Journal articles on the topic 'Shockley–Read–Hall recombination'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Shockley–Read–Hall recombination.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sakowski, Konrad, Pawel Strak, Pawel Kempisty, et al. "Coulomb Contribution to Shockley–Read–Hall Recombination." Materials 17, no. 18 (2024): 4581. http://dx.doi.org/10.3390/ma17184581.
Full textWebster, P. T., R. A. Carrasco, A. T. Newell, et al. "Utility of Shockley–Read–Hall analysis to extract defect properties from semiconductor minority carrier lifetime data." Journal of Applied Physics 133, no. 12 (2023): 125704. http://dx.doi.org/10.1063/5.0147482.
Full textGhannam, Moustafa Y., and Husain A. Kamal. "Modeling Surface Recombination at the p-TypeSi/SiO2Interface via Dangling Bond Amphoteric Centers." Advances in Condensed Matter Physics 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/857907.
Full textKnezevic-Miljanovic, Julka. "On a SHOCKLEY-READ-HALL model for semiconductors." Theoretical and Applied Mechanics 40, no. 1 (2013): 65–70. http://dx.doi.org/10.2298/tam1301065k.
Full textIvchenko, E. L., V. K. Kalevich, A. Kunold, A. Balocchi, X. Marie, and T. Amand. "Hyperfine Interaction and Shockley–Read–Hall Recombination in Semiconductors." Semiconductors 53, no. 9 (2019): 1175–81. http://dx.doi.org/10.1134/s1063782619090070.
Full textZhao, Chao, Tien Khee Ng, Aditya Prabaswara, et al. "An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for mitigating Shockley–Read–Hall recombination." Nanoscale 7, no. 40 (2015): 16658–65. http://dx.doi.org/10.1039/c5nr03448e.
Full textSchuster, J., R. E. DeWames, E. A. DeCuir, E. Bellotti, and P. S. Wijewarnasuriya. "Junction optimization in HgCdTe: Shockley-Read-Hall generation-recombination suppression." Applied Physics Letters 107, no. 2 (2015): 023502. http://dx.doi.org/10.1063/1.4926603.
Full textGHANNAM, M. Y., R. P. MERTENS, S. C. JAIN, J. F. NIJS, and R. VAN OVERSTRAETEN. "BAND-TAIL SHOCKLEY-READ-HALL RECOMBINATION IN HEAVILY DOPED SILICON." Le Journal de Physique Colloques 49, no. C4 (1988): C4–275—C4–280. http://dx.doi.org/10.1051/jphyscol:1988457.
Full textMartí, A., L. Cuadra, N. López, and A. Luque. "Intermediate band solar cells: Comparison with shockley-read-hall recombination." Semiconductors 38, no. 8 (2004): 946–49. http://dx.doi.org/10.1134/1.1787117.
Full textGoudon, Thierry, Vera Miljanović, and Christian Schmeiser. "On the Shockley–Read–Hall Model: Generation-Recombination in Semiconductors." SIAM Journal on Applied Mathematics 67, no. 4 (2007): 1183–201. http://dx.doi.org/10.1137/060650751.
Full textBorgwardt, M., P. Sippel, R. Eichberger, M. P. Semtsiv, W. T. Masselink, and K. Schwarzburg. "Excitation correlation photoluminescence in the presence of Shockley-Read-Hall recombination." Journal of Applied Physics 117, no. 21 (2015): 215702. http://dx.doi.org/10.1063/1.4921704.
Full textCockbill, Louisa. "Shockley-Read-Hall recombination affects electroluminescence efficiency in gallium nitride LEDs." Scilight 2017, no. 13 (2017): 130005. http://dx.doi.org/10.1063/1.5005524.
Full textWickramaratne, Darshana, Jimmy-Xuan Shen, Cyrus E. Dreyer, et al. "Iron as a source of efficient Shockley-Read-Hall recombination in GaN." Applied Physics Letters 109, no. 16 (2016): 162107. http://dx.doi.org/10.1063/1.4964831.
Full textGogolin, R., and N. P. Harder. "Trapping behavior of Shockley-Read-Hall recombination centers in silicon solar cells." Journal of Applied Physics 114, no. 6 (2013): 064504. http://dx.doi.org/10.1063/1.4817910.
Full textKrishnamurthy, Srinivasan, and M. A. Berding. "Full-band-structure calculation of Shockley–Read–Hall recombination rates in InAs." Journal of Applied Physics 90, no. 2 (2001): 848–51. http://dx.doi.org/10.1063/1.1381051.
Full textSachenko, A. V., V. P. Kostylyov, R. M. Korkishko, et al. "Simulation and characterization of planar high-efficiency back contact silicon solar cells." Semiconductor Physics, Quantum Electronics and Optoelectronics 24, no. 3 (2021): 319–27. http://dx.doi.org/10.15407/spqeo24.03.319.
Full textDvoretsky S.A., Stupak M.F., Mikhailov N.N., et al. "New recombination centers in MBE MCT layers on (013) GaAs substrates." Physics of the Solid State 65, no. 1 (2023): 53. http://dx.doi.org/10.21883/pss.2023.01.54974.466.
Full textZhou, Renlin, Masao Ikeda, Feng Zhang, et al. "Total-InGaN-thickness dependent Shockley-Read-Hall recombination lifetime in InGaN quantum wells." Journal of Applied Physics 127, no. 1 (2020): 013103. http://dx.doi.org/10.1063/1.5131716.
Full textДворецкий, С. А., М. Ф. Ступак, Н. Н. Михайлов та ін. "Новые центры рекомбинации в слоях КРТ МЛЭ на подложках (013) GaAs". Физика твердого тела 65, № 1 (2023): 56. http://dx.doi.org/10.21883/ftt.2023.01.53923.466.
Full textUsman, Muhammad, Urooj Mushtaq, Dong-Guang Zheng, Dong-Pyo Han, Muhammad Rafiq, and Nazeer Muhammad. "Enhanced Internal Quantum Efficiency of Bandgap-Engineered Green W-Shaped Quantum Well Light-Emitting Diode." Applied Sciences 9, no. 1 (2018): 77. http://dx.doi.org/10.3390/app9010077.
Full textSachenko, Anatoly, Vitaliy Kostylyov, Mykola Gerasymenko, et al. "Analysis of the silicon solar cells efficiency. Type of doping and level optimization." Semiconductor Physics, Quantum Electronics & Optoelectronics. 19, no. 1 (2016): 67–74. https://doi.org/10.15407/spqeo19.01.067.
Full textMayani, Maryam Gholami, and Turid Worren Reenaas. "Shockley-Read-Hall recombination in pre-filled and photo-filled intermediate band solar cells." Applied Physics Letters 105, no. 7 (2014): 073904. http://dx.doi.org/10.1063/1.4893613.
Full textTzabari, Lior, and Nir Tessler. "Shockley–Read–Hall recombination in P3HT:PCBM solar cells as observed under ultralow light intensities." Journal of Applied Physics 109, no. 6 (2011): 064501. http://dx.doi.org/10.1063/1.3549820.
Full textChang, Jih-Yuan, Ya-Hsuan Shih, Man-Fang Huang, Fang-Ming Chen, and Yen-Kuang Kuo. "Shockley-Read-Hall and Auger Recombination in Blue InGaN Tunnel-Junction Light-Emitting Diodes." physica status solidi (a) 215, no. 21 (2018): 1800271. http://dx.doi.org/10.1002/pssa.201800271.
Full textSogabe, Tomah, Kodai Shiba, and Katsuyoshi Sakamoto. "Hydrodynamic and Energy Transport Model-Based Hot-Carrier Effect in GaAs pin Solar Cell." Electronic Materials 3, no. 2 (2022): 185–200. http://dx.doi.org/10.3390/electronicmat3020016.
Full textFu, Jing, Lin Wen, Jie Feng, et al. "Quantum Efficiency Simulation and Analysis of Irradiated Complementary Metal-Oxide Semiconductor Image Sensors." Journal of Nanoelectronics and Optoelectronics 17, no. 2 (2022): 311–18. http://dx.doi.org/10.1166/jno.2022.3199.
Full textAnchal, Neha, and Bijay Kumar Sahoo. "Polarization mechanism and Shockley Read Hall recombination on Quantum Efficiency of InGaN/GaN Blue LED." IOP Conference Series: Materials Science and Engineering 798 (May 27, 2020): 012017. http://dx.doi.org/10.1088/1757-899x/798/1/012017.
Full textSugawara, Y., N. Nakajima, and S. Fukatsu. "Diminished Shockley–Read–Hall recombination in near-surface pseudomorphic Si1−xGex/Si double quantum wells." Thin Solid Films 508, no. 1-2 (2006): 414–17. http://dx.doi.org/10.1016/j.tsf.2005.09.199.
Full textChai, X. L., Y. Zhou, W. L. Zhang, et al. "High efficiency mid-infrared interband cascade light emitting diodes with immersion lens." Applied Physics Letters 122, no. 12 (2023): 121103. http://dx.doi.org/10.1063/5.0143226.
Full textDavid, Aurelien, Christophe A. Hurni, Nathan G. Young, and Michael D. Craven. "Field-assisted Shockley-Read-Hall recombinations in III-nitride quantum wells." Applied Physics Letters 111, no. 23 (2017): 233501. http://dx.doi.org/10.1063/1.5003112.
Full textTanaka, Kazuhiro, and Masashi Kato. "Carrier recombination in highly Al doped 4H-SiC: dependence on the injection conditions." Japanese Journal of Applied Physics 63, no. 1 (2024): 011002. http://dx.doi.org/10.35848/1347-4065/ad160c.
Full textAeberhard, Urs. "Quantum-kinetic Theory of Defect-mediated Recombination in Nanostructure-based Photovoltaic Devices." MRS Proceedings 1493 (2013): 91–96. http://dx.doi.org/10.1557/opl.2013.226.
Full textDreyer, Cyrus E., Audrius Alkauskas, John L. Lyons, James S. Speck, and Chris G. Van de Walle. "Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters." Applied Physics Letters 108, no. 14 (2016): 141101. http://dx.doi.org/10.1063/1.4942674.
Full textAberle, Armin G., Stefan Glunz, and Wilhelm Warta. "Impact of illumination level and oxide parameters on Shockley–Read–Hall recombination at the Si‐SiO2interface." Journal of Applied Physics 71, no. 9 (1992): 4422–31. http://dx.doi.org/10.1063/1.350782.
Full textSchenk, A. "An improved approach to the Shockley–Read–Hall recombination in inhomogeneous fields of space‐charge regions." Journal of Applied Physics 71, no. 7 (1992): 3339–49. http://dx.doi.org/10.1063/1.350929.
Full textOlivier, Francois, Anis Daami, Christophe Licitra, and Francois Templier. "Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: A size effect study." Applied Physics Letters 111, no. 2 (2017): 022104. http://dx.doi.org/10.1063/1.4993741.
Full textSachenko, A. V. "The influence of the exciton non-radiative recombination in silicon on the photoconversion efficiency. 1. The case of a long Shockley–Read–Hall lifetime." Semiconductor Physics Quantum Electronics and Optoelectronics 19, no. 4 (2016): 334–42. http://dx.doi.org/10.15407/spqeo19.04.334.
Full textBoulfrad, Yacine, Gaute Stokkan, Mohammed M'Hamdi, Eivind Øvrelid, and Lars Arnberg. "Modeling of Lifetime Distribution in a Multicrystalline Silicon Ingot." Solid State Phenomena 178-179 (August 2011): 507–12. http://dx.doi.org/10.4028/www.scientific.net/ssp.178-179.507.
Full textHuang, Yang, Zhiqiang Liu, Xiaoyan Yi, et al. "Carrier leakage effect on efficiency droop in InGaN/GaN light-emitting diodes." Modern Physics Letters B 30, no. 20 (2016): 1650221. http://dx.doi.org/10.1142/s0217984916502213.
Full textSachenko, A. V. "Influence of non-radiative exciton recombination in silicon on photoconversion efficiency. 2. Short Shockley–Read–Hall lifetimes." Semiconductor Physics Quantum Electronics and Optoelectronics 20, no. 1 (2017): 34–40. http://dx.doi.org/10.15407/spqeo20.01.034.
Full textHu, Sai, and Karl Hess. "An Application of the Recombination and Generation Theory by Shockley, Read and Hall to Biological Ion Channels." Journal of Computational Electronics 4, no. 1-2 (2005): 153–56. http://dx.doi.org/10.1007/s10825-005-7128-3.
Full textChen, Fang-Ming, Man-Fang Huang, Jih-Yuan Chang, and Yen-Kuang Kuo. "Effects of number of quantum wells and Shockley–Read–Hall recombination in deep-ultraviolet light-emitting diodes." Optics Letters 45, no. 13 (2020): 3749. http://dx.doi.org/10.1364/ol.397140.
Full textLiu, Wei, Degang Zhao, Desheng Jiang, et al. "Shockley–Read–Hall recombination and efficiency droop in InGaN/GaN multiple-quantum-well green light-emitting diodes." Journal of Physics D: Applied Physics 49, no. 14 (2016): 145104. http://dx.doi.org/10.1088/0022-3727/49/14/145104.
Full textBuffolo, Matteo, Alessandro Magri, Carlo De Santi, Gaudenzio Meneghesso, Enrico Zanoni, and Matteo Meneghini. "Gradual Degradation of InGaAs LEDs: Impact on Non-Radiative Lifetime and Extraction of Defect Characteristics." Materials 14, no. 5 (2021): 1114. http://dx.doi.org/10.3390/ma14051114.
Full textЕвстигнеев, В. С., В. С. Варавин, А. В. Чилясов, В. Г. Ремесник, А. Н. Моисеев та Б. С. Степанов. "Электрофизические свойства нелегированных и легированных мышьяком эпитаксиальных слоев Hg-=SUB=-1-x-=/SUB=-Cd-=SUB=-x-=/SUB=-Te p-типа проводимости с x~0.4, выращенных методом MOCVD". Физика и техника полупроводников 52, № 6 (2018): 554. http://dx.doi.org/10.21883/ftp.2018.06.45914.8696.
Full textChu, Weibin, Qijing Zheng, Oleg V. Prezhdo, Jin Zhao, and Wissam A. Saidi. "Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron-hole recombination." Science Advances 6, no. 7 (2020): eaaw7453. http://dx.doi.org/10.1126/sciadv.aaw7453.
Full textCONNELLY, BLAIR C., GRACE D. METCALFE, PAUL H. SHEN, and MICHAEL WRABACK. "TIME-RESOLVED PHOTOLUMINESCENCE STUDY OF TYPE II SUPERLATTICE STRUCTURES WITH VARYING ABSORBER WIDTHS." International Journal of High Speed Electronics and Systems 20, no. 03 (2011): 541–48. http://dx.doi.org/10.1142/s0129156411006830.
Full textZhao, Zengchao, Bingye Zhang, Ping Li, Wan Guo, and Aimin Liu. "Effective Passivation of Large Area Black Silicon Solar Cells bySiO2/SiNx:H Stacks." International Journal of Photoenergy 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/683654.
Full textShura, Megersa Wodajo. "A Simple Method to Differentiate between Free-Carrier Recombination and Trapping Centers in the Bandgap of the p-Type Semiconductor." Advances in Materials Science and Engineering 2021 (September 7, 2021): 1–13. http://dx.doi.org/10.1155/2021/5568880.
Full textFang, Ruilin, Guang-Qiong Xia, Yan-Fei Zheng, Qing-Qing Wang, and Zheng-Mao Wu. "Nonlinear Dynamics of Silicon-Based Epitaxial Quantum Dot Lasers under Optical Injection." Photonics 11, no. 8 (2024): 684. http://dx.doi.org/10.3390/photonics11080684.
Full text