To see the other types of publications on this topic, follow the link: Sheet metal forming processes.

Dissertations / Theses on the topic 'Sheet metal forming processes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Sheet metal forming processes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Jansson, Tomas. "Optimization of sheet metal forming processes /." Linköping : Univ, 2005. http://www.bibl.liu.se/liupubl/disp/disp2005/tek936s.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shouler, Daniel Reginald. "Expanded forming limit testing for sheet forming processes." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Powell, Nicholas Newton. "Incremental forming of flanged sheet metal components." Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yue, Zhenming. "Ductile damage prediction in sheet metal forming processes." Thesis, Troyes, 2014. http://www.theses.fr/2014TROY0025/document.

Full text
Abstract:
L'objectif de ce travail est de proposer un modèle de comportement avec endommagement ductile pour la simulation des procédés de mise en forme de tôles minces qui peut bien représenter le comportement des matériaux sous des trajets de chargement complexes en grandes déformations plastiques. Basé sur la thermodynamique des processus irréversibles, les équations de comportement couplé à l’endommagement tiennent compte des anisotropies initiales et induites, de l’écrouissage isotrope et cinématique et de l’endommagement isotrope ductile. Les effets de fermeture des microfissures, de triaxialité des contraintes et de l’angle de Lode sont introduits pour influencer l’évolution de l’endommagement sous une large gamme de triaxialité des contraintes. La distorsion de la surface de charge est introduite via un tenseur déviateur qui gouverne la distorsion de la surface de charge. A des fins de comparaison, les courbes limites de formage sont tracées basées sur l’approche M-K.Des essais sont conduits sur trois matériaux pour les besoins d’identification et de validation des modèles proposés. L’identification utilise un couplage entre le code ABAQUS et un programme MATLAB via un script en langage Python. Après l’implémentation numérique du modèle dans ABAQUS/Explicite et une étude paramétrique systématique, plusieurs procédés de mise en forme de structures minces sont simulés. Des comparaisons expériences-calculs montrent les performances prédictives de la modélisation proposée
The objective of this work is to propose a “highly” predictive material model for sheet metal forming simulation which can well represent the sheet material behavior under complex loading paths and large plastic strains. Based on the thermodynamics of irreversible processes framework, the advanced fully coupled constitutive equations are proposed taking into account the initial and induced anisotropies, isotropic and kinematic hardening as well as the isotropic ductile damage. The microcracks closure, the stress triaxiality and the Lode angle effects are introduced to influence the damage rate under a wide range of triaxiality ratios. The distortion of the yield surface is described by replacing the usual stress deviator tensor by a ‘distorted stress’ deviator tensor, which governs the distortion of the yield surfaces. For comparisons, the FLD and FLSD models based on M-K approach are developed.A series of experiments for three materials are conducted for the identification and validation of the proposed models. For the parameters identification of the fully coupled CDM model, an inverse methodology combining MATLAB-based minimization software with ABAQUS FE code through the Python script is used. After the implementation of the model in ABAQUS/Explicit and a systematic parametric study, various sheet metal forming processes have been numerically simulated. At last, through the comparisons between experimental and numerical results including the ductile damage initiation and propagation, the high capability of the fully coupled CDM model is proved
APA, Harvard, Vancouver, ISO, and other styles
5

Onder, Erkan Ismail. "Assessment Of Sheet Metal Forming Processes By Numerical Experiments." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606159/index.pdf.

Full text
Abstract:
iv Sheet metal forming technologies are challenged especially by the improvements in the automotive industry in the last decades. To fulfill the customer expectations, safety requirements and market competitions, new production technologies have been implemented. This study focuses on the assessment of conventional and new sheet metal forming technologies by performing a systematic analysis. A geometry spectrum consisting of six different circular, elliptic, quad cross-sections are selected for the assessment of conventional deep drawing, hydro-mechanical deep drawing and high-pressure sheet metal forming. Within each cross-section, three different equivalent drawing ratios are used as a variant. More than 200 numerical experiments are performed to predict the forming limits of three competing processes. St14 stainless steel is used as the material throughout the assessment study. The deformation behavior is described by an elasto-plastic material model and all numerical simulations are carried out by using dynamic-explicit commercial The process validation is done by interpreting the strain results of numerical experiment. Therefore, the reliability of predictions in the assessment study highly depends on the quality of simulations. The precision of numerical experiments are verified by comparing to NUMISHEET benchmarks, analytical formulation, and experiments to increase the assets of the assessment study. The analyses revealed that depending on the workpiece geometry and dimensional properties certain processes are more preferable for obtaining satisfactory products. The process limits for each process are established based on the analyzed crosssections of the spectrum. This data is expected to be useful for predicting the formability limits and for selecting the appropriate production process according to a given workpiece geometry.Dynamic-explicit FEM, Deep drawing, Hydroforming, Forming limits, Process evaluation
APA, Harvard, Vancouver, ISO, and other styles
6

Moshfegh, Ramin. "Aspects on finite element simulation of sheet metal forming processes /." Linköping : Department of Solid Mechanics, Department of Mechanical Engineering, Linköping University, 2006. http://www.bibl.liu.se/liupubl/disp/disp2006/tek1042s.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rozgic, Marco [Verfasser]. "Mathematical Optimization of Industrial Sheet Metal Forming Processes / Marco Rozgic." Hamburg : Helmut-Schmidt-Universität, Bibliothek, 2018. http://d-nb.info/1165340658/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rozgi`c, Marco [Verfasser]. "Mathematical Optimization of Industrial Sheet Metal Forming Processes / Marco Rozgic." Hamburg : Helmut-Schmidt-Universität, Bibliothek, 2018. http://d-nb.info/1165340658/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hildebrrand, Brian Geoffrey. "A finite element investigation of material models for predicting sheet metal flow behaviour during forming." Thesis, Queen's University Belfast, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kaya, Serhat. "Improving the formability limts of lightweight metal alloy sheet using advanced processes -finite element modeling and experimental validation-." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1199293525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Chitti, Babu Surendra. "Development of tailored preform processing technology for net-shape manufacturing of large monolithic structures." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4861.

Full text
Abstract:
Thesis (Ph. D.)--University of Missouri-Columbia, 2007.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on January 31, 2008) Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
12

Wang, Peng. "Solid–shell finite elements for quasi-static and dynamic analysis of 3D thin structures : application to sheet metal forming processes." Thesis, Paris, ENSAM, 2017. http://www.theses.fr/2017ENAM0010/document.

