Academic literature on the topic 'Shock waves'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Shock waves.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Shock waves"
MITROVIĆ, DARKO, and MARKO NEDELJKOV. "DELTA SHOCK WAVES AS A LIMIT OF SHOCK WAVES." Journal of Hyperbolic Differential Equations 04, no. 04 (December 2007): 629–53. http://dx.doi.org/10.1142/s021989160700129x.
Full textZhang, Congyao, Eugene Churazov, and Irina Zhuravleva. "Pairs of giant shock waves (N-waves) in merging galaxy clusters." Monthly Notices of the Royal Astronomical Society 501, no. 1 (November 30, 2020): 1038–45. http://dx.doi.org/10.1093/mnras/staa3718.
Full textVimercati, Davide, Giulio Gori, and Alberto Guardone. "Non-ideal oblique shock waves." Journal of Fluid Mechanics 847 (May 21, 2018): 266–85. http://dx.doi.org/10.1017/jfm.2018.328.
Full textЛеонович, Анатолий, Anatoliy Leonovich, Цюган Цзун, Qiugang Zong, Даниил Козлов, Daniil Kozlov, Юнфу Ван, and Yongfu Wang. "Alfvén waves in the magnetosphere generated by shock wave / plasmapause interaction." Solar-Terrestrial Physics 5, no. 2 (June 28, 2019): 9–14. http://dx.doi.org/10.12737/stp-52201902.
Full textDoorly, D. J., and M. L. G. Oldfield. "Simulation of the Effects of Shock Wave Passing on a Turbine Rotor Blade." Journal of Engineering for Gas Turbines and Power 107, no. 4 (October 1, 1985): 998–1006. http://dx.doi.org/10.1115/1.3239847.
Full textDraine, B. T. "MagnetoHydrodynamic shock waves in molecular clouds." Symposium - International Astronomical Union 147 (1991): 185–96. http://dx.doi.org/10.1017/s007418090023951x.
Full textDraine, B. T. "MagnetoHydrodynamic shock waves in molecular clouds." Symposium - International Astronomical Union 147 (1991): 185–96. http://dx.doi.org/10.1017/s0074180900198894.
Full textVieu, T., S. Gabici, and V. Tatischeff. "Particle acceleration at colliding shock waves." Monthly Notices of the Royal Astronomical Society 494, no. 3 (April 24, 2020): 3166–76. http://dx.doi.org/10.1093/mnras/staa799.
Full textLee, Kha Loon. "Shock Waves." CFA Institute Magazine 20, no. 3 (May 2009): 16–19. http://dx.doi.org/10.2469/cfm.v20.n3.8.
Full textButler, Michael. "Shock Waves." Cinema Journal 44, no. 4 (2005): 79–85. http://dx.doi.org/10.1353/cj.2005.0025.
Full textDissertations / Theses on the topic "Shock waves"
Sen, Srimoyee, and Naoki Yamamoto. "Chiral Shock Waves." AMER PHYSICAL SOC, 2017. http://hdl.handle.net/10150/624056.
Full textMolder, Sannu. "Curved aerodynamic shock waves." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110629.
Full text1RésuméLa théorie des ondes de chocs courbées (TOCC; Curved Shock Theory) a été généralisée aux chocs axisymétriques dans un écoulement non uniforme. Une formule générale a été dérivée pour les sauts de vorticité à travers un choc à double courbe dans un écoulement non uniforme. La forme coefficient d'influence des équations des gradients et de la vorticité démontrent l'effet de la variation des conditions en amont. La TOCC a été appliquée à plusieurs écoulements simples avec chocs incluant l'orientation de la surface sonique à la face arrière d'un choc à double courbe. Cette orientation est importante pour déterminer l'existence d'ondes de choc intégrées à l'écoulement aval. L'application de la TOCC aux ondes de choc courbées, concaves et normales permet de dériver une relation explicite entre la courbe du choc et la longueur de l'écoulement subsonique derrière l'onde. L'étude analytique, numérique et expérimentale des écoulements coniques n'a pas permis de démontrer l'existence de réflexions régulières des chocs à l'axe de symétrie des écoulements. Un choc conique prédit analytiquement sur la ligne d'écoulement n'atteint pas l'axe central, mais se termine en réflexion Mach. Il semble que l'existence d'une solution Taylor-Mccoll (T-M) ne garantit pas l'existence physique d'un écoulement conique. Les équations T-M prédisent l'existence d'un train d'ondes de compression axisymétrique, analogue au train d'ondes de Prandtl-Meyer dans un écoulement planaire. Un choc conique détaché est situé en aval du train de compression. L'existence des deux caractéristiques a été démontrée par CFD ainsi qu'expérimentalement. L'écoulement Busemann est le seul écoulement où ces structures d'ondes peuvent exister : une compression centrée peut être reflétée en onde de choc conique. La découverte d'un point d'inflexion dans la ligne d'écoulement de Busemann a une implication importante au démarrage spontané de diffuseurs Busemann. Trois types d'écoulements peuvent exister à l'arrière d'un choc concave à double courbure : ils sont caractérisés par l'orientation de la surface sonique qui, à son tour, est déterminée par le nombre de Mach pré-choc et le ratio de courbures du choc. Des formes de surfaces d'ondes de choc axiales particulières, avec écoulement droit en aval (chocs Crocco), ou avec un gradient de pression tendant vers zéro dans l'axe d'écoulement (chocs Thomas) ainsi que des chocs avec une réflectivité acoustique spécifique (incluant nulle) ont été calculées et illustrées. Une réduction du bruit de couche limite est aussi possible.2L'étranglement local au bord d'attaque d'une pointe courbée mène au détachement de l'onde de choc, lequel dépend du nombre de Mach de l'écoulement libre, de l'angle, de la courbure et de la longueur de la pointe. Ce sont de nouveaux critères pour le détachement du choc avec des analogies pouvant s'étendre aux transitions des réflexions régulières aux réflexions Mach.
Eliasson, Veronica. "On focusing of shock waves." Doctoral thesis, Stockholm : Mekanik, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4479.
Full textBarker, Bryn Nicole. "Stability of MHD Shock Waves." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8437.
Full textFu, Y. "Propagation of weak shock waves in nonlinear solids." Thesis, University of East Anglia, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384589.
Full textEliasson, Veronica. "On focusing of strong shock waves." Licentiate thesis, Stockholm : Department of Mechanics, Royal Institute of Technology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-565.
Full textOwen, Neil R. "Targeting of stones and identification of stone fragmentation in shock wave lithotripsy /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/5895.
Full textCarter, John P. "Magnetic field generation in shock waves." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1994. http://edocs.nps.edu/npspubs/scholarly/theses/1994/June/94Jun_Carter.pdf.
Full textWaterman, Alfred James. "Laser-driven shock waves in quartz." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/28728.
Full textScience, Faculty of
Physics and Astronomy, Department of
Graduate
Miyahara, Seiji, Takahiro Kawashima, and Yukiharu Ohsawa. "Field strengths in oblique shock waves." American Institute of Physics, 2003. http://hdl.handle.net/2237/7022.
Full textBooks on the topic "Shock waves"
Takayama, Kazuyoshi, ed. Shock Waves. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77648-9.
Full textJiang, Z., ed. Shock Waves. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-27009-6.
Full textHannemann, Klaus, and Friedrich Seiler, eds. Shock Waves. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85168-4.
Full textHannemann, Klaus, and Friedrich Seiler, eds. Shock Waves. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85181-3.
Full textCopyright Paperback Collection (Library of Congress), ed. Shock waves. New York: Silhouette Books, 2004.
Find full textHannemann, Klaus. Shock Waves: 26th International Symposium on Shock Waves, Volume 2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
Find full textHannemann, Klaus. Shock Waves: 26th International Symposium on Shock Waves, Volume 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
Find full textSrivastava, R. S. Interaction of Shock Waves. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1086-0.
Full textBook chapters on the topic "Shock waves"
Hornung, H. G. "Relaxation effects in hypervelocity flow: selected contributions from the T5 Lab." In Shock Waves, 3–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85168-4_1.
Full textKitagawa, K., S. Yamashita, K. Takayama, and M. Yasuhara. "Attenuation properties of blast wave through porous layer." In Shock Waves, 73–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85168-4_10.
Full textSato, K., T. Komuro, M. Takahashi, T. Hashimoto, H. Tanno, and K. Itoh. "Force measurements of blunt cone models in the HIEST high enthalpy shock tunnel." In Shock Waves, 625–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85168-4_100.
Full textReddeppa, P., K. Nagashetty, and G. Jagadeesh. "Investigations of separated flow over backward facing steps in IISc hypersonic shock tunnel." In Shock Waves, 631–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85168-4_101.
Full textSaravanan, S., G. Jagadeesh, and K. P. J. Reddy. "Measurement of aerodynamic forces for missile shaped body in hypersonic shock tunnel using 6-component accelerometer based balance system." In Shock Waves, 637–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85168-4_102.
Full textSatheesh, K., and G. Jagadeesh. "Measurement of shock stand-off distance on a 120° blunt cone model at hypersonic Mach number in Argon." In Shock Waves, 643–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85168-4_103.
Full textFalcovitz, J., and O. Igra. "Model for shock interaction with sharp area reduction." In Shock Waves, 647–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85168-4_104.
Full textJosyula, E., and W. F. Bailey. "Modelling dissociation in hypersonic blunt body and nozzle flows in thermochemical nonequilibrium." In Shock Waves, 653–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85168-4_105.
Full textKudryavtsev, A., S. Mironov, T. Poplavskaya, and I. Tsyryulnikov. "Numerical and experimental investigation of viscous shock layer receptivity and instability." In Shock Waves, 659–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85168-4_106.
Full textWolf, T., M. Estorf, and R. Radespiel. "Numerical rebuilding of the flow in a valve-controlled Ludwieg tube." In Shock Waves, 665–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85168-4_107.
Full textConference papers on the topic "Shock waves"
Nixon, David. "Shock Waves, Vorticity and Vorticity Shocks." In 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-1287.
Full textAlhussan, Khaled. "Detached Shock Waves Analysis." In ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98394.
Full textSturtevant, B., J. E. Shepherd, and H. G. Hornung. "Shock Wave." In 20th International Symposium on Shock Waves. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814531351.
Full textTakayama, Kazuyoshi. "Underwater Shock Waves to Medicine." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2630.
Full textBaird, John P., J. Thomas, and W. S. Joe. "The interaction of oblique shocks in a shock layer in hypersonic flow." In Current topics in shock waves 17th international symposium on shock waves and shock tubes Bethlehem, Pennsylvania (USA). AIP, 1990. http://dx.doi.org/10.1063/1.39514.
Full textTamagawa, Masaaki, and Norikazu Ishimatsu. "Effects of Shock Waves on Acceleration of Cell Growth Rate by Shock Tube." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68216.
Full textIvandaev, A. I. "Shock waves in dusty gases." In Current topics in shock waves 17th international symposium on shock waves and shock tubes Bethlehem, Pennsylvania (USA). AIP, 1990. http://dx.doi.org/10.1063/1.39461.
Full textDewey, J. M., M. Olim, A. A. Van Netten, and D. K. Walker. "The properties of curved oblique shocks associated with the reflection of weak shock waves." In Current topics in shock waves 17th international symposium on shock waves and shock tubes Bethlehem, Pennsylvania (USA). AIP, 1990. http://dx.doi.org/10.1063/1.39439.
Full textKaniel, A., O. Igra, Gabi Ben-Dor, and Michael Mond. "ON IONIZING SHOCK WAVES." In International Heat Transfer Conference 8. Connecticut: Begellhouse, 1986. http://dx.doi.org/10.1615/ihtc8.4500.
Full textAarav, Shaurya, Xiaohang Sun, and Jason W. Fleischer. "Partially Coherent Shock Waves." In Nonlinear Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/nlo.2023.m3a.5.
Full textReports on the topic "Shock waves"
Anderson, William Wyatt. Introduction to Shock Waves and Shock Wave Research. Office of Scientific and Technical Information (OSTI), February 2017. http://dx.doi.org/10.2172/1342845.
Full textTang, Zhijing, and K. Anderson. Shock waves in P-bar target. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/5816096.
Full textTang, Zhijing, and K. Anderson. Shock waves in P-bar target. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/10117720.
Full textHenrick, Andrew. Shock Waves; Rarefaction Waves; Equations of State A Solution Guide. Office of Scientific and Technical Information (OSTI), February 2024. http://dx.doi.org/10.2172/2315698.
Full textPetersen, Eric L., and Ronald K. Hanson. Nonideal Effects Behind Reflected Shock Waves in a High-Pressure Shock Tube. Fort Belvoir, VA: Defense Technical Information Center, March 1999. http://dx.doi.org/10.21236/ada379020.
Full textBook, David L. International Symposium on Shock Tubes and Waves (16th). Fort Belvoir, VA: Defense Technical Information Center, May 1988. http://dx.doi.org/10.21236/ada209305.
Full textBaty, Roy S., Don H. Tucker, and Dan Stanescu. Nonstandard jump functions for radially symmetric shock waves. Office of Scientific and Technical Information (OSTI), October 2008. http://dx.doi.org/10.2172/948551.
Full textShearer, Michael. Viscous Profiles and Numerical Methods for Shock Waves. Fort Belvoir, VA: Defense Technical Information Center, June 1991. http://dx.doi.org/10.21236/ada238464.
Full textWalters, William P. Shock Waves in the Study of Shaped Charges. Fort Belvoir, VA: Defense Technical Information Center, August 1991. http://dx.doi.org/10.21236/ada240999.
Full textShearer, Michael. Viscous Profiles and Numerical Methods for Shock Waves. Fort Belvoir, VA: Defense Technical Information Center, June 1991. http://dx.doi.org/10.21236/ada246110.
Full text