Academic literature on the topic 'Sheet metal forming processes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sheet metal forming processes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Sheet metal forming processes"

1

Tekkaya, A. Erman, Michael Trompeter, and Jorg Witulski. "Innovative sheet metal-forming processes." International Journal of Mechatronics and Manufacturing Systems 1, no. 2/3 (2008): 157. http://dx.doi.org/10.1504/ijmms.2008.020502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hardt, David E. "Closed-Loop Sheet Metal Forming Processes." IFAC Proceedings Volumes 25, no. 28 (October 1992): 187–92. http://dx.doi.org/10.1016/s1474-6670(17)49490-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schneider, Thomas, and Marion Merklein. "Sheet-Bulk Metal Forming of Preformed Sheet Metal Parts." Key Engineering Materials 473 (March 2011): 83–90. http://dx.doi.org/10.4028/www.scientific.net/kem.473.83.

Full text
Abstract:
Due to ecological and economic challenges there is a rising demand on closely-tolerated complex functional components. Regarding short process chains and improved mechanical properties conventional forming processes are often limited. A promising approach to meet these requirements can be seen in the combination of traditional sheet and bulk metal forming processes, to form sheet metals out of the sheet plane with typical bulk forming operations. The challenge of applying conventional bulk forming operations on sheet metal is the interaction between regions of high and low deformation, which is largely unknown in literature. To analyze this topic fundamentally, a process combination of deep drawing and upsetting is developed for manufacturing tooth-like elements at pre-drawn cups. To fully understand material flow out of the sheet plane into the tooth cavity and to identify and qualify process factors depending on the functional elements´ geometry and friction, a single upsetting stage forming a simplified model of the blank is virtually analyzed with finite-element simulation. By inhibiting the forming history of the pre-drawn blank, the upsetting process can be investigated without interactions with a previous deep drawing operation.
APA, Harvard, Vancouver, ISO, and other styles
4

GROCHE, P., and C. KLOEPSCH. "SHEET METAL FORMING PROCESSES AT ELEVATED TEMPERATURES." Journal of Advanced Manufacturing Systems 07, no. 02 (December 2008): 307–11. http://dx.doi.org/10.1142/s0219686708001401.

Full text
Abstract:
On one hand lightweight sheet materials are characterized by high specific strength but on the other hand, they are limited in the design of sheet metal products. To extend the range of producible geometries, special forming processes at elevated temperatures have been developed. For describing the forming behavior at elevated temperatures or to design forming processes, the knowledge of relevant system parameters like flow stress, friction conditions and contact heat transmission coefficient is assumed. Additionally experimental results are presented to highlight the potential of sheet metal forming processes at elevated temperatures.
APA, Harvard, Vancouver, ISO, and other styles
5

Hattalli, Vinod Laxman, and Shivashankar R. Srivatsa. "Sheet Metal Forming Processes – Recent Technological Advances." Materials Today: Proceedings 5, no. 1 (2018): 2564–74. http://dx.doi.org/10.1016/j.matpr.2017.11.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Q. Nadeem, Q. Nadeem, W. J. Seong W. J. Seong, and S. J. Na S. J. Na. "Process designing for laser forming of circular sheet metal." Chinese Optics Letters 10, no. 2 (2012): 021405–21407. http://dx.doi.org/10.3788/col201210.021405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tisza, Miklós. "Advanced Materials in Sheet Metal Forming." Key Engineering Materials 581 (October 2013): 137–42. http://dx.doi.org/10.4028/www.scientific.net/kem.581.137.

Full text
Abstract:
In this paper, some recent developments in materials applied in sheet metal forming processes will be overviewed mainly from the viewpoint of automotive industry as one of the most important application fields. If we consider the main requirements in the automotive industry we can state that there are very contradictory demands on developments. Better performance with lower consumption and lower harmful emission, more safety and comfort are hardly available simultaneously with conventional materials and conventional manufacturing processes. These requirements are the main driving forces behind the material and technological developments in sheet metal forming: application of high strength steels, low weight light alloys and the appropriate non-conventional forming processes are the main target fields of developments summarized in this paper.
APA, Harvard, Vancouver, ISO, and other styles
8

Nurcheshmeh, M., D. Green, C. Byrne, and A. Habib. "Prediction of Sheet Metal Forming Limits in Multistage Forming Processes." IOP Conference Series: Materials Science and Engineering 418 (September 21, 2018): 012045. http://dx.doi.org/10.1088/1757-899x/418/1/012045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Loukaides, E. G., and J. M. Allwood. "Automatic design of sheet metal forming processes by “un-forming”." International Journal of Mechanical Sciences 113 (July 2016): 61–70. http://dx.doi.org/10.1016/j.ijmecsci.2016.04.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Allwood, J. M., and D. R. Shouler. "Paddle Forming: A Novel Class of Sheet Metal Forming Processes." CIRP Annals 56, no. 1 (2007): 257–60. http://dx.doi.org/10.1016/j.cirp.2007.05.060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Sheet metal forming processes"

1

Jansson, Tomas. "Optimization of sheet metal forming processes /." Linköping : Univ, 2005. http://www.bibl.liu.se/liupubl/disp/disp2005/tek936s.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shouler, Daniel Reginald. "Expanded forming limit testing for sheet forming processes." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Powell, Nicholas Newton. "Incremental forming of flanged sheet metal components." Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yue, Zhenming. "Ductile damage prediction in sheet metal forming processes." Thesis, Troyes, 2014. http://www.theses.fr/2014TROY0025/document.

Full text
Abstract:
L'objectif de ce travail est de proposer un modèle de comportement avec endommagement ductile pour la simulation des procédés de mise en forme de tôles minces qui peut bien représenter le comportement des matériaux sous des trajets de chargement complexes en grandes déformations plastiques. Basé sur la thermodynamique des processus irréversibles, les équations de comportement couplé à l’endommagement tiennent compte des anisotropies initiales et induites, de l’écrouissage isotrope et cinématique et de l’endommagement isotrope ductile. Les effets de fermeture des microfissures, de triaxialité des contraintes et de l’angle de Lode sont introduits pour influencer l’évolution de l’endommagement sous une large gamme de triaxialité des contraintes. La distorsion de la surface de charge est introduite via un tenseur déviateur qui gouverne la distorsion de la surface de charge. A des fins de comparaison, les courbes limites de formage sont tracées basées sur l’approche M-K.Des essais sont conduits sur trois matériaux pour les besoins d’identification et de validation des modèles proposés. L’identification utilise un couplage entre le code ABAQUS et un programme MATLAB via un script en langage Python. Après l’implémentation numérique du modèle dans ABAQUS/Explicite et une étude paramétrique systématique, plusieurs procédés de mise en forme de structures minces sont simulés. Des comparaisons expériences-calculs montrent les performances prédictives de la modélisation proposée
The objective of this work is to propose a “highly” predictive material model for sheet metal forming simulation which can well represent the sheet material behavior under complex loading paths and large plastic strains. Based on the thermodynamics of irreversible processes framework, the advanced fully coupled constitutive equations are proposed taking into account the initial and induced anisotropies, isotropic and kinematic hardening as well as the isotropic ductile damage. The microcracks closure, the stress triaxiality and the Lode angle effects are introduced to influence the damage rate under a wide range of triaxiality ratios. The distortion of the yield surface is described by replacing the usual stress deviator tensor by a ‘distorted stress’ deviator tensor, which governs the distortion of the yield surfaces. For comparisons, the FLD and FLSD models based on M-K approach are developed.A series of experiments for three materials are conducted for the identification and validation of the proposed models. For the parameters identification of the fully coupled CDM model, an inverse methodology combining MATLAB-based minimization software with ABAQUS FE code through the Python script is used. After the implementation of the model in ABAQUS/Explicit and a systematic parametric study, various sheet metal forming processes have been numerically simulated. At last, through the comparisons between experimental and numerical results including the ductile damage initiation and propagation, the high capability of the fully coupled CDM model is proved
APA, Harvard, Vancouver, ISO, and other styles
5

Onder, Erkan Ismail. "Assessment Of Sheet Metal Forming Processes By Numerical Experiments." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606159/index.pdf.

Full text
Abstract:
iv Sheet metal forming technologies are challenged especially by the improvements in the automotive industry in the last decades. To fulfill the customer expectations, safety requirements and market competitions, new production technologies have been implemented. This study focuses on the assessment of conventional and new sheet metal forming technologies by performing a systematic analysis. A geometry spectrum consisting of six different circular, elliptic, quad cross-sections are selected for the assessment of conventional deep drawing, hydro-mechanical deep drawing and high-pressure sheet metal forming. Within each cross-section, three different equivalent drawing ratios are used as a variant. More than 200 numerical experiments are performed to predict the forming limits of three competing processes. St14 stainless steel is used as the material throughout the assessment study. The deformation behavior is described by an elasto-plastic material model and all numerical simulations are carried out by using dynamic-explicit commercial The process validation is done by interpreting the strain results of numerical experiment. Therefore, the reliability of predictions in the assessment study highly depends on the quality of simulations. The precision of numerical experiments are verified by comparing to NUMISHEET benchmarks, analytical formulation, and experiments to increase the assets of the assessment study. The analyses revealed that depending on the workpiece geometry and dimensional properties certain processes are more preferable for obtaining satisfactory products. The process limits for each process are established based on the analyzed crosssections of the spectrum. This data is expected to be useful for predicting the formability limits and for selecting the appropriate production process according to a given workpiece geometry.Dynamic-explicit FEM, Deep drawing, Hydroforming, Forming limits, Process evaluation
APA, Harvard, Vancouver, ISO, and other styles
6

Moshfegh, Ramin. "Aspects on finite element simulation of sheet metal forming processes /." Linköping : Department of Solid Mechanics, Department of Mechanical Engineering, Linköping University, 2006. http://www.bibl.liu.se/liupubl/disp/disp2006/tek1042s.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rozgic, Marco [Verfasser]. "Mathematical Optimization of Industrial Sheet Metal Forming Processes / Marco Rozgic." Hamburg : Helmut-Schmidt-Universität, Bibliothek, 2018. http://d-nb.info/1165340658/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rozgi`c, Marco [Verfasser]. "Mathematical Optimization of Industrial Sheet Metal Forming Processes / Marco Rozgic." Hamburg : Helmut-Schmidt-Universität, Bibliothek, 2018. http://d-nb.info/1165340658/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hildebrrand, Brian Geoffrey. "A finite element investigation of material models for predicting sheet metal flow behaviour during forming." Thesis, Queen's University Belfast, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kaya, Serhat. "Improving the formability limts of lightweight metal alloy sheet using advanced processes -finite element modeling and experimental validation-." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1199293525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Sheet metal forming processes"

1

Banabic, Dorel. Sheet Metal Forming Processes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-88113-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

International Deep Drawing Research Group. Congress. Controlling sheet metal forming processes. [Metals Park, Ohio]: ASM International, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sheet metal forming: Processes and applications. Materials Park, Oh: ASM International, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ramezani, Maziar. Rubber-pad forming processes: Technology and applications. Cambridge, UK: Woodhead Publishing, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sheet metal forming processes: Constitutive modelling and numerical simulation. Berlin: Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Menezes, Miguel Angelo. Strain limit theories, anisotropy in sheet metal forming and simulation of pressing processes. Birmingham: University of Birmingham, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (8th 2011 Seoul, Korea. The 8th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (NUMISHEET 2011), Seoul, Republic of Korea, 21-26 August 2011 / editors, Kwansoo Chung ... [et al.]. Melville, N.Y: American Institute of Physics, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

International, Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (8th 2011 Seoul Korea. The 8th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (NUMISHEET 2011), Seoul, Republic of Korea, 21-26 August 2011 / editors, Kwansoo Chung ... [et al.]. Melville, N.Y: American Institute of Physics, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sheet metal forming. Bristol: Hilger, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Merklein, Marion, A. Erman Tekkaya, and Bernd-Arno Behrens, eds. Sheet Bulk Metal Forming. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61902-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Sheet metal forming processes"

1

Klocke, Fritz. "Sheet Metal Forming." In Manufacturing Processes 4, 293–405. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36772-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Venkataraman, K. "Sheet Metal Forming Processes." In Design of Jigs, Fixtures and Press Tools, 2.1–2.20. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781119191414.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Venkataraman, K. "Sheet Metal Forming Processes." In Design of Jigs, Fixtures and Press Tools, 85–105. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76533-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Allwood, J. M., D. R. Shouler, and A. Erman Tekkaya. "The Increased Forming Limits of Incremental Sheet Forming Processes." In Sheet Metal 2007, 621–28. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-437-5.621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Banabic, Dorel. "Formability of Sheet Metals." In Sheet Metal Forming Processes, 141–211. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-88113-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Banabic, Dorel. "FE-Models of the Sheet Metal Forming Processes." In Sheet Metal Forming Processes, 1–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-88113-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Banabic, Dorel. "Plastic Behaviour of Sheet Metal." In Sheet Metal Forming Processes, 27–140. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-88113-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Banabic, Dorel. "Numerical Simulation of the Sheet Metal Forming Processes." In Sheet Metal Forming Processes, 213–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-88113-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nallagundla, Venkata Reddy, Rakesh Lingam, and Jian Cao. "Incremental Sheet Metal Forming Processes." In Handbook of Manufacturing Engineering and Technology, 1–37. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-4976-7_45-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Groche, Peter, Jens Ringler, and Dragoslav Vucic. "New Forming Processes for Sheet Metal with Large Plastic Deformation." In Sheet Metal 2007, 251–58. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-437-5.251.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Sheet metal forming processes"

1

Carleer, Bart, and Michael Stippak. "Systematic Process Improvement of Sheet Metal Forming Processes." In THE 8TH INTERNATIONAL CONFERENCE AND WORKSHOP ON NUMERICAL SIMULATION OF 3D SHEET METAL FORMING PROCESSES (NUMISHEET 2011). AIP, 2011. http://dx.doi.org/10.1063/1.3623708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Siegert, Klaus. "Advances and Trends in Sheet Metal Forming Processes." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/970436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tang, Sing C. "Trends on Simulation of Sheet Metal Forming Processes." In SAE 2000 World Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000. http://dx.doi.org/10.4271/2000-01-1108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Saanouni, Khémais, and Houssem Badreddine. "Damage Prediction in Sheet Metal Forming." In MATERIALS PROCESSING AND DESIGN; Modeling, Simulation and Applications; NUMIFORM '07; Proceedings of the 9th International Conference on Numerical Methods in Industrial Forming Processes. AIP, 2007. http://dx.doi.org/10.1063/1.2740796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Giraud-Moreau, Laurence. "Sheet Metal Forming Using Adaptive Resmeshing." In MATERIALS PROCESSING AND DESIGN: Modeling, Simulation and Applications - NUMIFORM 2004 - Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes. AIP, 2004. http://dx.doi.org/10.1063/1.1766665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cherouat, Abel, Laurence Giraud-Moreau, and Houman Borouchaki. "Adaptive Refinement procedure For Sheet metal Forming." In MATERIALS PROCESSING AND DESIGN; Modeling, Simulation and Applications; NUMIFORM '07; Proceedings of the 9th International Conference on Numerical Methods in Industrial Forming Processes. AIP, 2007. http://dx.doi.org/10.1063/1.2740931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Van Houtte, P., A. Van Bael, and S. He. "Anisotropy and Formability in Sheet Metal Forming." In MATERIALS PROCESSING AND DESIGN; Modeling, Simulation and Applications; NUMIFORM '07; Proceedings of the 9th International Conference on Numerical Methods in Industrial Forming Processes. AIP, 2007. http://dx.doi.org/10.1063/1.2740805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Jin, Michael Rvachov, and Tongru Huo. "2D Finite Element Simulation of Sheet Metal Forming Processes." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-1004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Breaz, Radu-Eugen, Valentin Oleksik, and Octavian Bologa. "Mechatronic Contouring System for Unconventional Sheet Metal Forming Processes." In IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics. IEEE, 2006. http://dx.doi.org/10.1109/iecon.2006.347370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sousa, Luísa C., Catarina F. Castro, and Carlos C. António. "Optimization of Forming Processes with Different Sheet Metal Alloys." In MATERIALS PROCESSING AND DESIGN; Modeling, Simulation and Applications; NUMIFORM '07; Proceedings of the 9th International Conference on Numerical Methods in Industrial Forming Processes. AIP, 2007. http://dx.doi.org/10.1063/1.2740855.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Sheet metal forming processes"

1

Grandhi, Ramana V. AASERT-92 Experimental Verification of Optimally Designed Metal Forming Processes. Fort Belvoir, VA: Defense Technical Information Center, October 1996. http://dx.doi.org/10.21236/ada329772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kiridena, Vijitha, Ravi Verma, Timothy Gutowski, and John Roth. Rapid Freeform Sheet Metal Forming: Technology Development and System Verification. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1433826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Taylor, P. A., S. A. Silling, D. A. Hughes, D. J. Bammann, and M. L. Chiesa. A multi-level code for metallurgical effects in metal-forming processes. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/527560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kerry Barnett. Development of Replacements for Phoscoating Used in Forging, Extrusion and Metal Forming Processes. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/809127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Skarpelos, Peter N. The effect of surface morphology on the friction of electrogalvanized sheet steel in forming processes. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10120745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Johnson, K., M. Smith, C. Lavender, and M. Khalell. Technology maturation project on optimization of sheet metal forming of aluminum for use in transportation systems: Final project report. Office of Scientific and Technical Information (OSTI), October 1994. http://dx.doi.org/10.2172/10194501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

XU, Deyi, Zhaoxian YUAN, Shuyun XIE, and Qiuming CHENG. The logarithm ratio of the contents of metal elements to calcium and the implications to the forming processes of MVT sphalerite. Cogeo@oeaw-giscience, September 2011. http://dx.doi.org/10.5242/iamg.2011.0050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography