheet and synchronized with the forming tool that moves on the upper side of the sheet. The advanced high strength steel alloys, DP980, DP600 and 22MnB5 steels, were investigated. The influence of induction heating on formability was evaluated by the maximum wall angle that can be achieved in a single pass. Additionally, tool diameter and tool feed rate was also varied. The most influencing parameters were tool feed rate, induction power, and the profile depth. A new forming strategy was also developed by control the heating temperature through coupling the formed profile depth with a successively increased tool feed rate. The forming forces of DP980 steel sheet, were reduced from 7 kN to 2.5 kN when forming process was performed at room and elevated temperature, respectively. Stretching stresses were developed during forming process causing a high reduction in the resulting wall part thickness. New findings in this investigation were the reverse relationship between the step-down depth and the thickness reduction percentage. The smaller the tool diameter, the better was the formability. The finite element simulation of the investigated forming process showed that the increase in heating temperature has a direct effect on rising the plastic strain from 0.2 at room temperature to 1.02 at 800 ◦ C. The maximum true strain achieved in the resulting wall part thickness was determined by FEM simulations and validated with experimental trials. The part shape accuracy was measured and the highest deflection was founded when the part was formed by the highest step-down depth. Moreover, the minimum deflection in the part shape was achieved by utilizing a high induction power in the experiments. Finally, the resulting mechanical properties of the 22MnB5 alloy sheet material were tailored during IASPIF. For this purpose, the sheets were locally heated by induction during the forming process and subsequently quenched at different rates. As a result, the produced tailored parts consist of three different regions, which consist of a ductile, transitional and hardened region. The proposed procedure allows forming and quenching at the same time without transfer and thus, process time was reduced.
Die induktionsgestützte, inkrementelle Blechumformung (englisch: Induction Assisted Single-Point Incremental Forming IASPIF) ist Warmumformprozess, bei dem keine komplexen Werkzeuge wie beim Tiefziehen und Biegen benötigt werden. Inhalt dieser Arbeit ist die inkrementelle Umformung eines Bleches mit gleichzeitig ablaufender induktiver Erwärmung. Das Forschungsziel bestand in der Verbesserung der Umformbarkeit von hochfesten Stahlwerkstoffen wie DP600, DP980 und 22MnB5 durch eine gezielte partielle Erwärmung. Der prinzipielle Aufbau des Versuchsstandes besteht aus einem Spuleninduktor, der unterhalb des umzuformenden Blechs platziert ist, und der synchron mit dem Werkzeug – einem Drückdorn – während des Umformvorganges verfährt. Ein wesentlicher Untersuchungsschwerpunkt bestand in der Ermittlung der Einflussgrößen auf den untersuchten IASPIF-Prozess. Für die Bewertung der Umformbarkeit wurden hierbei der maximal erreichbare Teilwandwinkel und die Profiltiefe, die in einem Umformdurchgang herstellbar waren, ermittelt und ausgewertet. Darüber hinaus konnten im Rahmen der Arbeit die Induktionsleistung des Generators, der Werkzeugdurchmesser und die Werkzeugvorschubgeschwindigkeit als relevante Prozessparameter identifiziert werden. Im Ergebnis der durchgeführten Untersuchungen zeigten die Werkzeugvorschubgeschwindigkeit und die Induktionsleistung einen wesentlichen Einfluss auf die erreichbare Profiltiefe. Aufbauend auf den erzielten Ergebnissen konnte eine prozessangepasste Umformstrategie entwickelt werden, bei der eine konstante Erwärmungstemperatur durch das Koppeln der momentanen Profiltiefe mit einer sukzessiv steigenden Werkzeugvorschubgeschwindigkeit erreicht wird. Weiterhin ließen sich die Kräfte bei der Umformung eines Stahlbleches aus DP980 von 7 kN (bei Raumtemperatur) auf 2,5 kN (bei erhöhter Temperatur) reduzieren. Aufgrund des mit einem Streckziehvorgang vergleichbaren Spannungszustandes während des Umformprozesses war eine starke Verringerung der resultierenden Wanddicke zu beobachten. Als neue Erkenntnis in dieser Untersuchung konnte die umgekehrte Beziehung zwischen der Zustelltiefe und dem Dickenreduktionsprozentsatz abgleitet werden. Aus der Finite - Elemente - Simulation des vorgestellten Umformprozesses wurde erkennbar, dass die Erhöhung der Erwärmungstemperatur einen direkten Einfluss auf die plastische Dehnung von 0,2 (bei Raumtemperatur) auf 1,02 (bei 800 °C) hat. Mittels der numerischen Simulation und der nachfolgenden experimentellen Validierung erfolgte darüber hinaus die Bestimmung der maximalen wahren Dehnung, die in der resultierenden Wanddicke erreicht wurde. Bei den Versuchen mit der größten Zustellung ließ sich durch die Bestimmung der Teileformgenauigkeit die höchste Abweichung von der Sollgeometrie CAD Modell feststellen. Abschließend wurde nachgewiesen, dass der IASPIF Prozess auch zur Einstellung maßgeschneiderter Bauteileigenschaften wie der resultierenden mechanischen Eigenschaften des Blechmaterials aus 22MnB5 einsetzbar ist. Zu diesem Zweck wurden die Bleche während des Umformprozesses lokal induktiv erwärmt und anschließend zur Einstellung des gewünschten Gefüges bei unterschiedlichen Abkühlgeschwindigkeiten abgeschreckt.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Sheet metal forming, hot stamping, formability"