Full text
Abstract:
La simulation numérique par la méthode des éléments finis (MEF) fournit de nos jours une grande aide pour les ingénieurs dans les processus de conception d’optimisation des produits. Malgré le développement croissant des ressources de calcul, la fiabilité et l’efficacité des simulations numériques par la MEF restent à améliorer. Ce travail de thèse consiste à développer une famille d’éléments solide-coque (SHB) pour la modélisation tridimensionnelle des structures minces. Cette famille d’éléments SHB est basée sur une formulation tridimensionnelle en grands déplacements et rotations. La technique dite “d’intégration réduite dans le plan”, en utilisant un nombre arbitraire de points d’intégration dans la direction de l’épaisseur, permet la modélisation des structures minces avec une seule couche d'éléments. Dans ce travail de thèse, deux éléments linéaires SHB prismatique et hexaédrique, ainsi que leurs contreparties quadratiques, ont été implantés dans le code par éléments finis ABAQUS pour l’analyse quasi-statique et dynamique des structures minces. La performance de ces éléments a été validée à travers une série de cas tests académiques, ainsi que sur des problèmes complexes de type impact/crash et des procédés de mise en forme de tôles minces. L'ensemble des résultats numériques obtenus révèle que les éléments SHB représentent une alternative intéressante aux éléments coques et solides traditionnels pour la modélisation tridimensionnelle des structures minces
Nowadays, the finite element (FE) simulation provides great assistance to engineers in the design of products and optimization of manufacturing processes. Despite the growing development of computational resources, reliability and efficiency of the FE simulations remain the most important features. The current work contributes to the development of a family of assumed strain based solid-shell elements (SHB), for the modeling of 3D thin structures. Based on reduced integration and special treatments to eliminate locking effects and to control spurious zero-energy modes, the SHB solid‒shell elements are capable of modeling most thin 3D structural problems with only a single element layer, while describing accurately the various through-thickness phenomena. In the current contribution, a family of prismatic and hexahedral SHB elements with their linear and quadratic versions have been implemented into ABAQUS using both standard/quasi-static and explicit/dynamic solvers. The performance of the SHB elements is evaluated via a series of popular benchmarks as well as with impact/crash and sheet metal forming processes. All numerical results reveal that the SHB elements represent an interesting alternative to traditional shell and solid elements for the 3D modeling of thin structural problems
APA, Harvard, Vancouver, ISO, and other styles
13

Zaikovska, Liene. "Simulation of a sheet metal leading edge for a three piece vane using bending and deep-drawing." Thesis, Högskolan Väst, Avd för maskinteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-5802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Yadav, Ajay D. "Process Analysis and Design in Stamping and Sheet Hydroforming." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1210952822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Adiguzel, Sinem. "Determining Surface Residual Stress In Steel Sheets After Deep Drawing And Bulging Processes." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613054/index.pdf.

Full text
Abstract:
The aim of this thesis is to investigate the effects of bulging and deep drawing processes on St4 cold rolled steel by simulation and experimental characterization. In the simulations, commercial software programs MSC Marc and Simufact.forming were used. The experimental studies cover metallographic investigations, hardness measurements, and residual stress measurements. Residual stress measurements were carried out by different non- destructive characterization methods
X-ray diffraction and Magnetic Barkhausen Noise. The experimental and simulation results were correlated with each other.
APA, Harvard, Vancouver, ISO, and other styles
16

Tatipala, Sravan. "Sheet metal forming in the era of industry 4.0 : using data and simulations to improve understanding, predictability and performance." Licentiate thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-18954.

Full text
Abstract:
A major issue within automotive Sheet Metal Forming (SMF) concerns ensuring desired output product quality and consistent process performance. This is fueled by complex physical phenomena, process fluctuations and complicated parameter correlations governing the dynamics of the production processes. The aim of the thesis is to provide a deeper understanding of the challenges and opportunities in this regard within automotive SMF. The research is conducted in collaboration with a global automotive manufacturer.  The research shows that systematic investigations using process simulation models allow exploration of the product-process parameter interdependencies and their influence on the output product quality. Furthermore, it is shown that incorporating in-line measured data within process simulation models enhance model prediction accuracy. In this regard, automating the data processing and model configuration tasks reduces the overall modelling effort. However, utilization of results from process simulations within a production line requires real-time computational performance. The research hence proposes the use of reduced process models derived from process simulations in combination with production data, i.e. a hybrid data- and model-based approach. Such a hybrid approach would benefit process performance by capturing the deviations present in the real process while also incorporating the enhanced process knowledge derived from process simulations. Bringing monitoring and control realms within the production process to interact synergistically would facilitate the realization of such a hybrid approach. The thesis presents a procedure for exploring the causal relationship between the product-process parameters and their influence on output product quality in addition to proposing an automated approach to process and configure in-line measured data for incorporation within process simulations. Furthermore, a framework for enhancing output product quality within automotive SMF is proposed. Based on the thesis findings, it can be concluded that in-line measured data combined with process simulations hold the potential to unveil the convoluted interplay of process parameters on the output product quality parameters.

Related work:

1) http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14412

2) http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14388

3) http://urn.kb.se/resolve?urn=urn:nbn:se:bth-18935

APA, Harvard, Vancouver, ISO, and other styles
17

Lora, Fabio Andre. "Avaliação das deformações no aço DC04 quando submetido ao processo híbrido de estampagem incremental posterior ao processo convencional." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2014. http://hdl.handle.net/10183/103731.

Full text
Abstract:
O presente trabalho aborda a aplicação de processos combinados de estampagem, processo convencional e incremental em uma mesma chapa metálica. Essa combinação é denominada de processo de estampagem híbrido. Tal processo é realizado através da fabricação de uma pré-forma pelo processo convencional de estampagem, seguido da manufatura pelo processo incremental. O objetivo principal é analisar o comportamento das deformações ocorridas na geratriz, o que até então só havia sido analisado separadamente, sem um aprofundamento aplicado ao processo híbrido. As deformações ocorridas no processo convencional determinam os caminhos de deformações nos elementos da geratriz, influenciando diretamente as deformações geradas pela estampagem incremental. Para alcançar os objetivos, experimentos foram realizados com o material aço DC04, sendo divididos em duas etapas: a estampagem incremental em linha reta e após o processo de estampagem híbrido. A estampagem incremental em linha reta foi realizada para avaliação do material em relação a diferentes estratégias incrementais e às máximas deformações. No processo híbrido, as deformações da estampagem convencional foram realizadas em três direções com graus de deformações diferentes. Na etapa incremental do processo híbrido foi adotada a estratégia de pirâmide com diferentes inclinações de parede nas amostras. Nos experimentos, foram analisadas as deformações verdadeiras, geometrias finais e redução de espessura das amostras. A simulação numérica é uma ferramenta computacional que foi utilizada para comparação e correlação com os dados dos experimentos físicos. Os critérios de falha ou parada das simulações são dependentes dos dados do material (curva limite de conformação) e/ou dos experimentos físicos realizados (profundidade de ruptura). No desenvolvimento da estampagem incremental em linha reta, o punção de ponta hemisférica com diâmetro de 30mm e 1mm de incremento por etapa apresentou as maiores deformações máximas (1,03). No processo de estampagem híbrido, as amostras com pré-deformações de embutimento profundo tenderam a não influenciar as deformações incrementais finais. As amostras com pré-deformações planas foram diretamente proporcionais às deformações máximas incrementais. Já as com pré-deformações de estiramento biaxial influenciaram as deformações incrementais conforme o grau da pré-deformação.
The present work approaches the application of combined forming processes, and conventional and incremental sheet forming processes in the same metal sheet. This combination is denominated hybrid forming processe. This process is done through the manufacture of a pre form by conventional forming process, followed by incremental sheet forming. The main objective is to analyze the behavior of strains occurred in the blank, which until now was only studied separately, without a deepening study applied to hybrid process. The pre strains occurred in the conventional process determine the strain paths in the blank elements, directly influencing the strains produced by the incremental process. To reach these objectives, experiments with DC4 steel were done, and were separated into two stages: first, a test of incremental sheet forming in a straight line, and, after, the hybrid forming process. The incremental sheet forming in straight line was done to evaluate the material in relation to different incremental strategies in this process and to maximum deformations. In the hybrid process, the conventional process deformations were done in three directions with distinct strain rate. In the incremental stage, the pyramid strategy was adopted with different wall inclinations of samples. In the experiments, the true strains, the final geometries and the samples thickness reduction was analyzed. The numerical simulation is a computational tool that was used for the comparison and correlation with the data of the physical experiments. The failure criterion or stopped simulations depend of the material data (Forming Limit Curve) and/or on the physical experiments done (depth of rupture). In the development of the incremental forming in straight line, the hemispherical-headed punch with diameter of 30 mm and 1 mm of increment per step presented the higher maximum strains (1,03). In the hybrid process, the deep drawing samples with pre-strain did not tend to influence the final incremental strains. The samples with plane pre-strain were directly proportional to the maximum incremental strains. Tthe samples with pre-strain biaxial, on the other hand, influenced the incremental strains according to the degree of pre-strain.
APA, Harvard, Vancouver, ISO, and other styles
18

Thesing, Leandro Antônio. "Expansão de furos em chapas de aço avançado de alta resistência (DOCOL 190M)." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2018. http://hdl.handle.net/10183/181847.

