Academic literature on the topic 'Short lap splice'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Short lap splice.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Short lap splice"

1

Tri Cahyani, Rizki Amalia. "CYCLIC BEHAVIOUR OF LIGHTLY REINFORCED CONCRETE COLUMNS WITH NON-DUCTILE LAP SPLICES." Jurnal Media Teknik Sipil 16, no. 1 (2018): 42. http://dx.doi.org/10.22219/jmts.v16i1.5110.

Full text
Abstract:
Experimental testing of lightly reinforced concrete column was conducted to investigate the collapse behavior of such column under cyclic lateral loading. Six column specimens, which have low longitudinal reinforcement and lack of confinement, were detailed with no lap splice, and non-ductile lap splice within or outside critical region. Placing the short, unconfined column's lap splice within critical region caused peak moment to fall short under its nominal moment capacity. In contrast, moment capacity of the specimen containing non-ductile lap splice outside critical region was in close agreement with those of specimen without lap splice. However, its inelastic damage region was moving away from the beam-column interface, resulted in degradation of drift capacity and rapid degradation of lateral strength. The presence of non-ductile lap splice outside critical region also potentially shift column's collapse mechanism from flexure to flexure-shear critical. The ability of lightly reinforced concrete columns to maintain its axial load carrying capacity to large drift ratios despite heavy damage and significant loss of lateral load carrying capacity indicates that lap splice failure does not create sudden collapse hazard.
APA, Harvard, Vancouver, ISO, and other styles
2

Kelln, Roanne D., and Lisa R. Feldman. "Bar size factors for lap splices in block walls subjected to flexure." Canadian Journal of Civil Engineering 42, no. 8 (2015): 521–29. http://dx.doi.org/10.1139/cjce-2015-0024.

Full text
Abstract:
An experimental investigation was conducted to evaluate bar size factors used for the calculation of required lap splice lengths according to US and Canadian codes for concrete block masonry walls subjected to out-of-plane loads. Wall splice specimens were constructed in running bond with all cells fully grouted, and were tested under monotonically increasing four-point loading. Specimens were longitudinally reinforced with either No. 15, 20, or 25 reinforcing bars with varying lap splice lengths that were sufficiently short to ensure that a bond failure would precede a failure in flexure. Modifications to the bar size factors included in both codes were derived from the resulting test data. The evaluation of the test data shows that decreases to lap splice lengths could be considered for walls subjected to out-of-plane loads, which would facilitate construction.
APA, Harvard, Vancouver, ISO, and other styles
3

Pantazopoulou, Stavroula J., Michael F. Petrou, Vasiliki Spastri, Nikos Archontas, and Christos Christofides. "The performance of corroded lap splices in reinforced concrete beams." Corrosion Reviews 37, no. 1 (2019): 31–44. http://dx.doi.org/10.1515/corrrev-2017-0086.

Full text
Abstract:
AbstractThis article presents the results of an extensive experimental program containing 22 beams with tension lap splices in the central region. The beams were preconditioned under simulated corrosion up to specific levels of bar section steel loss and cover cracking in the lap region. They were subsequently tested under four-point loading so as to place the corroded lap splice zones in tension. To prevent corrosion outside the study region, the beams were wrapped with fiber-reinforced polymers outside the laps – this also served to protect them from premature shear failure as the objective was to study failure in the lap zone. The objective of the experiment was to assess the residual anchorage capacity of such zones. The parameters of the experimental study were the extent of corrosion and the available length of lap splicing of longitudinal tension reinforcement. Corroded bond strength was determined from the short-length lap splices, where it may be assumed that stresses are uniformly distributed over the lapped zone; longer specimens were considered in order to examine how the redundancy provided by the longer contact length may improve the resilience and deformation capacity of the corrosion-damaged component prior to bond failure.
APA, Harvard, Vancouver, ISO, and other styles
4

Sharobeem, Girgis F. G., Mohamed F. M. FAhmy, and Omar A. Farghal. "EFFECT OF USING HIGHLY CONFINED SHORT LAP-SPLICE REINFORCEMENT ON SEISMIC PERFORMANCE OF EXTERIOR BEAM-COLUMN JOINT." JES. Journal of Engineering Sciences 44, no. 5 (2016): 502–12. http://dx.doi.org/10.21608/jesaun.2016.117614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stapleton, Seth E., Cole C. McDaniel, William F. Cofer, and David I. McLean. "Performance of Lightly Confined Reinforced Concrete Columns in Long-Duration Subduction Zone Earthquakes." Transportation Research Record: Journal of the Transportation Research Board 1928, no. 1 (2005): 184–92. http://dx.doi.org/10.1177/0361198105192800120.

Full text
Abstract:
The main goals of this research were to evaluate typical 1950s and 1960s as-built bridge columns in western Washington State in large subduction zone earthquakes and to investigate the dependency of failure mechanisms on loading history. Eight displacement histories were applied to eight nominally identical, half-scale, circular reinforced concrete columns expected to respond primarily in flexure (flexure-dominated). The main design deficiencies were a short longitudinal reinforcement lap splice at the base of the column (35 db) and inadequate transverse reinforcement. Test results showed that the failure mode of reinforced concrete columns was controlled by the column loading history. Three distinct failure mechanisms were observed for columns with an aspect ratio of approximately 4.2, assuming symmetric, double-curvature behavior. Large initial displacements greater than six times the effective yield displacement (Δ y) were likely to result in shear failures. Columns experiencing many displacements less than 4Δ y were likely to fail because of longitudinal reinforcement buckling. Columns subjected to several displacement excursions less than 4Δ y followed by an excursion greater than 6Δ y were likely to fail by longitudinal reinforcement slipping within the splice region. Despite the deficiencies present in circular reinforced concrete bridge columns built before 1975 in western Washington State, this study showed that flexure-dominated columns with a 35 db lap splice in multiple-column bent, three-or four-span bridges were not likely to experience significant damage in the predicted Cascadia Subduction Zone earthquake. However, other components of the bridge need to be assessed to determine whether the global bridge response is acceptable under the predicted Cascadia Subduction Zone earthquake.
APA, Harvard, Vancouver, ISO, and other styles
6

Cizdziel, P. E., M. de Mars, and E. C. Murphy. "Exploitation of a thermosensitive splicing event to study pre-mRNA splicing in vivo." Molecular and Cellular Biology 8, no. 4 (1988): 1558–69. http://dx.doi.org/10.1128/mcb.8.4.1558.

Full text
Abstract:
The spliced form of MuSVts110 viral RNA is approximately 20-fold more abundant at growth temperatures of 33 degrees C or lower than at 37 to 41 degrees C. This difference is due to changes in the efficiency of MuSVts110 RNA splicing rather than selective thermolability of the spliced species at 37 to 41 degrees C or general thermosensitivity of RNA splicing in MuSVts110-infected cells. Moreover, RNA transcribed from MuSVts110 DNA introduced into a variety of cell lines is spliced in a temperature-sensitive fashion, suggesting that the structure of the viral RNA controls the efficiency of the event. We exploited this novel splicing event to study the cleavage and ligation events during splicing in vivo. No spliced viral mRNA or splicing intermediates were observed in MuSVts110-infected cells (6m2 cells) at 39 degrees C. However, after a short (about 30-min) lag following a shift to 33 degrees C, viral pre-mRNA cleaved at the 5' splice site began to accumulate. Ligated exons were not detected until about 60 min following the initial detection of cleavage at the 5' splice site, suggesting that these two splicing reactions did not occur concurrently. Splicing of viral RNA in the MuSVts110 revertant 54-5A4, which lacks the sequence -AG/TGT- at the usual 3' splice site, was studied. Cleavage at the 5' splice site in the revertant viral RNA proceeded in a temperature-sensitive fashion. No novel cryptic 3' splice sites were activated; however, splicing at an alternate upstream 3' splice site used at low efficiency in normal MuSVts110 RNA was increased to a level close to that of 5'-splice-site cleavage in the revertant viral RNA. Increased splicing at this site in 54-5A4 viral RNA is probably driven by the unavailability of the usual 3' splice site for exon ligation. The thermosensitivity of this alternate splice event suggests that the sequences governing the thermodependence of MuSVts110 RNA splicing do not involve any particular 3' splice site or branch point sequence, but rather lie near the 5' end of the intron.
APA, Harvard, Vancouver, ISO, and other styles
7

Cizdziel, P. E., M. de Mars, and E. C. Murphy. "Exploitation of a thermosensitive splicing event to study pre-mRNA splicing in vivo." Molecular and Cellular Biology 8, no. 4 (1988): 1558–69. http://dx.doi.org/10.1128/mcb.8.4.1558-1569.1988.

Full text
Abstract:
The spliced form of MuSVts110 viral RNA is approximately 20-fold more abundant at growth temperatures of 33 degrees C or lower than at 37 to 41 degrees C. This difference is due to changes in the efficiency of MuSVts110 RNA splicing rather than selective thermolability of the spliced species at 37 to 41 degrees C or general thermosensitivity of RNA splicing in MuSVts110-infected cells. Moreover, RNA transcribed from MuSVts110 DNA introduced into a variety of cell lines is spliced in a temperature-sensitive fashion, suggesting that the structure of the viral RNA controls the efficiency of the event. We exploited this novel splicing event to study the cleavage and ligation events during splicing in vivo. No spliced viral mRNA or splicing intermediates were observed in MuSVts110-infected cells (6m2 cells) at 39 degrees C. However, after a short (about 30-min) lag following a shift to 33 degrees C, viral pre-mRNA cleaved at the 5' splice site began to accumulate. Ligated exons were not detected until about 60 min following the initial detection of cleavage at the 5' splice site, suggesting that these two splicing reactions did not occur concurrently. Splicing of viral RNA in the MuSVts110 revertant 54-5A4, which lacks the sequence -AG/TGT- at the usual 3' splice site, was studied. Cleavage at the 5' splice site in the revertant viral RNA proceeded in a temperature-sensitive fashion. No novel cryptic 3' splice sites were activated; however, splicing at an alternate upstream 3' splice site used at low efficiency in normal MuSVts110 RNA was increased to a level close to that of 5'-splice-site cleavage in the revertant viral RNA. Increased splicing at this site in 54-5A4 viral RNA is probably driven by the unavailability of the usual 3' splice site for exon ligation. The thermosensitivity of this alternate splice event suggests that the sequences governing the thermodependence of MuSVts110 RNA splicing do not involve any particular 3' splice site or branch point sequence, but rather lie near the 5' end of the intron.
APA, Harvard, Vancouver, ISO, and other styles
8

Opabola, Eyitayo A., and Kenneth J. Elwood. "Seismic assessment of reinforced concrete columns with short lap splices." Earthquake Spectra 37, no. 3 (2021): 1726–57. http://dx.doi.org/10.1177/8755293021994834.

Full text
Abstract:
Existing reinforced concrete (RC) columns with short splices in older-type frame structures are prone to either a shear or bond mechanism. Experimental results have shown that the force–displacement response of columns exhibiting these failure modes are different from flexure-critical columns and typically have lower deformation capacity. This article presents a failure mode-based approach for seismic assessment of RC columns with short splices. In this approach, first, the probable failure mode of the component is evaluated. Subsequently, based on the failure mode, the force–displacement response of the component can be predicted. In this article, recommendations are proposed for evaluating the probable failure mode, elastic rotation, drift at lateral failure, and drift at axial failure for columns with short splices experiencing shear, flexure, or bond failures.
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Chang Seok, Yi Seul Park, and Sang Whan Han. "Bidirectional Lateral Loading of RC Columns with Short Lap Splices." Journal of the Earthquake Engineering Society of Korea 24, no. 1 (2020): 19–27. http://dx.doi.org/10.5000/eesk.2020.24.1.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kalogeropoulos, George I., and Alexander G. Tsonos. "Effectiveness of R/C jacketing of substandard R/C columns with short lap splices." Structural Monitoring and Maintenance 1, no. 3 (2014): 273–92. http://dx.doi.org/10.12989/smm.2014.1.3.273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Short lap splice"

1

(9029597), Rebeca P. Orellana Montano. "Case Study To Evaluate Drift Estimation In Non-Ductile Reinforced Concrete Buildings With Foundation Lap-Splices: Numerical Simulation Work." Thesis, 2020.

Find full text
Abstract:
<p>Past earthquake damage assessments have shown the seismic vulnerability of older non-ductile reinforced concrete buildings. The life safety-risk these buildings pose has motivated researchers to study, develop, and improve modeling techniques to better simulate their behavior with the aim to prioritize retrofits.</p><p><br></p> <p>This study focuses on the lap splice detailing at the base of the building in columns, shorter than those recommended by modern codes which consider seismic effects. Current modeling efforts in non-ductile reinforced concrete frame structures have considered the connection at the foundation fixed. This study models the influence of the performance of short lap splices on the simulation of response of an instrumented perimeter-frame-non-ductile building located in Van Nuys, California, and to compare results with those of previous studies of the same building.</p><p><br></p> <p>The methodology consisted of evaluating the response of a non-ductile concrete building subjected to a suite of ground motions through the comparison of three base connections: fixed, pinned, and a rotational spring modeling the short lap splice. Comparison and performance evaluation are done on the basis of drift as the main performance metric. In the building response evaluation flexure and shear forces in frame elements were also compared using the different base conditions. </p><p><br></p> <p>The models consist of two-dimensional frames in orthogonal direction, including interior and exterior frames, totaling into 4 frames. The dynamic analysis was performed using SAP2000 analysis software. The proposed rotational spring at the base was defined using the Harajli & Mabsout (2002) bond stress – slip relationship and moment – curvature sectional analysis, applied to 24d<sub>b</sub> and 36d<sub>b</sub> lap splices. Deformation considered flexure and slip. Adequacy of shear strength was checked prior to the analysis to verify that shear failure did not occur prior to either reaching first yield of the column reinforcement or splice capacity. </p><p><br></p> In this study, the response of the frames using the proposed rotational spring model was found to be between the fixed and pinned base conditions with regard to roof displacement and interstory drift ratio, also termed as story drift ratio. The behavior of the frames changed depending on the yielding of the longitudinal reinforcement, as depicted by the interstory drift ratio and displacement. The performance of the building frames also depended on the ground motion. The N-S and E-W direction frame computational models considered three and four earthquakes, respectively, totaling to 14 computational models per base condition. Three computational models out of the 14 with the proposed rotational spring base condition simulated recorded roof displacement results with accuracy. In the frame simulations where yielding of most of the column longitudinal bars was not calculated, the maximum interstory drift occurred in the upper stories, matching column damage observations during the event. The findings of the study showed that short lap splice increases the drift and displacement compared to the fixed base supporting its effect, i.e. the behavior of a non-ductile reinforced concrete case study building to an earthquake.
APA, Harvard, Vancouver, ISO, and other styles
2

Reyes, Olga. "Modeling of R/C columns with short lap splices subjected to earthquake loading." 1999. http://catalog.hathitrust.org/api/volumes/oclc/50200324.html.

Full text
Abstract:
Thesis (M.S.)--University of Wisconsin--Madison, 1999.<br>Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 78-80).
APA, Harvard, Vancouver, ISO, and other styles
3

Μπισκίνης, Διονύσιος. "Αντοχή και ικανότητα παραμόρφωσης μελών οπλισμένου σκυροδέματος, με ή χωρίς ενίσχυση". Thesis, 2007. http://nemertes.lis.upatras.gr/jspui/handle/10889/478.

Full text
Abstract:
Η παρούσα διατριβή ανήκει στο γενικότερο θεματικό πεδίο της σεισμικής αποτίμησης, σχεδιασμού ή ανασχεδιασμού κατασκευών οπλισμένου σκυροδέματος με βάση τις μετακινήσεις. Οι σύγχρονες μέθοδοι αυτού του τύπου, στηρίζονται σε έλεγχο και σύγκριση της σεισμικής απαίτησης με την ικανότητα των μελών της κατασκευής σε όρους μετακινήσεων παρά σε όρους δυνάμεων. Δημιουργείται επομένως η ανάγκη για απλό και αξιόπιστο υπολογισμό της συμπεριφοράς μελών οπλισμένου σκυροδέματος σε κάμψη και διάτμηση, σε όρους μετακινήσεων. Το αντικείμενο της παρούσης διατριβής είναι η ανάπτυξη προσομοιωμάτων για τον υπολογισμό των βασικών χαρακτηριστικών της συμπεριφοράς καμπτόμενων μελών οπλισμένου σκυροδέματος και συγκεκριμένα: της ροπής διαρροής, της παραμόρφωσης στη διαρροή, της ενεργού δυσκαμψίας, της παραμόρφωσης στην αστοχία, της διατμητικής αντοχής σε ανακυκλιζόμενη φόρτιση, της αντοχής μελών με χαμηλό λόγο διάτμησης και της συμπεριφοράς υπό διαξονική καταπόνηση. Εξετάζονται μέλη διαφόρων τύπων και διαφορετικής διατομής, μέλη με ενίσχυση μανδύα οπλισμένου σκυροδέματος ή μανδύα σύνθετων υλικών, καθώς επίσης και μέλη με μάτιση του διαμήκους οπλισμού στην περιοχή πλαστικής άρθρωσης. Για την ανάπτυξη των προσομοιωμάτων, καθώς και για τον έλεγχο άλλων παλαιότερων, αναπτύχθηκε και αξιοποιήθηκε βάση πειραματικών δεδομένων μελών οπλισμένου σκυροδέματος με περισσότερα από 2800 πειράματα από τη διεθνή βιβλιογραφία. Για τον υπολογισμό της ροπής και της καμπυλότητας στη διαρροή, αναπτύσσονται απλές σχέσεις υπολογισμού, βασιζόμενες σε ανάλυση σε επίπεδο διατομής και καθορίζονται τα κατάλληλα κριτήρια διαρροής. Αναπτύσσονται ακολούθως σχέσεις υπολογισμού της παραμόρφωσης στη διαρροή, και συγκεκριμένα της γωνίας στροφής χορδής του μέλους στη διαρροή, θy, ως άθροισμα τριών όρων: καμπτικής παραμόρφωσης, διατμητικής παραμόρφωσης και παραμόρφωσης λόγω ολίσθησης των ράβδων διαμήκους οπλισμού από την περιοχή αγκύρωσης. Προτείνονται δε δύο εναλλακτικοί τρόποι υπολογισμού της ενεργού δυσκαμψίας, ένας θεωρητικός και ένας καθαρά εμπειρικός. Στη συνέχεια εξετάζεται η παραμόρφωση στην αστοχία και προτείνονται δύο εναλλακτικοί μέθοδοι υπολογισμού της γωνίας στροφής χορδής στην αστοχία, θu. Η 1η βασίζεται στον υπολογισμό της καμπυλότητας στην αστοχία, φu, με εφαρμογή του κατάλληλου προσομοιώματος περίσφιγξης του σκυροδέματος, και στην εφαρμογή της φu σε μήκος πλαστικής άρθρωσης ίσο με Lpl, ενώ η 2η σε καθαρά εμπειρικές εξισώσεις. Εξετάζεται ακολούθως η διατμητική αντοχή σε ανακυκλιζόμενη φόρτιση και προτείνονται προσομοιώματα για αστοχία σε διαγώνιο εφελκυσμό ή αστοχία σε λοξή θλίψη, μετά την καμπτική διαρροή. Στη συνέχεια εξετάζεται η συμπεριφορά μελών οπλισμένου σκυροδέματος υπό διαξονική καταπόνηση. Εξετάζονται επίσης μέλη με χαμηλό λόγο διάτμησης και προτείνονται νέα αντιπροσωπευτικότερα κριτήρια για τον χαρακτηρισμό ενός μέλους ως “κοντό μέλος”, καθώς και νέα μεθοδολογία υπολογισμού της αντοχής των μελών αυτών, με κατάλληλο συνδυασμό του προσομοιώματος των Shohara and Kato, 1981 και των Φαρδής και συνεργάτες 1998. Ακολούθως εξετάζονται μέλη ενισχυμένα με μανδύα σύνθετων υλικών και προτείνονται προσομοιώματα υπολογισμού της γωνίας στροφής χορδής στη διαρροή και την καμπτική αστοχία, καθώς και προσομοίωμα υπολογισμού της διατμητικής αντοχής. Στη συνέχεια εξετάζεται η συμπεριφορά μελών με μάτιση του διαμήκους οπλισμού στην περιοχή πλαστικής άρθρωσης, καθώς και η εφαρμογή μανδύα σύνθετων υλικών για την ενίσχυση της περιοχής αυτής. Τέλος εξετάζεται η συμπεριφορά στη διαρροή και στην αστοχία, μελών ενισχυμένων με μανδύα οπλισμένου σκυροδέματος. Η ανάπτυξη όλων των προτεινόμενων προσομοιωμάτων της διατριβής βασίζεται στην καλύτερη δυνατή συμφωνία με τα πειραματικά αποτελέσματα της βάσης δεδομένων, χωρίς όμως να θυσιάζεται η απλότητα και η ευχρηστία αυτών.<br>The present Thesis belongs in the general field of seismic assessment, design and redesign of concrete structures with displacement based procedures. Modern methods of this kind are based in controlling and comparing seismic demand with structural elements capacity in terms of displacements rather than forces. This leads in the need of estimating reinforced concrete elements performance under bending and shear, in terms of displacements. The object of the Thesis is development of models for calculating the basic performance characteristics of reinforced concrete elements under bending, in particular: yield moment, deformation at yielding, effective stiffness, deformation at ultimate, shear strength under cyclic loading, maximum strength of members with low shear ratio and behavior under biaxial loading. Members with various types of section and various characteristics are included, as also members retrofitted with FRP jacket or concrete jacket and members with lap-splice of longitudinal reinforcement in plastic hinge region. In order to develop new models and check older ones, a database of more than 2800 experiments from international literature on reinforced concrete elements was created and used here. Simple equations and procedures are suggested for calculating yield moment and corresponding curvature, based on section analysis, by specifying the appropriate yield criteria. Equations for calculating deformation at yielding, in particular chord rotation at yielding, θy as the sum of deformations due to bending, due to shear and due to slippage of longitudinal reinforcement from anchorage zone, are also developed. Calculation of effective stiffness is based on two alternative models, one theoretical and one purely empirical. Deformation at ultimate is then examined where two methods for calculating chord rotation at ultimate are suggested. 1st one is based on ultimate curvature, φu, where an appropriate concrete confinement model is used, and plastic hinge length Lpl, while 2nd one is based on purely empirical equations. Shear strength under cyclic loading is also examined and new models for calculating shear strength for shear tension and shear compression failure after flexural yield are developed. Behavior of reinforced concrete elements under biaxial loading is then examined. Elements with low shear ratio are also covered and new, more representative, criteria to characterize an element as a “short element” are suggested. A procedure based on an appropriate combination of Shohara and Kato 1981 model and Fardis et al. 1998 model is then suggested for calculating maximum strength of such “short elements”. Retrofitted members with FRP jacket are then examined and models for chord rotation at yielding and ultimate, as well as for shear strength are suggested. Behavior of members with lap-splice of longitudinal reinforcement inside plastic hinge region is then examined, including also retrofitting of this region with FRP jacket. Performance at yielding and ultimate of retrofitted members with concrete jacket is also examined. Development of all the suggested models of the Thesis is based on best fit with experimental results of the database, without sacrificing simplicity and applicability of the models.
APA, Harvard, Vancouver, ISO, and other styles
4

Αντύπας, Σταύρος. "Αποκατάσταση ανεπαρκών αναμονών υποστυλωμάτων μέσων περίσφιξης". Thesis, 2006. http://nemertes.lis.upatras.gr/jspui/handle/10889/490.

Full text
Abstract:
Ένα από τα κύρια προβλήματα που συναντώνται σε κτίρια ή γέφυρες που έχουν κατασκευασθεί πριν από το 1980, είναι η μειωμένη καμπτική αντοχή και πλαστιμότητα, το οποίο αρκετά συχνά οφείλεται στην έλλειψη περίσφιξης και στη παρουσία κοντών αναμονών που είχαν οι κατασκευές αυτές. Ο κύριος σκοπός της παρούσας διατριβής είναι να παρουσιάσει και να αξιολογήσει πέντε από τα διαθέσιμα στη βιβλιογραφία αναλυτικά μοντέλα προσδιορισμού του απαιτούμενου πάχους του εξωτερικά εφαρμοζόμενου μανδύα για την αποφυγή της αστοχίας των ματιζομένων οπλισμών των υποστυλωμάτων συμπεριλαμβανομένου και του αντίστοιχου μοντέλου το οποίο δίνεται στο Σχέδιο 1 και Σχέδιο 2 του ΚΑΝΕΠΕ. Τα αναλυτικά μοντέλα αξιολογούνται μέσω πειραματικών αποτελεσμάτων από τη βιβλιογραφία. Η αξιολόγηση γίνεται σε δύο επίπεδα. Στο πρώτο επίπεδο αξιολογείται η αξιοπιστία πρόβλεψης του απαιτούμενου πάχους του υλικού ενίσχυσης –χρησιμοποιώντας τις μέσες τιμές των υλικών- ενώ στο δεύτερο επίπεδο εξετάζεται η αντίστοιχη καταλληλότητα κάθε προσομοιώματος για το σχεδιασμό –χρησιμοποιώντας τις αντίστοιχες τιμές σχεδιασμού των υλικών-. Τροποποιημένες εξισώσεις βασιζόμενες στο προσομοίωμα του ΚΑΝΕΠΕ παρουσιάζονται. Η χρήση των τροποποιημένων εξισώσεων ελέγχεται μέσω διαθέσιμων πειραματικών αποτελεσμάτων και προκύπτει ικανοποιητική σύγκλιση με αυτά.<br>Reinforced concrete frames or bridges constructed in the early 80s or before, were usually designed and detailed to resist lower lateral forces than those required today. Building columns were commonly designed for compression only and as a result they do not have the adequate lateral strength to resist the imposed earthquake loads. One of the main deficiencies in these older structures is the limited flexural strength and ductility often due to short and lightly confined lap splices. The main aim of this thesis is to present and evaluate five of the proposed analytical models in order to rehabilitate reinforced concrete columns with short lap splices by external confinement, including and the confinement model given by the draft version of the Greek Retrofitting Code (GRECO). The above analytical models are validated against experimental results. The validation is performed in two levels. In the first level, the reliability of the prediction for the required jacket thickness given by the models, is examined, by using the average values of the materials. In the second level, the propriety for the design of each model is examined by using the design values of the materials. A modified equation based on the model given by GRECO is presented as well. By using the proposed modified equation a satisfactory agreement with the experimental results was accomplished.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Short lap splice"

1

Grossberg, Stephen. "How We See and Recognize Object Motion." In Conscious Mind, Resonant Brain. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780190070557.003.0008.

Full text
Abstract:
This chapter explains why visual motion perception is not just perception of the changing positions of moving objects. Computationally complementary processes process static objects with different orientations, and moving objects with different motion directions, via parallel cortical form and motion streams through V2 and MT. The motion stream pools multiple oriented object contours to estimate object motion direction. Such pooling coarsens estimates of object depth, which require precise matches of oriented stimuli from both eyes. Negative aftereffects of form and motion stimuli illustrate these complementary properties. Feature tracking signals begin to overcome directional ambiguities due to the aperture problem. Motion capture by short-range and long-range directional filters, together with competitive interactions, process feature tracking and ambiguous motion directional signals to generate a coherent representation of object motion direction and speed. Many properties of motion perception are explained, notably barberpole illusion and properties of long-range apparent motion, including how apparent motion speed varies with flash interstimulus interval, distance, and luminance; apparent motion of illusory contours; phi and beta motion; split motion; gamma motion; Ternus motion; Korte’s Laws; line motion illusion; induced motion; motion transparency; chopsticks illusion; Johannson motion; and Duncker motion. Gaussian waves of apparent motion clarify how tracking occurs, and explain spatial attention shifts through time. This motion processor helps to quantitatively simulate neurophysiological data about motion-based decision-making in monkeys when it inputs to a model of how the lateral intraparietal, or LIP, area chooses a movement direction from the motion direction estimate. Bayesian decision-making models cannot explain these data.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Short lap splice"

1

Mathisen, Jan, and Torfinn Hørte. "A Probabilistic Metocean Model for Mooring Response in Gulf of Mexico Hurricanes." In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-10735.

Full text
Abstract:
Hindcast data for a specific location is utilised to develop a joint probability function for the metocean variables that are expected to have a significant effect on mooring line tensions for a floating platform moored at that location. The main random variables comprise: peak significant wave height, peak wind speed, peak surface current speed, peak wave direction, peak wind direction and peak current direction, where “peak” indicates the maximum intensity of the metocean effect during a random hurricane. The time lead of peak wind relative to peak waves and the time lag of peak current after peak wind are included as random variables. It is also necessary to describe the time variation around the peak events. Simple models are assumed based on inspection of the time variations during severe hurricanes. Only the part of the hurricane during which the significant wave height exceeds 80% of the peak value is taken into account. The duration of this interval is included. Linear variation is assumed for the directions, hence the rates of change of the 3 directions are included. A linear (triangular) plus parabolic model is assumed for the time variation of the intensities of the 3 metocean effects around their respective peaks. A single parameter is required to define the proportion of linear and parabolic models for each effect and the values of this parameter for each of the 3 metocean effects are also included as random variables. A random hurricane can be drawn from this metocean model, such that the time variation of the metocean actions is deterministic once the values of the random variables have been selected. The overall duration of the hurricane is split into short intervals, each of 15 minutes duration, such that stationary response may be assumed during each short interval. The extreme value distribution of line tension during each short interval is obtained. These distributions are combined to obtain the extreme distribution of line tension during the hurricane. Second order reliability methods are applied to integrate over the distribution of the metocean variables and obtain the distribution of extreme tension during a random hurricane. The annual frequency of hurricanes is used to derive the annual extreme value distribution of line tension. The model is intended for the reliability analysis of the ultimate limit state of mooring lines, but may also be applicable to other response variables. The present paper is primarily concerned with the metocean model, but it is intended to include sample results for the extreme line tension.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!