Journal articles on the topic 'Shock wave'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Shock wave.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
XU, CHANG-YUE, LI-WEI CHEN, and XI-YUN LU. "NUMERICAL SIMULATION OF SHOCK WAVE AND TURBULENCE INTERACTION OVER A CIRCULAR CYLINDER." Modern Physics Letters B 23, no. 03 (2009): 233–36. http://dx.doi.org/10.1142/s0217984909018084.
Full textXu, Y. F., S. C. Hu, Y. Cai, and S. N. Luo. "Origins of plastic shock waves in single-crystal Cu." Journal of Applied Physics 131, no. 11 (2022): 115901. http://dx.doi.org/10.1063/5.0080757.
Full textLevihin, A.A., and I.A. Volobuev. "Microturbine Wave Compressor Optimal Regimes." Problemele Energeticii Regionale 2(43) (August 13, 2019): 1–9. https://doi.org/10.5281/zenodo.3367056.
Full textGrady, Dennis. "Wave Structuring in the Shock Compression of Geologic Matter at the Planetary and Laboratory Scales." Annual Review of Earth and Planetary Sciences 53, no. 1 (2025): 81–99. https://doi.org/10.1146/annurev-earth-040523-124246.
Full textMatsuda, Atsushi, Naoki Aoyama, and Yoshiaki Kondo. "OS21-3 Shock Wave Modulation due to Discharged Plasma using the Shock Tube(Multiphase Shock Wave,OS21 Shock wave and high-speed gasdynamics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 261. http://dx.doi.org/10.1299/jsmeatem.2015.14.261.
Full textЛеонович, Анатолий, Anatoliy Leonovich, Цюган Цзун, et al. "Alfvén waves in the magnetosphere generated by shock wave / plasmapause interaction." Solar-Terrestrial Physics 5, no. 2 (2019): 9–14. http://dx.doi.org/10.12737/stp-52201902.
Full textSingh, Manpreet, Federico Fraschetti, and Joe Giacalone. "Electrostatic Plasma Wave Excitations at the Interplanetary Shocks." Astrophysical Journal 943, no. 1 (2023): 16. http://dx.doi.org/10.3847/1538-4357/aca7c6.
Full textINOUE, YOSHINORI, and TAKERU YANO. "Propagation of strongly nonlinear plane N-waves." Journal of Fluid Mechanics 341 (June 25, 1997): 59–76. http://dx.doi.org/10.1017/s0022112097005405.
Full textWang, Xiao, and W. E. Cooke. "Wave-function shock waves." Physical Review A 46, no. 7 (1992): 4347–53. http://dx.doi.org/10.1103/physreva.46.4347.
Full textHuete, C., J. G. Wouchuk, B. Canaud, and A. L. Velikovich. "Analytical linear theory for the shock and re-shock of isotropic density inhomogeneities." Journal of Fluid Mechanics 700 (April 30, 2012): 214–45. http://dx.doi.org/10.1017/jfm.2012.126.
Full textHarutyunyan, G. A., A. A. Muradyan, A. R. Aramyan, et al. "Analysis of shock wave propagation in the atmosphere through generated sound waves." Journal of Instrumentation 19, no. 06 (2024): C06012. http://dx.doi.org/10.1088/1748-0221/19/06/c06012.
Full textHarris, S. E. "Sonic shocks governed by the modified Burgers' equation." European Journal of Applied Mathematics 7, no. 2 (1996): 201–22. http://dx.doi.org/10.1017/s0956792500002291.
Full textHang, Peng, and Yao Wenjin. "Propagation characteristics of explosion shock waves in air under different temperature and pressure conditions." Journal of Physics: Conference Series 2891, no. 5 (2024): 052011. https://doi.org/10.1088/1742-6596/2891/5/052011.
Full textBROWN, B. P., and B. M. ARGROW. "Two-dimensional shock tube flow for dense gases." Journal of Fluid Mechanics 349 (October 25, 1997): 95–115. http://dx.doi.org/10.1017/s0022112097006575.
Full textKai, Y., W. Garen, T. Schlegel, and U. Teubner. "A novel shock tube with a laser–plasma driver." Laser and Particle Beams 35, no. 4 (2017): 610–18. http://dx.doi.org/10.1017/s0263034617000635.
Full textGoyal, Eva, Guljot Singh, Vivek Sharma, Jaspreet Gill, and Gagandeep Gupta. "Extra Corporeal Shock Wave – A New Wave of Therapy." Dental Journal of Advance Studies 03, no. 03 (2015): 129–34. http://dx.doi.org/10.1055/s-0038-1672027.
Full textKononov, D. A., D. V. Bisikalo, V. B. Puzin, and A. G. Zhilkin. "Transient Processes in a Binary System with a White Dwarf." Acta Polytechnica CTU Proceedings 2, no. 1 (2015): 46–49. http://dx.doi.org/10.14311/app.2015.02.0046.
Full textLiu, Shuitao, and Gengyan Xing. "The History of Shock Wave Medicine Development in China." Journal of Regenerative Science 3, no. 2 (2023): 3–4. http://dx.doi.org/10.13107/jrs.2023.v03.i02.87.
Full textKawamura, Yosuke, and Masafumi Nakagawa. "OS21-2 Experimental Study on the Oblique Shock Waves and Expansion Waves in the Supersonic Carbon Dioxide Two-phase Flow(Multiphase Shock Wave,OS21 Shock wave and high-speed gasdynamics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 260. http://dx.doi.org/10.1299/jsmeatem.2015.14.260.
Full textVuorinen, Laura, Rami Vainio, Heli Hietala, and Terry Z. Liu. "Monte Carlo Simulations of Electron Acceleration at Bow Waves Driven by Fast Jets in the Earth’s Magnetosheath." Astrophysical Journal 934, no. 2 (2022): 165. http://dx.doi.org/10.3847/1538-4357/ac7f42.
Full textKewalramani, Jitendra, Zhenting Zou, Richard Marsh, Bruce Bukiet, and Jay Meegoda. "Nonlinear Behavior of High-Intensity Ultrasound Propagation in an Ideal Fluid." Acoustics 2, no. 1 (2020): 147–63. http://dx.doi.org/10.3390/acoustics2010011.
Full textGUARDONE, ALBERTO. "Three-dimensional shock tube flows for dense gases." Journal of Fluid Mechanics 583 (July 4, 2007): 423–42. http://dx.doi.org/10.1017/s0022112007006313.
Full textNakagawa, Atsuhiro, Yasuko Kusaka, Takayuki Hirano, et al. "Application of shock waves as a treatment modality in the vicinity of the brain and skull." Journal of Neurosurgery 99, no. 1 (2003): 156–62. http://dx.doi.org/10.3171/jns.2003.99.1.0156.
Full textKravchenko, Denis S., Elena V. Kustova, and Maksim Yu Melnik. "Higher criteria for the regularity of a one-dimensional local field." Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 9, no. 3 (2022): 426–39. http://dx.doi.org/10.21638/spbu01.2022.304.
Full textBohdan, Artem, Aaron Tran, Lorenzo Sironi, and Lynn B. Wilson. "Electrostatic Waves and Electron Holes in Simulations of Low-Mach Quasi-perpendicular Shocks." Astrophysical Journal 974, no. 1 (2024): 37. http://dx.doi.org/10.3847/1538-4357/ad6b0c.
Full textYan, Dong, Jinchang Zhao, and Shaoqing Niu. "Normal Reflection Characteristics of One-Dimensional Unsteady Flow Shock Waves on Rigid Walls from Pulse Discharge in Water." Shock and Vibration 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/6958085.
Full textMARCHANT, T. R., and NOEL F. SMYTH. "APPROXIMATE TECHNIQUES FOR DISPERSIVE SHOCK WAVES IN NONLINEAR MEDIA." Journal of Nonlinear Optical Physics & Materials 21, no. 03 (2012): 1250035. http://dx.doi.org/10.1142/s021886351250035x.
Full textJohnson, Jerome B. "Simple model of shock-wave attenuation in snow." Journal of Glaciology 37, no. 127 (1991): 303–12. http://dx.doi.org/10.1017/s0022143000005724.
Full textJohnson, Jerome B. "Simple model of shock-wave attenuation in snow." Journal of Glaciology 37, no. 127 (1991): 303–12. http://dx.doi.org/10.3189/s0022143000005724.
Full textLubchich, A. A., and I. V. Despirak. "Magnetohydrodynamic waves within the medium separated by the plane shock wave or rotational discontinuity." Annales Geophysicae 23, no. 5 (2005): 1889–908. http://dx.doi.org/10.5194/angeo-23-1889-2005.
Full textHaider, Jamil A., Sana Gul, Jamshaid U. Rahman, and Fiazud D. Zaman. "Travelling Wave Solutions of the Non-Linear Wave Equations." Acta Mechanica et Automatica 17, no. 2 (2023): 239–45. http://dx.doi.org/10.2478/ama-2023-0027.
Full textUddin, Sabur, Shazia Karim, F. S. Alshammari, et al. "Bifurcation Analysis of Travelling Waves and Multi-rogue Wave Solutions for a Nonlinear Pseudo-Parabolic Model of Visco-Elastic Kelvin-Voigt Fluid." Mathematical Problems in Engineering 2022 (September 27, 2022): 1–16. http://dx.doi.org/10.1155/2022/8227124.
Full textXi, Jin, Li Jie, Li Jin, Luo Hao, and Zhang Liheng. "Clinical Study on Appropriate Energy of Extracorporeal Shock Wave for Rotator Cuff Non-calcific Tendinopathy Treatment." Journal of Regenerative Science 3, no. 2 (2023): 47–51. http://dx.doi.org/10.13107/jrs.2023.v03.i02.103.
Full textHarutyunyan, V. G., A. R. Aramyan, G. R. Aramyan, et al. "Study of the Development of Sound Waves Generated by Shock Waves." Journal of Physics: Conference Series 2657, no. 1 (2023): 012008. http://dx.doi.org/10.1088/1742-6596/2657/1/012008.
Full textBai, Chen-Yuan, and Zi-Niu Wu. "Size and shape of shock waves and slipline for Mach reflection in steady flow." Journal of Fluid Mechanics 818 (March 29, 2017): 116–40. http://dx.doi.org/10.1017/jfm.2017.139.
Full textMahesh, Krishnan, Sangsan Lee, Sanjiva K. Lele, and Parviz Moin. "The interaction of an isotropic field of acoustic waves with a shock wave." Journal of Fluid Mechanics 300 (October 10, 1995): 383–407. http://dx.doi.org/10.1017/s0022112095003739.
Full textMarinov, Assen. "Comparison of oblique shock wave angle in analytical and numerical solution." Aerospace Research in Bulgaria 31 (2019): 137–42. http://dx.doi.org/10.3897/arb.v31.e12.
Full textShi, Xiaofei, Terry Liu, Anton Artemyev, Vassilis Angelopoulos, Xiao-Jia Zhang, and Drew L. Turner. "Intense Whistler-mode Waves at Foreshock Transients: Characteristics and Regimes of Wave−Particle Resonant Interaction." Astrophysical Journal 944, no. 2 (2023): 193. http://dx.doi.org/10.3847/1538-4357/acb543.
Full textMarkhotok, Anna. "The Post-Shock Nonequilibrium Relaxation in a Hypersonic Plasma Flow Involving Reflection off a Thermal Discontinuity." Plasma 6, no. 1 (2023): 181–97. http://dx.doi.org/10.3390/plasma6010014.
Full textLEE, SANGSAN, SANJIVA K. LELE, and PARVIZ MOIN. "Interaction of isotropic turbulence with shock waves: effect of shock strength." Journal of Fluid Mechanics 340 (June 10, 1997): 225–47. http://dx.doi.org/10.1017/s0022112097005107.
Full textHewitt, Paul. "SHOCK WAVE." Physics Teacher 58, no. 1 (2020): 4. http://dx.doi.org/10.1119/1.5141957.
Full textHALLUCIGENIA. "Shock wave." Geology Today 11, no. 3 (1995): 86–87. http://dx.doi.org/10.1111/j.1365-2451.1995.tb00919.x.
Full textLowe, R. E., and D. Burgess. "The properties and causes of rippling in quasi-perpendicular collisionless shock fronts." Annales Geophysicae 21, no. 3 (2003): 671–79. http://dx.doi.org/10.5194/angeo-21-671-2003.
Full textCoulouvrat, Francois. "Nonlinear acoustical transmission through a weak shock wave." Journal of the Acoustical Society of America 152, no. 4 (2022): A228. http://dx.doi.org/10.1121/10.0016098.
Full textChen, Kaiyi. "High Energy Cosmic Generation Form Collisionless Shock Wave Acceleration." Highlights in Science, Engineering and Technology 38 (March 16, 2023): 835–41. http://dx.doi.org/10.54097/hset.v38i.5967.
Full textKato, Kaoruko, Miki Fujimura, Atsuhiro Nakagawa, et al. "Pressure-dependent effect of shock waves on rat brain: induction of neuronal apoptosis mediated by a caspase-dependent pathway." Journal of Neurosurgery 106, no. 4 (2007): 667–76. http://dx.doi.org/10.3171/jns.2007.106.4.667.
Full textFaran, Tamar, Christopher D. Matzner, and Eliot Quataert. "Nonlinear Perturbations and Weak Shock Waves in Isentropic Atmospheres." Astrophysical Journal 976, no. 1 (2024): 97. http://dx.doi.org/10.3847/1538-4357/ad843c.
Full textKról, Piotr, Andrzej Franek, Jacek Durmała, et al. "Focused and Radial Shock Wave Therapy in the Treatment of Tennis Elbow: A Pilot Randomised Controlled Study." Journal of Human Kinetics 47, no. 1 (2015): 127–35. http://dx.doi.org/10.1515/hukin-2015-0068.
Full textChen, Na, and Hanhua Ji. "Cardiac Shock Wave Therapy in Cardiovascular Diseases." Journal of Regenerative Science 3, no. 2 (2023): 81–86. http://dx.doi.org/10.13107/jrs.2023.v03.i02.115.
Full textEliezer, Shalom, and Jose Maria Martinez Val. "The comeback of shock waves in inertial fusion energy." Laser and Particle Beams 29, no. 2 (2011): 175–81. http://dx.doi.org/10.1017/s0263034611000140.
Full text