1

Hu, Ping. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming: Analysis, Simulation and Engineering Applications. London: Springer London, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ma, Ning, Ping Hu, Li-zhong Liu, and Yi-guo Zhu. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming: Analysis, Simulation and Engineering Applications. Springer London, Limited, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ma, Ning, Ping Hu, Li-zhong Liu, and Yi-guo Zhu. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming: Analysis, Simulation and Engineering Applications. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Sheet metal forming, hot stamping, formability"

1

Singh, Amarjeet Kumar, and K. Narasimhan. "Artificial Neural Network (ANN) Based Formability Prediction Model for 22MnB5 Steel under Hot Stamping Conditions." In Metal Forming Processes, 1–9. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003226703-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hu, Ping, Liang Ying, and Bin He. "The Basis of Sheet Metal Forming Technology." In Hot Stamping Advanced Manufacturing Technology of Lightweight Car Body, 1–18. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2401-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Xiaoming, Baoyu Wang, and Chuanbao Zhu. "An Investigation on Formability of Ti6Al4V Alloy in the Three-Layer Sheet Hot Stamping Process." In Forming the Future, 2819–27. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75381-8_234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Horn, Alexander, and Marion Merklein. "Analysis of the Thermomechanical Flow Behavior of Carburized Sheet Metal in Hot Stamping." In Forming the Future, 789–800. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75381-8_65.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Naganathan, A., and L. Penter. "Hot Stamping." In Sheet Metal Forming, 133–56. ASM International, 2012. http://dx.doi.org/10.31399/asm.tb.smfpa.t53500133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Tensile Testing for Determining Sheet Formability." In Tensile Testing, 101–14. 2nd ed. ASM International, 2004. http://dx.doi.org/10.31399/asm.tb.tt2.t51060101.

Full text
Abstract:
Abstract Sheet metal forming operations consist of a large family of processes, ranging from simple bending to stamping and deep drawing of complex shapes. Because sheet forming operations are so diverse in type, extent, and rate, no single test provides an accurate indication of the formability of a material in all situations. However, as discussed in this chapter, the uniaxial tensile test is one of the most widely used tests for determining sheet metal formability. This chapter describes the effect of material properties and temperature on sheet metal formability. Information on the types of formability tests is also provided. The chapter discusses the processes involved in uniaxial and plane-strain tensile testing. Examples include the uniaxial tensile test and the plane-strain tensile test which are subsequently described.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Sheet metal forming, hot stamping, formability"

1

Bohn, M. L., S. G. Xu, K. J. Weinmann, C. C. Chen, and A. Chandra. "Improving Formability in Sheet Metal Stamping With Active Drawbead Technology." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1884.

Full text
Abstract:
Abstract Aluminum is expected to gain popularity as material for the bodies of the next generation of lighter and more fuel-efficient vehicles. However, its lower formability compared with that of steel tends to create considerable problems. A controllable restraining force caused by adjusting the penetration of drawbeads can improve the formability. This paper describes the effects of temporal variations in drawbead penetration on the strain distribution in a symmetric stamped part. Comparison of the results of numerical simulations with the corresponding experimental results shows that the predictions of strain distribution on the panel are in very good agreement. Furthermore, forming limit diagram analysis indicates that the active drawbead concept is beneficial to the formability of AA 6111-T4.
APA, Harvard, Vancouver, ISO, and other styles
2

Hussain, G., L. Gao, Wang Hui, and N. U. Dar. "A Fundamental Investigation on the Formability of a Commercially-Pure Titanium Sheet-Metal in the Incremental Forming and Stamping Processes." In ASME 2007 International Manufacturing Science and Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/msec2007-31138.