Full text
Abstract:
Os Aços Avançados de Alta Resistência ou AHSS (do inglês Advanced High Strength Steels) apresentam muitas vantagens mecânicas em relação aos aços convencionais. Seu uso crescente na indústria automotiva deve-se principalmente à sua capacidade de possibilitar a redução de peso e, ao mesmo tempo, o aumento da segurança aos ocupantes do veículo em caso de colisões. No entanto, apresentam maiores dificuldades no que se refere à conformabilidade (maiores níveis de solicitação e desgaste das ferramentas, menor deformabilidade plástica, etc). Assim, alguns testes para avaliar a conformabilidade destes materiais ganham maior importância. É o caso do Teste de Expansão de Furos, cuja propriedade medida é a Razão de Expansão de Furos (REF). Neste trabalho investiga-se o processo de expansão de furos para o aço avançado de alta resistência (AHSS) martensítico DOCOL 190M, sob as seguintes condições de processo: duas formas de obtenção do furo (jato d’água e usinagem); duas geometrias distintas de punções (cônico de 60º e elíptico); diversos diâmetros do furo inicial; com e sem o uso de lubrificante; com acabamento diferenciado da borda do furo; e expansão com deslocamento do punção em etapas. Os experimentos demonstram que a expansão de furos possui uma estreita relação com a geometria do punção utilizado para a expansão, bem como com o diâmetro do furo inicial, acabamento da borda e condições de lubrificação. A partir dos resultados experimentais de expansão de furos foi possível realizar a calibração de um software de simulação computacional em relação ao dano crítico do material no momento da fatura na borda do furo.
Advanced High Strength Steels (AHSS) offer many mechanical advantages over conventional steels. Its increasing use in the automotive industry is mainly due to its ability to reduce weight and, at the same time, increase occupant safety in the event of collisions. However, they present greater difficulties with respect to the formability (higher levels of solicitation and wear of the tools, lower plastic formability, etc). Thus, some tests to evaluate the formability of these materials come to have greater importance. This is the case of the Hole Expansion Test, whose measured property is the Hole Expansion Ratio (REF). This work investigates the hole expansion process for a martensitic advanced high-strength steel (AHSS), DOCOL 190M, under the following process conditions: two ways of obtaining the hole (water jet and machining); two different geometries of punctures (conical of 60º and elliptical); various diameters of the initial hole; with and without the use of lubricant; with differentiated finishing of the hole edge; and expansion with punch displacement in steps. The experiments demonstrate that the hole expansion has a close relationship with the geometry of the punch used for the expansion, as well as the initial hole diameter, edge finish and lubrication conditions. From the experimental hole expansion results it was possible to carry out the calibration of a computational simulation software in relation to the critical damage of the material at the moment of hole edge rupture.
APA, Harvard, Vancouver, ISO, and other styles
19

Folle, Luís Fernando. "Estudo do coeficiente de atrito para processos de estampagem." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2012. http://hdl.handle.net/10183/76155.

Full text
Abstract:
O atrito na interface entre a peça e a ferramenta tem considerável importância em operações de estampagem de chapas, são necessários conhecimentos precisos sobre processos de conformação de chapas para a análise e projeto de novas peças e ferramentas, assim como para validação de uma simulação numérica. Este trabalho usa o método de determinação do coeficiente de atrito em estampagem através do ensaio de dobramento sob tensão e avalia sua precisão com o uso do software de elementos finitos LS-DYNAFORM, específico para esse processo de fabricação. Como existem seis equações que calculam o coeficiente de atrito para o mesmo ensaio de dobramento sob tensão, foram testadas todas as equações com o objetivo de verificar se existe variação entre os resultados. O material de estudo foi o alumínio comercialmente puro, liga AA1100. Os resultados indicam que há certa variação para cada equação usada, principalmente para aquelas que consideram o torque no pino. É observada também uma tendência do software a se distanciar dos resultados práticos por considerar o atrito como uma constante ao longo do processo. A pressão de contato entre o pino e a chapa no ensaio de dobramento sob tensão também foi avaliada através de um filme que tem a capacidade de registrar a pressão aplicada juntamente com a medição da força vertical aplicada ao pino. Os resultados indicam que a força vertical é mais precisa para se definir a pressão de contato ao uso de equações pré-estabelecidas e que a área de atuação da chapa no pino é sempre menor que a área calculada geometricamente. Por fim, para se saber qual é o comportamento do atrito para altas pressões, o ensaio de dobramento sob tensão foi feito com força variável e constatou-se que o atrito diminui com o aumento das pressões. No entanto, os valores iniciais da curva de atrito versus pressão de contato não foram obtidos pois nesse caso seria necessário usar uma máquina diferente da usada nesse estudo, ou seja, que não use pressão de óleo para acionamento e movimentação da chapa.
Friction at the interface of workpiece and tooling has a considerably importance in sheet metal forming operations. It is necessary an accurate knowledge for the analysis and design of new workpieces and tooling, as well as for the validation of a numeric simulation. This work uses the bending under tension test to determining the friction coefficient in sheet metal forming and evaluates its accuracy using the finite element software LS-DYNAFORM, specific to this manufacturing process. Since there are six equations that calculate the coefficient of friction for the same bending under tension test, all equations were tested in order to verify if there is much variation between the results. The material used in these work was pure commercial aluminum alloy AA1100. The results indicate that there is some variation for each equation used, especially for those that consider the torque on the pin. It was also observed a tendency for software to distance themselves from practical results considering friction as a constant throughout the process. It is also observed a tendency for the software to generate curves away from the tests as the friction increases. The contact pressure between the pin and the sheet in the bending under tension test was also evaluated through a film that has the ability to measure the pressure applied, together with the measurement of the vertical force applied to the pin. The results indicate that the vertical force is more accurate to define the contact pressure than equations previously established for this and that the contact area between the sheet and the pin is always smaller than the area calculated geometrically. Finally, to know the behavior of the friction at high pressures, the bending under tension test was done with variable forces and it was found that the friction decreases with increasing the pressure, which is in full agreement with the theory.
APA, Harvard, Vancouver, ISO, and other styles
20

Moreno, Mariano Eduardo. "Desenvolvimento e implementação de metodologia de otimização da geometria do blank em processos de conformação de chapas metálicas." Universidade de São Paulo, 2000. http://www.teses.usp.br/teses/disponiveis/18/18135/tde-19042001-140127/.

Full text
Abstract:
Os processos de conformação de metais, apesar de sua extensa aplicação na indústria, tem seus projetos baseados principalmente em técnicas experimentais. Com o desenvolvimento e facilidade de acesso a computadores mais potentes, tornou-se viável a utilização de soluções numéricas como ferramentas de otimização das características do produto, do processo, bem como de seu custo. Um método numérico amplamente utilizado para simulação do processo de conformação é o Método dos Elementos Finitos, que permite a previsão do comportamento do fluxo de material durante a operação de conformação de chapas. Considera-se um blank com perfil ideal aquele onde a peça produzida a partir de sua conformação possua uma flange constante, minimizando ou eliminando a operação de retirada da rebarba. Com o objetivo de se obter o blank com perfil ideal para operação de conformação de chapas, desenvolveu-se uma metodologia de otimização geométrica da forma do blank, que trabalha integrada a um software comercial de análise pelo Método dos Elementos Finitos, o ANSYS/LS-Dyna3D. Apresentam-se os resultados aplicados à simulação da estampagem de uma peça prismática de base quadrada, como meio de validação da metodologia de otimização proposta.
The metal forming processes have extensive industrial application although their projects are based mainly in experimental techniques. With the development of more powerful computers, the use of numerical methods to design, simulate and optimize costs of such processes has become possible. Among the numerical methods, the Finite Element Method have large application in forming simulation, since it allows the prediction of the material flow during the sheet metal forming process. Ideal blank shape is that one which produces a part with constant flange, minimizing or eliminating trimming operations. In order to determine the ideal blank shape, this work developed a methodology to blank shape optimization. This optimization methodology has been integrated to a commercial Finite Element analysis software, the ANSYS/LS-Dyna3D. The results applied to a simulation of a square cup part are showed and discussed in order to validate the proposed optimization methodology.
APA, Harvard, Vancouver, ISO, and other styles
21

Ali, Ahmed. "Incremental sheet metal forming." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0020/MQ54441.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Jirathearanat, Suwat. "Advanced methods for finite element simulation for part and process design in tube hydroforming." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1071878178.

Full text
Abstract:
Thesis (Ph. D.)--Ohio State University, 2004.
Title from first page of PDF file. Document formatted into pages; contains xxv, 222 p.; also includes graphics (some color). Includes bibliographical references (p. 185-191).
APA, Harvard, Vancouver, ISO, and other styles
23

Gåård, Anders. "Wear in sheet metal forming." Licentiate thesis, Karlstad University, Faculty of Technology and Science, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-1592.

Full text
Abstract:

The general trend in the car body manufacturing industry is towards low-series production and reduction of press lubricants and car weight. The limited use of press lubricants, in combination with the introduction of high and ultra-high strength sheet materials, continuously increases the demands of the forming tools. To provide the means of forming new generations of sheet material, development of new tool materials with improved galling resistance is required, which may include tailored microstructures, introducing of specific(MC, M(C,N))carbides and nitrides, coatings and improved surface finish. In the present work, the wear mechanisms in real forming operations have been studied and emulated on a laboratory scale by developing a test equipment. The wear mechanisms identified in the real forming process, were distinguished into a sequence of events consisting of initial local adhesive wear of the sheets resulting in transfer of sheet material to the tool surfaces. Successive forming operations led to growth of the transfer layer and initiation of scratching of the sheets. Finally, scratching changed into severe adhesive wear, associated with gross macroscopic damage. The wear process was repeated in the laboratory test-equipment in sliding between several tool materials, ranging from cast iron to conventional ingot cast tool steels to advanced powder metallurgy tool steel, against dual-phase carbon steel sheets. By use of the test-equipment, selected tool materials were ranked regarding wear resistance in sliding against ferritic-martensitic steel sheets at different contact pressures.

Wear in sheet metal forming is mainly determined by adhesion; initially between the tool and sheet surface interaction and subsequently, after initiation of material transfer, between a sheet to sheet contact. Atomic force microscopy force curves showed that adhesion is sensitive to both chemical composition and temperature. By alloying of iron with 18wt.% Cr and 8wt.% Ni, alloying in itself, or changes in crystal structure, led to an increase of 3 times in adhesion at room temperature. Hence, alloying may be assumed a promising way for control of adhesive properties. Additionally, frictional heating should be controlled to avoid high adhesion as, generally, adhesion was found to increase with increasing temperature for all investigated materials.

APA, Harvard, Vancouver, ISO, and other styles
24

Gåård, Anders. "Wear in sheet metal forming /." Karlstad : Faculty of Technology and Science, Materials Engineering, Karlstad University, 2008. http://www.diva-portal.org/kau/abstract.xsql?dbid=1592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Carlsson, Per. "Surface Engineering in Sheet Metal Forming." Doctoral thesis, Uppsala University, Department of Materials Science, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4764.

Full text
Abstract:

In recent years, surface engineering techniques have been developed in order to improve the tribological performance in many industrial applications. In sheet metal forming processes, the usage of liquid lubricants can be decreased by using self lubricated tribo surfaces which will result in more environmentally friendly workshops. In the present work two different concepts, i.e. the deposition of thin organic coatings on the steel sheet and PVD coatings on the tool, have been evaluated. The sheet materials investigated include Zn and 55%Al-Zn metal coated steel sheet, which in general are difficult materials to form under dry conditions since they are sticky and thus have a high tendency to adhere to the tool surface. The PVD coatings include CrN, TiN and various DLC coatings. The work comprises tribo testing and post test characterisation using surface analytical techniques in order to evaluate the tribological properties of the tribo surfaces. The tribological tests of different tribo couples were conducted by using modified scratch testing and ball-on-disc testing. From these test results different friction and wear mechanisms have been identified.

The deposition of thin organic coatings on the steel sheet metal has been found to be promising in order to control the friction and to avoid metal-metal contact resulting in galling. However, it has been found that the tribological characteristics of organic coated steel sheet are strongly influenced by coating chemical composition, the substrate surface topography and the coating thickness distribution.

The performance of the PVD coatings depends mainly on the chemical composition and topography of the coated surface. By choosing PVD coatings such as diamond like carbon (DLC) low and stable friction coefficients can be obtained in sliding contact against Zn. Surface irregularities such as droplet-like asperities may cause an initial high friction coefficient. However, after a running in process or by polishing the PVD coating low friction coefficients can be obtained resulting in a stable sliding contact.

The combination of imaging (optical profilometry, LOM, SEM) and chemical analytical techniques (EDS, AES, ToF-SIMS) gave valuable information concerning the friction and wear properties of the tribo surfaces investigated.

APA, Harvard, Vancouver, ISO, and other styles
26

Lindberg, Filip. "Sheet Metal Forming Simulations with FEM." Thesis, Umeå universitet, Institutionen för fysik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-51527.

Full text
Abstract:
The design of new forming tools get more problemtic as the geometries get more complicated and the materials less formable. The idea with this project is to evaluate if an implementation of a simulation software in the designing process, to simulate the forming process before actually building the tools, could help Duroc Tooling avoid expensive mistakes. To evaluate this, the commercial FEM simulation software LS-DYNA was used in a complicated project, where the design of the forming tools for forming a girder was considered. The main objective was to avoid cracking and severe wrinkling which may result in the forming process. With help of simulations a stable forming process which did not yield cracks or severe wrinkling, was eventually found. The girder was almost impossible to form without cracking, but the breakthrough came when we tried to simulate a preforming step which solved the problem. Without a simulation software this would never have been tested since it would be to risky and expensive to try an idea which could turn out to be of no use. The simulations also showed that the springback - shape deformation occuring after pressing - was large and hard to predict without simulations. Therefore, the tools were also finally springback compensated. We concluded that simulations are very effective to quickly test new ideas which may be necessary when designing the tools for forming complicated parts. Simulation also provided detailed quantitative information about the expected cracks, wrinkles, and weaknesses of the resulting pieces. Even though there is cost associated with simulations, it is obvious from this project that a simulation software is a must if Duroc Tooling wants to be a leading company in sheet metal forming tools, and stand ready for the higher demands on the products in the future.
APA, Harvard, Vancouver, ISO, and other styles
27

Lanzon, Joseph, and kimg@deakin edu au. "EVALUATING LUBRICANTS IN SHEET METAL FORMING." Deakin University. Department of Science and Engineering, 1999. http://tux.lib.deakin.edu.au./adt-VDU/public/adt-VDU20040428.095238.

Full text
Abstract:
The sheet metal forming process basically involves the shaping of sheet metal of various thickness and material properties into the desired contours. This metal forming process has been extensively used by the automotive industry to manufacture both car panels and parts. Over the years numerous investigations have been conducted on various aspects of the manufacturing process with varied success. In recent years the requirements on the sheet metal forming industry have headed towards improved stability in the forming process while lowering environmental burdens. Therefore the overall aim of this research was to identify a technique for developing lubricant formulations that are insensitive to the sheet metal forming process. Due to the expense of running experiments on production presses and to improve time efficiency of the process the evaluation procedure was required to be performed in a laboratory. Preliminary investigations in the friction/lubricant system identified several laboratory tests capable of measuring lubricant performance and their interaction with process variables. However, little was found on the correlation between laboratory tests and production performance of lubricants. Therefore the focus of the research switched to identifying links between the performance of lubricants in a production environment and laboratory tests. To reduce the influence of external parameters all significant process variables were identified and included in the correlation study to ensure that lubricant formulations could be desensitised to all significant variables. The significant process variables were found to be sensitive to die position, for instance: contact pressure, blank coating of the strips and surface roughness of the dies were found significant for the flat areas of the die while no variables affected friction when polished drawbeads were used. The next phase was to identify the interaction between the significant variables and the main lubricant ingredient groups. Only the fatty material ingredient group (responsible for the formation of boundary lubricant regimes) was found to significantly influence friction with no interaction between the ingredient groups. The influence of varying this ingredient group was then investigated in a production part and compared to laboratory results. The correlation between production performance and laboratory tests was found to be test dependant. With both the Flat Face Friction test and the Drawbead Simulator unaffected by changes in the lubricant formulation, while the Flat Bottom Cup test showing similar results as the production trial. It is believed that the lack of correlation between the friction tests and the production performance of the lubricant is due to the absence of bulk plastic deformation of the strip. For this reason the Ohio State University (OSU) friction test was incorporated in the lubricant evaluation procedure along with a Flat Bottom Cup test. Finally, it is strongly believed that if the lubricant evaluation procedure highlighted in this research is followed then lubricant formulations can be developed confidently in the laboratory.
APA, Harvard, Vancouver, ISO, and other styles
28

Rigopoulos, Apostolos. "Estimation and control of sheet forming processes." Thesis, Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/10215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Park, Young-Bin. "Sheet metal forming using rapid prototyped tooling." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/18361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sanay, Berkay. "Prediction Of Plastic Instability And Forming Limits In Sheet Metal Forming." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612486/index.pdf.

Full text
Abstract:
The Forming Limit Diagram (FLD) is a widely used concept to represent the formability of thin metallic sheets. In sheet metal forming processes, plastic instability may occur, leading to defective products. In order to manufacture defect free products, the prediction of the forming limits of sheet metals is a very important issue. FLD&rsquo
s can be obtained by several experimental, empirical and theoretical methods. However, the suitability and the accuracy of these methods for a given material may vary. In this study, FLD&rsquo
s are predicted by simulating Nakazima test using finite element software Pam-Stamp 2G. Strain propagation phenomenon is used to evaluate the limit strains from the finite element simulations. Two different anisotropic materials, AA2024-O and SAE 1006, are considered throughout the study and for each material, 7 different specimen geometries are analyzed. Furthermore, FLD&rsquo
s are predicted by theoretical approaches namely
Keeler&rsquo
s model, maximum load criteria, Swift-Hill model and Storen-Rice model. At the end of the study, the obtained FLD&rsquo
s are compared with the experimental results. It has been found that strain propagation phenomenon results for SAE 1006 are in a good agreement with the experimental results
however it is not for AA2024-O. In addition, theoretical models show some variations depending on the material considered. It has been observed that forming limit prediction using strain propagation phenomena with FE method can substantially reduce the time and cost for experimental work and trial and error process.
APA, Harvard, Vancouver, ISO, and other styles
31

Shang, Jianhui. "Electromagnetically assisted sheet metal stamping." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1158682908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ucan, Meric. "Effect Of Constitutive Modeling In Sheet Metal Forming." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613447/index.pdf.

Full text
Abstract:
This study focuses on the effects of different constitutive models in sheet metal forming operations by considering the cylindrical and square cup drawing and V-bending simulations. Simulations are performed using eight different constitutive models
elastic plastic constitutive model with isotropic hardening, elastic plastic constitutive model with kinematic hardening, elastic plastic constitutive model with combined hardening, power law isotropic plasticity, piecewise linear isotropic plasticity, Barlatthree-parameter, cyclic elastoplastic and Hill&rsquo
48 model.The numerical analyses are accomplished by using three different 1 mm thick sheet materials
St12 steel, Al-5182 aluminum and stainless steel 409 Ni. An explicit finite element code is used in the simulations. For square cup drawing, three different blank holder forces
2 kN, 4 kN and 5 kN are considered for St12 steel, whereas only 5 kN blank holder force is applied for stainless steel 409 Ni and Al-5182 aluminum. A number of experiments are carried out and analytical calculations are utilized to evaluate the results of simulations. In cylindrical cup drawing, simulation results of different constitutive models show good agreement with analytical calculations for thickness strain and effective stress distributions. In square cup drawing, simulation results of all the models displayed good agreement with the experimental results for edge contour comparisons, although the distributions of effective stress vary for different models within the cup. The numerically and experimentally obtained springback amounts are also in good agreement. The simulation results obtained for piecewise linear isotropic plasticity and power law isotropic plasticity models show better agreement with the analytical solutions and experiments.
APA, Harvard, Vancouver, ISO, and other styles
33

Zhang, Wenfeng. "Design for uncertainties of sheet metal forming process." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1180473874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lind, Markus, and Viktor Sjöblom. "Industrial Sheet Metal Forming Simulation with Elastic Dies." Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-16782.

Full text
Abstract:
As part of the development process for new stamping dies, in the automotive sheet metal forming (SMF) industry, the majority of all forming operations are simulated with the Finite Element Method (FEM) before the dies are manufactured. Today, these simulations are conducted with rigid tools under the assumption that there are no tool deformations. However, research shows that tool deformations have an influence on the finished product. In real production these deformations are compensated by manual rework during the try-out. Additional reason for simulating with rigid dies is that there are non-existing simulation methods elaborated for elastic stamping dies. Also, simulation of elastic tools requires high computational power.     Since simulations today are performed with rigid stamping dies the purpose of this work is to investigate the conditions of how to conduct SMF-simulations with elastic stamping dies. The object that will be studied is a stamping die for a Volvo XC90 inner door used in a single-action press. This work is part of the development to minimize the manual rework, with the goal to compensate for tool deformations in a virtual environment.    Results for rigid stamping dies in LS-Dyna was compared to currently used AutoForm as a pre-study. A simple model was then created to find a suitable method while using elastic stamping dies. The developed method was used for an industrial size stamping die.     Since there are little amount of research performed on simulations using elastic stamping dies, elasticity and complexity were gradually introduced into the FE-model. As a first step, only the punch was included as an elastic solid. Secondly, the die was added. Finally, the entire die was simulated as elastic together with the hydraulic cushion of the press. When the FE-model worked as expected a suitable method for minimizing the simulation time with acceptable results was studied.     Comparisons of measured- and simulation results show a high correlation. To improve the results from the FE-model factors such as press deformations, advanced friction models, etc. should be included.    Conclusions from this work shows that it is possible to perform SMF-simulations with elastic stamping dies. As the computational time normally is high this work also presents a method first step to reduce the computational time with acceptable results. Comparisons between simulations with rigid and elastic stamping dies proves that there are significant differences in the outcome of the two methods.
Reduced Lead Time through Advanced Die Structure Analysis - Vinnova
APA, Harvard, Vancouver, ISO, and other styles
35

Eriksson, Anton. "Non-Linear strain paths in Sheet Metal Forming." Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-21906.

Full text
Abstract:
Today's automotive requirements have resulted in complex Sheet Metal Forming (SMF) processes of Sheet Metal (SM) with reduced formability, and thus it is crucial to be able to predict formability accurately to prevent material failure during SMF. Formability predictions today utilize Forming Limit Curves (FLC)s in Finite Element Analysis (FEA), but  FLCs are not valid for the Non-Linear Strain Paths (NLSP)s generated during SMF. One purpose of this thesis is thus to increase the knowledge on FP handling NLSP,  which was obtained through providing suggestions of failure models for handling NLSP effects, based upon literature on the subject. Generating NLSP experimentally is both time and material costly with the conventional method, thus the second purpose of this thesis was to increase the knowledge on test procedures for generating NLSP in SM. Based upon the findings of Chandramohan \cite{chandramohan_study_2021} five test procedures for generating NLSP were put forward, and the Nakajima test with modified punch geometry was chosen for further study.   In this thesis, the NLSP characteristics of two modified punch geometries were evaluated by FEA performed using LS-DYNA. For the FEA three specimens with blank width of 50, 100 and 200 mm was used, and the anisotropic Barlat yld2000  was used as the material model. This material model was calibrated to material data of Mild steel CR4, Aluminium alloy AA6016, and Dual-phase steel DP800. The results for all materials showcased similar reacquiring general NLSP characteristics at the corners of the punch features, which are unfavorable positions when failure by necking is evaluated, and thus it was concluded that the tested punch geometries are not favorable and more development of the punch geometry is needed.
Dagens fordonskrav, har lett till komplexa plåtformnings processer av plåtmaterial med reducerad formbarhet, och det är därför väsenligt att kunna förutsäga formbarhet noggrant för att förhindra materialbrott under plåtformning. Försträckning och brott förutses idag genom Formgränskurvor (FGK) i finita element analyser (FEA), men dessa gäller inte för icke-linjära töjningsvägar som uppkommer under plåtformning. Ett syfte av denna avhandling är därför att öka kunskapen kring modeller för att förutsäga formbarhet under icke-linjära töjningsbanors effekter, vilket uppnådes genom att  presenteras  förslag på brott modeller för att hantera de icke-linjära töjningsvägar baserade på  literatur inom området. Att generera icke-linjära töjningsvägar experimentellt är både tids och materialkrävande med den konventionella metoden, således är det andra syftet av denna avhandling att öka kunskapen kring test metoder för att generera icke-linjär töjningsbvägar i plåt. Baserat på Chandramohans \cite{chandramohan_study_2021} resultat diskuteras fem test procedurer för att generera icke-linjära töjningsvägar, och Nakajima test med modifierad stämpelgeometri valdes för vidare studie.  I denna avhandling studerades töjningsignaturen av två stämpelgeometrier med FEA i LS-DYNA. Till FEA:n användes tre ämnen med bredd av 50, 100 och 200mm, och anisotropiska Barlat yld2000 användes som materialmodell. Denna materialmodell kalibrerades mot experimentella mätvärden för mjukt stål CR4, Aluminiumlegering AA6016 och Stål DP800. Resultaten visade för alla material återkommande generella icke-linjära töjningsbanor enbart för hörnorna på stansgeometrierna, vilket är icke önskvärda positioner då brott pga. midjebildning utvärderas, och således drogs slutsatsen att nuvarande stansgeometri inte är gynnsam och ytterligare utveckling behövs.
APA, Harvard, Vancouver, ISO, and other styles
36

Esche, Sven Karsten. "Developments for two-dimensional sheet metal forming analysis /." The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487946103566303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Imbert, Boyd Jose. "Increased Formability and the Effects of the Tool/Sheet Interaction in Electromagnetic Forming of Aluminum Alloy Sheet." Thesis, University of Waterloo, 2005. http://hdl.handle.net/10012/857.

Full text
Abstract:
This thesis presents the results of experimental and numerical work carried out to determine if electromagnetic forming (EMF) increases the formability of aluminum alloy sheet and, if so, to determine the mechanisms that play a role in the increased formability. To this end, free form (open cavity) and conical in-die samples were produced to isolate high strain rate constitutive and inertial effects from the effects of the interaction between the die and the sheet. Aluminum alloys AA5754 and AA6111 in the form of 1mm sheet were chosen since they are currently used in automotive production and are candidates for lightweight body panels. The experiments showed significant increases in formability in the conical die samples in areas where significant contact with the tool occurred, with no significant increase recorded for the free-formed samples. This indicates that the tool/sheet interaction is playing the dominant role in the increase in formability observed. Metallographic and fractographic analysis performed on the samples showed evidence of microvoid damage suppression, which may be a contributing factor to the increase in formability. Numerical modeling was undertaken to analyse the details of the forming operation and to determine the mechanisms behind the increased formability. The numerical calculations were performed with an explicit dynamic finite element structural code, using an analytical electromagnetic pressure distribution. Microvoid damage evolution was predicted using a microvoid damage subroutine based on the Gurson-Tvergaard-Needleman constitutive model. From the models it has been determined that the free forming process is essentially a plane-stress process. In contrast, the tool/sheet interaction produced in cone forming makes the process unique. When the sheet makes contact with the tool, it is subject to forces generated due to the impact, and very rapid bending and straightening. These combine to produce complex non-linear stress and strain histories, which render the process non-plane stress and thus make it significantly different from conventional sheet forming processes. Another characteristic of the process is that the majority of the plastic deformation occurs at impact, leading to strain rates on the order of 10,000 s-1. It is concluded that the rapid impact, bending and straightening that results from the tool/sheet interaction is the main cause of the increased formability observed in EM forming.
APA, Harvard, Vancouver, ISO, and other styles
38

Yang, Xi. "Investigation of Formability and Fracture in Advanced Metal Forming Process- Bulk Forging and Sheet Metal Forming." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1403889605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ledentsov, Dmitry [Verfasser]. "Model adaptivity in sheet metal forming simulation / Dmitry Ledentsov." Aachen : Shaker, 2010. http://d-nb.info/1122546106/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Odenberger, Eva-Lis. "Concepts for hot sheet metal forming of titanium alloys /." Luleå : Department of Applied Physics and Mechanical Engineering, Division of Solid Mechanics, Luleå University of Technology, 2009. http://www.avhandlingar.se/avhandling/167c433b06/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Sefton, Harvey. "A friction sensor for a sheet metal forming simulator." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0020/MQ54039.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Odenberger, Eva-Lis. "Material characterisation for analyses of titanium sheet metal forming." Licentiate thesis, Luleå : Luleå tekniska universitet, 2005. http://epubl.ltu.se/1402-1757/2005/63/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Vladimirov, Ivaylo N. "Anisotropic material modelling with application to sheet metal forming." Aachen Shaker, 2009. http://d-nb.info/999285513/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Liu, Weijie. "Advanced modelling for sheet metal forming under high temperature." Thesis, Troyes, 2017. http://www.theses.fr/2017TROY0019/document.

Full text
Abstract:
L’objectif de cette thèse est de proposer deux approches complémentaires de modélisation et de simulation numériques des procédés de mise en forme de structures minces. La première est une approche inverse multi-pas, délibérément simplifiée, pour simuler et "optimiser" rapidement et à moindre coût des procédés d’emboutissage de tôles minces, tout en maintenant une bonne précision dans le calcul des contraintes. Un solveur statique implicite est développé en introduisant plusieurs configurations intermédiaires construites efficacement en utilisant une technique de programmation quadratique avec projection. La deuxième approche, de nature incrémentale, repose sur (i) une formulation d’équations de bilan et d’équations de comportement multi-physiques fortement couplés formulées dans le cadre des milieux micromorphes ; (ii) une discrétisation spatiale par EF et temporelle par DF avec un solveur global dynamique explicite et une intégration locale itérative implicite. Une attention particulière est accordée aux aspects thermiques avec l’introduction d’une microtempérature et ses premiers gradients conduisant à l’obtention de deux équations thermiques fortement couplées généralisant de nombreux modèles non locaux proposés dans la littérature. L'approche inverse multi-pas a été implémentée dans le code maison KMAS et l’approche incrémentale non locale a été implémentée dans ABAQUS/Explicit. Des études paramétriques sont menées et des validations sur des exemples simples et sur des procédés d’emboutissage sont réalisées
The aim of this thesis is to propose two complementary approaches for modeling and numerical simulations of thin sheet metal forming processes. The first one is a deliberately simplified multi-step inverse approach to simulate and "optimize" rapidly and inexpensively thin-sheet stamping processes while maintaining good accuracy in the stress calculation. An implicit static solver is developed by introducing several efficiently constructed intermediate configurations using a quadratic programming technique with projection. The second approach, which is of an incremental nature, is based on (i) a formulation of equilibrium equations and strongly coupled multiphysical behavior equations formulated in the context of micromorphic continua; (ii) spatial discretization by FEM and time discretization by FD with an explicit dynamic global solver and implicit iterative local integration scheme. Particular attention is paid to the nonlocal thermal aspects with the introduction of a micro-temperature and its first gradients leading to two strongly coupled thermal equations generalizing several thermal nonlocal models proposed in the literature. The multi-step inverse approach was implemented in the KMAS in house code while the nonlocal incremental approach was implemented in ABAQUS/Explicit. Parametric studies are performed and validations are carried out on simple examples and on deep drawing processes
APA, Harvard, Vancouver, ISO, and other styles
45

Bentsrud, Herman. "Friction and material modelling in Sheet Metal Forming Simulations." Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-19686.

Full text
Abstract:
In today’s car manufacturing industry, sheet metal forming is a important process that takes preparation, which is time consuming and complex when new processes are made. When new metal grades and alloys are provided to the industry, tests are conducted to determine it’s behaviour and strengths. This gives the data for complex material models that can approximate the metal behaviour in an accurate way in a simulation environment. One of the unknown factors from tests is the friction coefficient on the sheet metal. The software Triboform is able to provide an adaptable friction coefficient model that depends on multiple simulation and user input conditions. The problems that occur when acquiring data for the material model is that testing is time consuming and the friction model has to be adjusted to give accurate results. At Volvo Cars there are two material models used with their different advantages, BBC 2005 and Vegter 2017.The purpose with this work is to compare the two material models using the Triboform friction models implemented to see if any combination provides accurate simulation results and then create recommendations for which model is best suited for different cases. Some side studies is also done with an older Vegter model, a strain rate sensitive BBC 2005 model and a Triboform model on all simulation parts.The purpose is achieved by implementing the Triboform model in Autoform and run a simulation of a Limiting Dome Height (LDH) test with both material models and compare the results with experimental data for several different materials. The data that is directly compared from the LDH test is the major and minor strain from two perpendicular sections at four different stages and also the force from the punch tool. The material models will be evaluated by how it manages to mimic the strain behaviour of the metals and how it estimates the punch force.The results point towards an improvement of the accuracy for most of the metals tested and BBC 2005 is the better model if there’s available biaxial data from tests, Vegter 2017 is decent if there’s not. However Vegter 2017 is not a good option for aluminum alloys simulations when the punch force is compared. Side study also shows that Vegter 2017 is bit of a downgrade when it comes to strain values, compared to the old Vegter.The work, in summary shows a dynamic friction model can improve the accuracy for strain predictions in the simulation process. If there’s biaxial yield data available for the metal or if it’s an aluminum alloy, BBC 2005 is the superior choice, but if only tensile tests are available for metals, Vegter 2017 is a decent choice for some cases.
I dagens bilindustri är plåtmetalformning en viktig process som kräver förberedelser som är tidskonsumerande och komplex när nya processer tillkommer. När nya metallslag kommer in till industrin, så utförs tester för att avgöra dess egenskaper och styrka. Denna testdata används till materialmodeller som kan approximera metallens beteende på ett noggrant sätt i en simuleringsmiljö. Den okända faktorn från dessa test är friktionskoefficienten på plåten. Programvaran Triboform är kapabel att göra en dynamisk friktionsmodel som beror på användar- och simuleringsdata. Problemen som uppstår vid framtagning av data är att det är tidskonsumerande och flera simuleringar måste göras för att bestämma friktionen. Volvo Cars använder sig av två modeller med olika fördelar, BBC 2005 och Vegter 2017.Syftet med detta arbete är att jämföra de två materialmodellerna med Triboform modeller implementerat för att se om de påverkar noggrannheten i simuleringar och sedan förse rekommendationer för vilken modell passar bäst för olika fall. Några sidojobb i studien som görs är en jämförelse med gamla Vegter modellen, ett test med en modell som är känslig för töjningshastighet och test med att implementera Triboform modellen på alla pressverktyg.Detta utförs med att implementera Triboform modellerna i Autoform och köra en simulering på ett LDH-test med båda materialmodeller och jämföra resultaten med experimentell data för flera olika metaller. Data som skall jämföras från LDH-testet är första och andra huvudtöjningen i två vinkelräta sektioner i fyra processsteg och stämpelkraften genom hela processen. Modellerna kommer evalueras genom hur de lyckas imitera töjningens beteende och hur den estimerar stämpelkraften.Resultaten pekar mot en förbättring när Triboform är implementerat i simuleringar för de flesta metaller som ingår i testen och BBC 2005 är den model som föredras om det finns tillgänglig biaxiel spänning data från tester, Vegter 2017 är en duglig modell om dessa data inte finns. Vegter 2017 är dock inte ett bra alternativ när det kommer till jämförelse av töjning och stämpelkraften för aluminium. Sidojobb med gamla Vegter visar att den nya Vegter 2017 inte är en direkt förbättring med hänsyn till noggrannheter av krafter och töjningar.Arbetet visar att en dynamisk friktionsmodel kan förbättra prediktering av töjningar i simuleringar. Om det finns biaxiel data för metallen eller om det gäller att simulera aluminium är BBC 2005 det bättre altermativet, om det endast finns dragprovsdata för metallen så är Vegter 2017 duglig för vissa fall.
APA, Harvard, Vancouver, ISO, and other styles
46

Fallahiarezoodar, Ali fallahiarezoodar. "PREDICTION AND REDUCTION OF DEFECTS IN SHEET METAL FORMING." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1523879307901727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Alghtani, Abdulaziz Hosain. "Analysis and optimization of springback in sheet metal forming." Thesis, University of Leeds, 2015. http://etheses.whiterose.ac.uk/10523/.

Full text
Abstract:
Sheet metal forming processes are widely used in the automotive industry to fabricate many components such as body panels, the structural members of the chassis and so on. The forming process involves many stages. There are many defects that might occur on a work piece during or after each set of processes and one of the most challenging of these is associated with the phenomenon of springback; that is, the distortion in specimen geometry due to the elastic recovery and other effects. The integration of springback into the design of the forming process represents a significant challenge due to difficulties associated with its prediction. There are several factors that control the magnitude and direction of component distortion causing by springback. The primary aim of the present study is to evaluate the influence exerted on springback by the main parameters that affect the forming process. This will provide guide lines to create new CAE methods that can be used to predict the amount of springback within sheet metal forming processes. Two common forming processes will be investigated within this work, the so called L-bending and U-drawing processes, since these underpin many of the more complex forming operations. A forming test rig has been designed and manufactured that replicates each of these processes under controlled and repeatable conditions. Process parameters that can be controlled are the die and punch profile radii and clearance between the punch and die, and the normal clamp load applied on the work piece by the blank holder. In parallel, finite element models capable of simulating the L-bending and U-drawing bending processes were developed and validated for four different blanks materials: high and low strength steel, and high and low strength aluminium alloy. Material characterization for four different blanks was conducted to derive required parameters for the simulation analysis. Also, friction coefficients were measured between each blank material and the forming tools using a pendulum tribometer. Mesh sensitivity studies were firstly conducted to provide a mesh that represents an appropriate compromise between accuracy and consuming time. Results from the numerical analysis were compared to those from the experiments and good agreement was generally found, except for the high strength steel where the galvanised coating (not modelled in the analysis) affected the results. The model was then used to conduct parametric studies on the effect of certain parameters on the amount of the springback i.e. the blank holder load, die and punch radii and the radial clearance. Finally, an optimisation scheme was developed to derive the optimum combination of parameters to minimise springback. These results and the general methodology could form the basis of a reliable CAE system to control springback in common metal forming operations.
APA, Harvard, Vancouver, ISO, and other styles
48

Bonte, Martijn Hans Albert. "Optimisation strategies for metal forming processes." Enschede : University of Twente [Host], 2007. http://doc.utwente.nl/59562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Raithatha, Ankor Mahendra. "Incremental sheet forming : modelling and path optimisation." Thesis, University of Oxford, 2008. http://ora.ox.ac.uk/objects/uuid:89b0ac1e-cab4-4d80-b352-4f48566c7668.

Full text
Abstract:
Incremental sheet forming (ISF) is a novel metal shaping technology that is economically viable for low-volume manufacturing, customisation and rapid-prototyping. It uses a small tool that is controlled by a computer-numerically controlled sequence and the path taken by this tool over the sheet defines the product geometry. Little is currently known about how to design the tool-path to minimise geometric errors in the formed part. The work here addresses this problem by developing a model based tool-path optimisation scheme for ISF. The key issue is how to generate an efficient model for ISF to use within a path optimisation routine, since current simulation methods are too slow. A proportion of this thesis is dedicated to evaluating the applicability of the rigid plastic assumption for this purpose. Three numerical models have been produced: one based on small strain deformation, one based on limit analysis theory and another that approximates the sheet to a network of rods. All three models are formulated and solved as second-order cone programs (SOCP) and the limit analysis based model is the first demonstration of an upper-bound shell finite element (FE) problem solved as an SOCP. The models are significantly faster than commercially available FE software and simulations are compared with experimental and numerical data, from which it is shown the rigid plastic assumption is suitable for modelling deformation in ISF. The numerical models are still too slow for the path optimisation scheme, so a novel linearised model based on the concept of spatial impulse responses is also formulated and used in an optimal control based tool-path optimisation scheme for producing axisymmetric products with ISF. Off-line and on-line versions of the scheme are implemented on an ISF machine and it is shown that geometric errors are significantly reduced when using the proposed method. This work provides a new structured framework for tool-path design in ISF and it is also a novel use of feedback to compensate for geometrical errors in ISF.
APA, Harvard, Vancouver, ISO, and other styles
50

Jackson, Kathryn Pamela. "The mechanics of incremental sheet forming." Thesis, University of Cambridge, 2008. https://www.repository.cam.ac.uk/handle/1810/267843.

Full text
Abstract:
Incremental sheet forming (ISF) is a flexible process where an indenter moves over the surface of a sheet of metal to form a 3D shell incrementally by a progression of localised deformation. Despite extensive research into the process, the deformation mechanics is not fully understood. This thesis presents new insights into the mechanics of ISF applied to two groups of materials: sheet metals and sandwich panels. A new system for measuring tool forces in ISF is commissioned. The system uses six loadcells to measure reaction forces on the workpiece frame. Each force signal has an uncertainty of ±15 N. This is likely to be small in comparison to tool forces measured in ISF. The mechanics of ISF of sheet metals is researched. Through-thickness deformation and strains of copper plates are measured for single-point incremental forming (SPIF) and two-point incremental forming (TPIF). It is shown that the deformation mechanisms of SPIF and TPIF are shear parallel to the tool direction, with both shear and stretching perpendicular to the tool direction. Tool forces are measured and compared throughout the two processes. Tool forces follow similar trends to strains, suggesting that shear parallel to the tool direction is a result of friction between the tool and workpiece. The mechanics of ISF of sandwich panels is investigated. The mechanical viability of applying ISF to various sandwich panel designs is evaluated by observing failure modes and damage under two simple tool paths. ISF is applicable to metal/polymer/metal sandwich panels. This is because the cores and faceplates are ductile and largely incompressible, and therefore survive local indentation during ISF without collapse. Through-thickness deformation, tool forces and applicability of the sine law for prediction of wall thickness are measured and compared for a metal/polymer/metal sandwich panel and a monolithic sheet metal. The mechanical results for ISF of sheet metals transfer closely to sandwich panels. Hence, established knowledge and process implementation procedures derived for ISF of monolithic sheet metals may be used in the future for ISF of sandwich panels.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography