Academic literature on the topic 'Shimura varietie'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Shimura varietie.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Shimura varietie"

1

Scholze, Peter. "Perfectoid Shimura varieties." Japanese Journal of Mathematics 11, no. 1 (2015): 15–32. http://dx.doi.org/10.1007/s11537-016-1484-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Giacomini, Michele. "Holomorphic curves in Shimura varieties." Archiv der Mathematik 111, no. 4 (2018): 379–88. http://dx.doi.org/10.1007/s00013-018-1227-4.

Full text
Abstract:
Abstract We prove a hyperbolic analogue of the Bloch–Ochiai theorem about the Zariski closure of holomorphic curves in abelian varieties. We consider the case of non compact Shimura varieties completing the proof of the result for all Shimura varieties. The statement which we consider here was first formulated and proven by Ullmo and Yafaev for compact Shimura varieties.
APA, Harvard, Vancouver, ISO, and other styles
3

Fargues, Laurent, Ulrich Görtz, Eva Viehmann, and Torsten Wedhorn. "Reductions of Shimura Varieties." Oberwolfach Reports 9, no. 3 (2012): 1961–2011. http://dx.doi.org/10.4171/owr/2012/32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fargues, Laurent, Ulrich Görtz, Eva Viehmann, and Torsten Wedhorn. "Reductions of Shimura Varieties." Oberwolfach Reports 12, no. 3 (2015): 2265–328. http://dx.doi.org/10.4171/owr/2015/39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fargues, Laurent, Ulrich Görtz, Eva Viehmann, and Torsten Wedhorn. "Arithmetic of Shimura Varieties." Oberwolfach Reports 16, no. 1 (2020): 65–131. http://dx.doi.org/10.4171/owr/2019/2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Edixhoven, Bas, and Andrei Yafaev. "Subvarieties of Shimura varieties." Annals of Mathematics 157, no. 2 (2003): 621–45. http://dx.doi.org/10.4007/annals.2003.157.621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Milne, J. S. "Descent for Shimura varieties." Michigan Mathematical Journal 46, no. 1 (1999): 203–8. http://dx.doi.org/10.1307/mmj/1030132370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fargues, Laurent, Ulrich Görtz, Eva Viehmann, and Torsten Wedhorn. "Arithmetic of Shimura Varieties." Oberwolfach Reports 20, no. 1 (2023): 261–326. http://dx.doi.org/10.4171/owr/2023/5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gao, Ziyang. "Towards the Andre–Oort conjecture for mixed Shimura varieties: The Ax–Lindemann theorem and lower bounds for Galois orbits of special points." Journal für die reine und angewandte Mathematik (Crelles Journal) 2017, no. 732 (2017): 85–146. http://dx.doi.org/10.1515/crelle-2014-0127.

Full text
Abstract:
Abstract We prove in this paper the Ax–Lindemann–Weierstraß theorem for all mixed Shimura varieties and discuss the lower bounds for Galois orbits of special points of mixed Shimura varieties. In particular, we reprove a result of Silverberg [57] in a different approach. Then combining these results we prove the André–Oort conjecture unconditionally for any mixed Shimura variety whose pure part is a subvariety of {\mathcal{A}_{6}^{n}} and under the Generalized Riemann Hypothesis for all mixed Shimura varieties of abelian type.
APA, Harvard, Vancouver, ISO, and other styles
10

Boyer, Pascal. "Conjecture de monodromie-poids pour quelques variétés de Shimura unitaires." Compositio Mathematica 146, no. 2 (2010): 367–403. http://dx.doi.org/10.1112/s0010437x09004588.

Full text
Abstract:
AbstractIn Boyer [Monodromy of perverse sheaves on vanishing cycles on some Shimura varieties, Invent. Math. 177 (2009), 239–280 (in French)], a sheaf version of the monodromy-weight conjecture for some unitary Shimura varieties was proved by giving explicitly the monodromy filtration of the complex of vanishing cycles in terms of local systems introduced in Harris and Taylor [The geometry and cohomology of some simple Shimura varieties (Princeton University Press, Princeton, NJ, 2001)]. The main result of this paper is the cohomological version of the monodromy-weight conjecture for these Shi
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Shimura varietie"

1

GROSSELLI, GIAN PAOLO. "Shimura varieties in the Prym loci of Galois covers." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/356638.

Full text
Abstract:
In questa tesi si studiano le sottovarietà di Shimura negli spazi di moduli delle varietà abeliane complesse. Queste sottovarietà derivano da famiglie di rivestimenti di Galois compatibili con un'azione di gruppo fissata sulla curva base tale che il quoziente della curva base per il gruppo è isomorfo alla retta proiettiva. Si da un criterio affinché l'immagine di queste famiglie tramite la mappa di Prym sia una sottovarietà speciale e, sfruttando il computer, si costruiscono numerose sottovarietà di Shimura contenute nei luoghi di Prym.<br>In this thesis we study Shimura subvarieties in the mo
APA, Harvard, Vancouver, ISO, and other styles
2

Yafaev, Andrei. "Sous-varietes des varietes de shimura." Rennes 1, 2000. http://www.theses.fr/2000REN10151.

Full text
Abstract:
Dans cette these on traite certains cas de la conjecture d'andre-oort qui affirme que les composantes irreductibles de l'adherence de zariski d'un ensemble de points speciaux dans une variete de shimura est une sousvariete de type hodge. Le premier resultat traite le cas des courbes dans un produit s 1 s 2 ou s 1 et s 2 sont des courbes de shimura associees aux algebres de quaternions indefines sur q. On demontre la conjecture d'andre-oort pour un tel produit en supposant l'hypothese de riemann generalisee. Le deuxieme resultat affirme qu'une courbe irreductible fermee dans une variete de shim
APA, Harvard, Vancouver, ISO, and other styles
3

Pink, Richard. "Arithmetical compactification of mixed Shimura varieties." Bonn : [s.n.], 1989. http://catalog.hathitrust.org/api/volumes/oclc/24807098.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ha, Eugene. "Quantum statistical mechanics of Shimura varieties." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980749964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Soylu, Cihan. "Special Cycles on GSpin Shimura Varieties:." Thesis, Boston College, 2017. http://hdl.handle.net/2345/bc-ir:107320.

Full text
Abstract:
Thesis advisor: Ben Howard<br>The results in this dissertation are on the intersection behavior of certain special cycles on GSpin(n, 2) Shimura varieties for n &gt; 1. In particular, we will determine when the intersection of the special cycles defined by a collection of special endomorphisms consists of isolated points in terms of the fundamental matrix of this collection. These generalize the corresponding results in the lower dimensional cases proved by Kudla and Rapoport<br>Thesis (PhD) — Boston College, 2017<br>Submitted to: Boston College. Graduate School of Arts and Sciences<br>Discipl
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Hao. "Congruence relation for GSpin Shimura varieties:." Thesis, Boston College, 2021. http://hdl.handle.net/2345/bc-ir:109206.

Full text
Abstract:
Thesis advisor: Benjamin Howard<br>I prove the Chai-Faltings version of the Eichler-Shimura congruence relation for simple GSpin Shimura varieties with hyperspecial level structures at a prime p<br>Thesis (PhD) — Boston College, 2021<br>Submitted to: Boston College. Graduate School of Arts and Sciences<br>Discipline: Mathematics
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Ke. "Special subvarieties of mixed shimura varieties." Paris 11, 2009. http://www.theses.fr/2009PA112177.

Full text
Abstract:
Cette thèse est dédiée à l'étude de la conjecture d'André-Oort pour les variétés de Shimura mixtes. On montre que dans une variété de Shimura mixte M définie par une donnée de Shimura mixte (P,Y), soient C un Q-tore dans P et Z une sous-variété fermée quelconque dans M, alors l'ensemble des sous-variétés C-spéciales maximales contenues dans Z est fini. La démonstration suit la stratégie de L. Clozel, E. Ullmo, et A. Yafaev dans le cas pure, qui dépend de la théorie de Ratner sur des propriétés ergodiques des flots unipotents sur des espaces homogénes. D'ailleurs, une minoration sur le degré de
APA, Harvard, Vancouver, ISO, and other styles
8

Fiori, Andrew. "Questions in the theory of orthogonal shimura varieties." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119536.

Full text
Abstract:
We investigate a variety of questions in the theory of Shimura varieties of orthogonal type. Firstly we provide a general introduction in the theory of these spaces. Secondly, motivated by the problem of understanding the special points on Shimura varieties of orthogonal type we give a characterization of the maximal algebraic tori contained in orthogonal groups over an arbitrary number field. Finally, motivated by the problem of computing dimension formulas for spaces of modular forms, we compute local representation densities of lattices focusing specifically on those arising from Hermitian
APA, Harvard, Vancouver, ISO, and other styles
9

Bultel, Oliver. "On the mod p-reduction of ordinary CM-points." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388853.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Johansson, Hans Christian. "Classicality of overconvergent automorphic forms on some Shimura varieties." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/12897.

Full text
Abstract:
This thesis consists of two parts. In Part 1 we study the rigid cohomology of the ordinary locus in some compact PEL Shimura varieties of type C with values in automorphic local systems and use it to prove a small slope criterion for classicality of overconvergent Hecke eigenforms, generalizing work of Coleman. In part 2 we compare the conjecture of Buzzard-Gee on the association of Galois representations to C-algebraic automorphic representations with the conjectural description of the cohomology of Shimura varieties due to Kottwitz, and the reciprocity law at infinity due to Arthur. This is
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Shimura varietie"

1

Fargues, Laurent. Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales. Société Mathématique de France, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Benjamin, Howard, and Kudla Stephen S. 1950-, eds. Arithmetic divisors on orthogonal and unitary Shimura varieties. Société Mathématique de France, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Harris, Michael. Boundary cohomology of Shimura varieties, III: Coherent cohomology on higher-rank boundary strata and applications to Hodge theory. Société mathématique de France, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Harris, Michael. Boundary cohomology of Shimura varieties, III: Coherent cohomology on higher-rank boundary strata and applications to Hodge theory. Société Mathématique de France, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hida, Haruzo. p-Adic Automorphic Forms on Shimura Varieties. Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4684-9390-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Atanasov, Stanislav Ivanov. Derived Hecke Operators on Unitary Shimura Varieties. [publisher not identified], 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hida, Haruzo. p-Adic Automorphic Forms on Shimura Varieties. Springer New York, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dung, Nguyen Chi. Geometric pullback formula for unitary Shimura varieties. [publisher not identified], 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Harder, Günter. Eisensteinkohomologie und die Konstruktion gemischter Motive. Springer-Verlag, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Reimann, Harry. The semi-simple zeta function of quaternionic Shimura varieties. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0093995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Shimura varietie"

1

Hida, Haruzo. "Shimura Varieties." In Springer Monographs in Mathematics. Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4684-9390-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gross, Benedict H. "Incoherent Definite Spaces and Shimura Varieties." In Simons Symposia. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68506-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rotger, Victor. "Shimura Curves Embedded in Igusa’s Threefold." In Modular Curves and Abelian Varieties. Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7919-4_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hida, Haruzo. "Modular Curves as Shimura Variety." In Springer Monographs in Mathematics. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6657-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Venkataramana, T. N. "Lefschetz Properties of Subvarieties of Shimura Varieties." In Current Trends in Number Theory. Hindustan Book Agency, 2002. http://dx.doi.org/10.1007/978-93-86279-09-5_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Maeda, Yota, and Yuji Odaka. "Fano Shimura Varieties with Mostly Branched Cusps." In Springer Proceedings in Mathematics & Statistics. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17859-7_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Carlson, James A., and Carlos Simpson. "Shimura Varieties of Weight Two Hodge Structures." In Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0077525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Burgos Gil, José Ignacio. "Chapter X: Arakelov Theory on Shimura Varieties." In Lecture Notes in Mathematics. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57559-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hida, Haruzo. "Invariants, Shimura Variety, and Hecke Algebra." In Springer Monographs in Mathematics. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6657-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rohde, Jan Christian. "An Introduction to Hodge Structures and Shimura Varieties." In Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00639-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Shimura varietie"

1

PAPPAS, GEORGIOS. "ARITHMETIC MODELS FOR SHIMURA VARIETIES." In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Morel, Sophie. "The Intersection Complex as a Weight Truncation and an Application to Shimura Varieties." In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fukada, Ryunosuke, Kimi Ueda, Hirotake Ishii, and Hiroshi Shimoda. "Temporal Analysis Method to Visualize Changes in Alternative Uses Test Performance." In Intelligent Human Systems Integration (IHSI 2024) Integrating People and Intelligent Systems. AHFE International, 2024. http://dx.doi.org/10.54941/ahfe1004485.

Full text
Abstract:
In recent years, creative thinking has been gaining importance. Creative thinking can be broadly classified into two types of thinking: divergent thinking, which generates a wide variety of ideas from a single concept or idea, and convergent thinking, which converges a wide variety of ideas into a single concluding idea. One of the representative methods to evaluate the performance of divergent thinking is the Alternative Uses Test (AUT), a task in which participants are asked to respond to as many ideas for different uses of a presented object as possible. There are several measures of diverg
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Shimura varietie"

1

Blumwald, Eduardo, and Avi Sadka. Citric acid metabolism and mobilization in citrus fruit. United States Department of Agriculture, 2007. http://dx.doi.org/10.32747/2007.7587732.bard.

Full text
Abstract:
Accumulation of citric acid is a major determinant of maturity and fruit quality in citrus. Many citrus varieties accumulate citric acid in concentrations that exceed market desires, reducing grower income and consumer satisfaction. Citrate is accumulated in the vacuole of the juice sac cell, a process that requires both metabolic changes and transport across cellular membranes, in particular, the mitochondrial and the vacuolar (tonoplast) membranes. Although the accumulation of citrate in the vacuoles of juice cells has been clearly demonstrated, the mechanisms for vacuolar citrate homeostasi
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!