Full text
Abstract:
In the present study, a basic comparison between the cold formability of a commercially-pure Titanium (CP Ti) sheet in the single-point incremental forming (SPIF) and stamping processes is presented. An attempt was made to evaluate the SPIF formability by employing two tests. In the first test, parts having continuously varying wall angles were formed. While in the second test, parts having fixed wall angles were formed. The stamping formability was determined by conducting the limiting dome height (LDH) test. It is concluded that the forming limit curve (FLC) in SPIF is located much higher than the stamping FLC, even higher than the fracture limit curve in stamping. Moreover, the SPIF formability shows dependence on the test employed.
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Z. H., Y. Wen, and C. H. Sun. "Formability Prediction for Thermal Stamping of Magnesium Alloy Sheet Based on M-K Model." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62539.

Full text
Abstract:
Sheet metal stamping processes play an important role among the mechanical manufacturing operation, since they are characterized by high productivity and reliability at low cost, low material waste and almost net shapes from design. In this study, based on the Marciniak and Kuczynski (M-K) model and the forming limit diagrams (FLD), the formability prediction for thermal stamping of magnesium alloy sheet has been carried out by means of the commercial finite element analysis software ABAQUS. Moreover, related experiments of thermal stamping were also performed to validate the model. The comparison between the numerical result and experimental observation shows a good agreement. Therefore, it may indicate that the presented approach can be employed in formability prediction of thermal sheet metal forming process.
APA, Harvard, Vancouver, ISO, and other styles
4

Karibeeran, Shanmuga Sundaram, and Rajiv Selvam. "Experimental Study on Electromagnetic Forming of Copper Sheets." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63433.

Full text
Abstract:
The sheet metal forming of copper, aluminum alloys using conventional stamping processes posses various problems, because of the lower formability limits, spring back and the tendency to wrinkle compared to steel. The principle of electromagnetism using attractive force is adopted to modify the conventional stamping process, to form thin sheets of 0.05 mm thickness. Further, this process can be used to form many sheet metal components with less expensive tooling and lesser number of operations. This process ultimately leads to light weight, cost effective and better strength-to-weight ratio components required for aerospace applications. In this study, a maximum of 30.77 % reduction in diameter was observed at 2.75A using electromagnetic forming which leads to the absence of spring back.
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Shiyong, and Kikuo Nezu. "Concurrent Engineering Design of Sheet Stamping by Using an Inverse FE Approach." In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/dtm-3901.

Full text
Abstract:
Abstract An inverse finite element (FE) algorithm is proposed for sheet forming process simulation. With the inverse finite element analysis (FEA) program developed, a new method for concurrent engineering (CE) design for sheet metal forming product and process is proposed. After the product geometry is defined by using parametric patches, the input models for process simulation can be created without the necessity to define the initial blank and the geometry of tools, thus simplifying the design process and facilitating the designer to look into the formability and quality of the product being designed at preliminary design stage. With resort to a commercially available software, P3/PATRAN, arbitrarily three-dimensional product can be designed for manufacturability for sheet forming process by following the procedures given.
APA, Harvard, Vancouver, ISO, and other styles
6

Nourani, Mohamadreza, Hossein Aliverdilu, Hossein Monajati Zadeh, Hamid Khorsand, Ali Shokuhfar, and Abbas S. Milani. "A Study on the Formability of IF and Plain Carbon Mild Steels." In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-29173.

Full text
Abstract:
Steel sheet metals are widely used in different industries due to their high strength, good weldability, availability, moderate cost, and the ability to form to complex 3D parts. The study of the formability of sheet metals is often done by means of Forming Limit Diagram (FLD) which presents the major and minor engineering strain thresholds under different deformation states. In this article, the formability parameters of three different steel sheet metals with the same thickness have been determined by uniaxial tension test and their FLDs have been produced by Hecker method: RRSt14O3, Zinc coated IF (Interstitial Free) steel and uncoated IF steel. Also the materials’ formability during the stamping process of a car door inner panel has been investigated as a case study to substitute the original design of raw material, coated IF steel, with a cheaper alternative. Among the tested materials to form the part, the uniaxial tension results showed that the formability parameters of uncoated IF steel was higher than the coated IF steel and the parameters of RRSt14O3 sheet metal was the lowest. The FLD of coated IF steel sheet was the highest (best formability). Differences among the formability parameters in uniaxial tension, the FLDs, and the stamping behavior of the part with different steel sheet metals have been explained by their surface roughnesses and the friction coefficients that affect the material flow during the FLD test as well as the stamping process.
APA, Harvard, Vancouver, ISO, and other styles
7

Batoz, J. L. "Formability Predictions in Stamping and Process Parameter Optimization Based on the Inverse Approach Code Fast_Stamp." In NUMISHEET 2005: Proceedings of the 6th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Process. AIP, 2005. http://dx.doi.org/10.1063/1.2011325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kan, Dongbin, Lizhong Liu, Ping Hu, Ning Ma, Guozhe Shen, Xiaoqiang Han, and Liang Ying. "Numerical Prediction of Microstructure and Mechanical Properties During the Hot Stamping Process." In THE 8TH INTERNATIONAL CONFERENCE AND WORKSHOP ON NUMERICAL SIMULATION OF 3D SHEET METAL FORMING PROCESSES (NUMISHEET 2011). AIP, 2011. http://dx.doi.org/10.1063/1.3623663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ambrogio, G., L. Fratini, and F. Micari. "Incremental Forming of Friction Stir Welded Taylored Sheets." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95375.

Full text
Abstract:
In the last decade sheet metal forming market has undergone substantial mutations since the development of more efficient strategies in terms of flexibility and cost reduction is strictly due. Such requirements are not consistent with traditional metal stamping processes which are characterized by complex equipment, capital and tooling costs; thus the industrial application of such processes is economically convenient just for large scale productions. For this reason most of the research work developed in the last years has been focused on the development of new sheet forming processes able to achieve the above discussed goals. Contemporary, with particular reference to the automotive industries the requirement of light components and the engineering of the outer skin parts of the vehicles have determined the growing utilization of tailored blanks characterized by either different material or different sheet thickness. In the paper SPIF processes of FS welded aluminium blanks are investigated in order to analyse the product properties in terms of strength and formability. A proper experimental investigation has been carried out and interesting guidelines have been highlighted in the next paragraphs.
APA, Harvard, Vancouver, ISO, and other styles
10

Shih, Hua-Chu, Ming F. Shi, Z. Cedric Xia, and Danielle Zeng. "Experimental Study on Shear Fracture of Advanced High Strength Steels: Part II." In ASME 2009 International Manufacturing Science and Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/msec2009-84070.

Full text
Abstract:
Developing a proper local formability failure criterion is the key to the successful prediction of the local formability of Advanced High Strength Steels (AHSS) in computer simulations. Shear fracture, which refers to the fracture occurred in the die radius when a sheet metal is drawn over a small die radius, often occurs earlier than predicted by the conventional forming limit curve (FLC). As shown in a previous study using a laboratory Stretch-Forming Simulator (SFS), shear fracture depends not only on the radius-to-thickness (R/T) ratio but also on the tension/stretch level applied to the sheet during stretching or drawing. In the SFS test, a flat sheet is first clamped at the both ends then gradually is wrapped around the die radius as the punch moves downward. This process simulates the early stage of stamping when a sheet metal is initially stretched or drawn over a die/punch radius. However, shear fracture may not occur in this stage if the stretch/tension level is not high enough. In this study, the Bending under Tension (BUT) tester is used to evaluate shear fracture occurring in the later stage of stamping, after the sheet metal is totally wrapped around the die radius. It is demonstrated that shear fracture does occur in this deformation mode when a sufficient tension level is applied. Effects of forming conditions, such as forming speeds and lubrication on shear fracture, are also investigated. When compared to the results from the SFS, the data points failing at the die radius tangent point agree very well. It is observed that all data points above the tangent point failure line show shear fracture, while data points below this line show tensile failure (localized necking) regardless of the test methods used. This indicates that the tangent point fracture line can be used as the shear fracture failure limit. This failure criterion can be used in a computer simulation to simulate the shear fracture phenomenon in the entire deformation process involved in a sheet metal stretching or drawing over a die radius.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography