Academic literature on the topic 'Short-read sequencing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Short-read sequencing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Short-read sequencing"

1

Punetha, Jaya, and Eric P. Hoffman. "Short Read (Next-Generation) Sequencing." Circulation: Cardiovascular Genetics 6, no. 4 (2013): 427–34. http://dx.doi.org/10.1161/circgenetics.113.000085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rodrigue, Sébastien, Arne C. Materna, Sonia C. Timberlake, et al. "Unlocking Short Read Sequencing for Metagenomics." PLoS ONE 5, no. 7 (2010): e11840. http://dx.doi.org/10.1371/journal.pone.0011840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jackman, Shaun D., and İnanç Birol. "Assembling genomes using short-read sequencing technology." Genome Biology 11, no. 1 (2010): 202. http://dx.doi.org/10.1186/gb-2010-11-1-202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Simon, Stacey A., Jixian Zhai, Raja Sekhar Nandety, et al. "Short-Read Sequencing Technologies for Transcriptional Analyses." Annual Review of Plant Biology 60, no. 1 (2009): 305–33. http://dx.doi.org/10.1146/annurev.arplant.043008.092032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Botton, Mariana R., Yao Yang, Erick R. Scott, Robert J. Desnick, and Stuart A. Scott. "Phased Haplotype Resolution of the SLC6A4 Promoter Using Long-Read Single Molecule Real-Time (SMRT) Sequencing." Genes 11, no. 11 (2020): 1333. http://dx.doi.org/10.3390/genes11111333.

Full text
Abstract:
The SLC6A4 gene has been implicated in psychiatric disorder susceptibility and antidepressant response variability. The SLC6A4 promoter is defined by a variable number of homologous 20–24 bp repeats (5-HTTLPR), and long (L) and short (S) alleles are associated with higher and lower expression, respectively. However, this insertion/deletion variant is most informative when considered as a haplotype with the rs25531 and rs25532 variants. Therefore, we developed a long-read single molecule real-time (SMRT) sequencing method to interrogate the SLC6A4 promoter region. A total of 120 samples were subjected to SLC6A4 long-read SMRT sequencing, primarily selected based on available short-read sequencing data. Short-read genome sequencing from the 1000 Genomes (1KG) Project (~5X) and the Genetic Testing Reference Material Coordination Program (~45X), as well as high-depth short-read capture-based sequencing (~330X), could not identify the 5-HTTLPR short (S) allele, nor could short-read sequencing phase any identified variants. In contrast, long-read SMRT sequencing unambiguously identified the 5-HTTLPR short (S) allele (frequency of 0.467) and phased SLC6A4 promoter haplotypes. Additionally, discordant rs25531 genotypes were reviewed and determined to be short-read errors. Taken together, long-read SMRT sequencing is an innovative and robust method for phased resolution of the SLC6A4 promoter, which could enable more accurate pharmacogenetic testing for both research and clinical applications.
APA, Harvard, Vancouver, ISO, and other styles
6

Eisenstein, Michael. "Startups use short-read data to expand long-read sequencing market." Nature Biotechnology 33, no. 5 (2015): 433–35. http://dx.doi.org/10.1038/nbt0515-433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Peng, Mengfei, Morgan L. Davis, Meghan L. Bentz, et al. "Short-Read and Long-Read Whole Genome Sequencing for SARS-CoV-2 Variants Identification." Viruses 17, no. 4 (2025): 584. https://doi.org/10.3390/v17040584.

Full text
Abstract:
Genomic surveillance of SARS-CoV-2 is crucial for detecting emerging variants and informing public health responses. Various sequencing technologies are used for whole genome sequencing of SARS-CoV-2. This cross-platform benchmark study applied established bioinformatics tools to assess and improve the performance of Illumina NovaSeq, Oxford Nanopore Technologies MinION, and Pacific Biosciences Sequel II sequencing platforms in identifying SARS-CoV-2 variants and lineage assignment. NovaSeq produced the highest number of reads and bases, depth of coverage, completeness of consensus genomes, stable mapping coverage across open reading frames in the genome, and consistent lineage assignments. The long-read sequencing platforms had lower yields, sequencing depth, and mapping coverage, limiting the number of qualified sequences for lineage assignment and variant identification. However, implementing proper quality controls on sequence data overcame these limitations and achieved consistent SARS-CoV-2 lineage assignments across all three sequencing platforms. The advancements in library preparation and technology for long-read sequencing are likely to enhance sequence quality and expand genome coverage, effectively addressing current limitations in genome analysis. By merging the unique advantages of both short- and long-read methods, we can significantly improve SARS-CoV-2 genomic surveillance and provide insights into sequencing strategies for other RNA viruses, pending further validation. This may lead to precise tracking of viral evolution and support public health policy decisions.
APA, Harvard, Vancouver, ISO, and other styles
8

Kumar, Ashwini, Sadiksha Adhikari, Matti Kankainen, and Caroline A. Heckman. "Comparison of Structural and Short Variants Detected by Linked-Read and Whole-Exome Sequencing in Multiple Myeloma." Cancers 13, no. 6 (2021): 1212. http://dx.doi.org/10.3390/cancers13061212.

Full text
Abstract:
Linked-read sequencing was developed to aid the detection of large structural variants (SVs) from short-read sequencing efforts. We performed a systematic evaluation to determine if linked-read exome sequencing provides more comprehensive and clinically relevant information than whole-exome sequencing (WES) when applied to the same set of multiple myeloma patient samples. We report that linked-read sequencing detected a higher number of SVs (n = 18,455) than WES (n = 4065). However, linked-read predictions were dominated by inversions (92.4%), leading to poor detection of other types of SVs. In contrast, WES detected 56.3% deletions, 32.6% insertions, 6.7% translocations, 3.3% duplications and 1.2% inversions. Surprisingly, the quantitative performance assessment suggested a higher performance for WES (AUC = 0.791) compared to linked-read sequencing (AUC = 0.766) for detecting clinically validated cytogenetic alterations. We also found that linked-read sequencing detected more short variants (n = 704) compared to WES (n = 109). WES detected somatic mutations in all MM-related genes while linked-read sequencing failed to detect certain mutations. The comparison of somatic mutations detected using linked-read, WES and RNA-seq revealed that WES and RNA-seq detected more mutations than linked-read sequencing. These data indicate that WES outperforms and is more efficient than linked-read sequencing for detecting clinically relevant SVs and MM-specific short variants.
APA, Harvard, Vancouver, ISO, and other styles
9

Eisenstein, Michael. "Innovative technologies crowd the short-read sequencing market." Nature 614, no. 7949 (2023): 798–800. http://dx.doi.org/10.1038/d41586-023-00512-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yu, Xiaoling, Wenqian Jiang, Xinhui Huang, Jun Lin, Hanhui Ye, and Baorong Liu. "rRNA Analysis Based on Long-Read High-Throughput Sequencing Reveals a More Accurate Diagnostic for the Bacterial Infection of Ascites." BioMed Research International 2021 (November 17, 2021): 1–8. http://dx.doi.org/10.1155/2021/6287280.

Full text
Abstract:
Traditional pathogenic diagnosis presents defects such as a low positivity rate, inability to identify uncultured microorganisms, and time-consuming nature. Clinical metagenomics next-generation sequencing can be used to detect any pathogen, compensating for the shortcomings of traditional pathogenic diagnosis. We report third-generation long-read sequencing results and second-generation short-read sequencing results for ascitic fluid from a patient with liver ascites and compared the two types of sequencing results with the results of traditional clinical microbial culture. The distribution of pathogenic microbial species revealed by the two types of sequencing results was quite different, and the third-generation sequencing results were consistent with the results of traditional microbial culture, which can effectively guide subsequent treatment. Short reads, the lack of amplification, and enrichment to amplify signals from trace pathogens, and host background noise may be the reasons for the high error in the second-generation short-read sequencing results. Therefore, we propose that long-read-based rRNA analysis technology is superior to the short-read shotgun-based metagenomics method in the identification of pathogenic bacteria.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Short-read sequencing"

1

Whiteford, Nava. "String matching in DNA sequences : implications for short read sequencing and repeat visualisation." Thesis, University of Southampton, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.438668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chacon, de San Baldomero Alejandro. "Read mapping on heterogeneous systems: scalability strategies for bioinformatic primitives." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/671736.

Full text
Abstract:
La seqüenciació genòmica és un component clau en nous avenços en medicina, i la seva democratització és un pas important per millorar l’accessibilitat per al pacient. Els beneficis implícits en el descobriment de noves variants genètiques són molt amplis, incloent des de la detecció precoç de càncer com la medicina personalitzada, passant pel disseny de fàrmacs i l’edició genòmica. Tots aquests usos potencials han incrementat exponencialment l’interès de la comunitat científica en el camp de la bioinformàtica durant els últims anys. A més, el sorgiment dels mètodes de Seqüenciació de Nova Generació ha contribuït a la reducció ràpida dels costos de seqüenciació, permetent el desenvolupament de noves aplicacions genòmiques. El principal objectiu d’aquesta tesi és el de millorar el rendiment i precisió de l’estat de l’art de la seqüenciació genètica a través de l’ús de plataformes de còmput heterogeni i sistemes de computació híbrida. Més específicament, el treball s’ha centrat en l’acceleració de el problema de mapeig de reads curts, ja que es descriu com un dels estadis del pipeline amb un major cost computacional. De forma global, s’ aspirava a reduir el temps de processament i el cost de la seqüenciació genètica, incrementant la disponibilitat d’aquest tipus d’anàlisi. La principal contribució d’aquesta tesi és la integració GPU del mapper GEM3 (GEM3-GPU). Aquest mapper reporta les mateixes dades de sortida per CPU i GPU, i és un dels primers mappers GPU que permet l’alineament de reads llargs i variables. Les propostes han estat validades utilitzant dades reals, ja que el mapper ha estat corrent en producció en un centre de seqüenciació genòmica (Centre Nacional d’Anàlisi Genòmica (CNAG)). En conjunció amb el mapper GEM3-GPU, durant aquesta tesi s’ha creat una llibreria bioinformàtica en CUDA (GEM-cutter). La llibreria aporta blocs de primitives GPU bàsiques que han estat altament optimitzades. Gem-cutter ofereix una API basada en primitives send and receive (message passing), i incorpora un scheduler per balancejar el treball. A més, la llibreria suporta totes les arquitectures GPU i Multi-GPU.<br>La secuenciación genómica es un componente clave en nuevos avances en medicina, y su democratización es un paso importante hacia la accesibilidad para el paciente. Los beneficios implícitos en el descubrimiento de nuevas variantes genéticas son muy amplios, incluyendo desde la detección precoz de cáncer como la medicina personalizada, pasando por el diseño de fármaco y la edición genómica. Estos usos potenciales han incrementado exponencialmente el interés de la comunidad científica en el campo de la bioinformática durante los últimos años. Además, el surgimiento de los métodos de Secuenciación de Nueva Generación ha contribuido a la reducción rápida de los costes de secuenciación, permitiendo el desarrollo de nuevas aplicaciones genómicas. El principal objetivo de esta tesis es el de mejorar el rendimiento y precisión del estado del arte de la secuenciación genética a través del uso de plataformas de computo heterogéneo y sistemas de hardware híbridos. Más específicamente, el trabajo se ha centrado en la aceleración del problema del short-read mapping, dado que se describe como uno de los estadíos del pipeline con un mayor coste computacional. De forma global, se aspiraba a reducir el tiempo de procesado y el coste de la secuenciación genética, incrementando su disponibilidad. La principal contribución de esta tesis es la integración GPU del mapper GEM3 (GEM3-GPU). Este mapper reporta los mismos datos de salida para CPU y GPU, y es uno de los primeros mappers GPU que permite el alineamiento de reads largos y variables. Las propuestas han sido validadas utilizando datos reales, dado que el mapper ha estado corriendo en producción en un centro de secuenciación (Centro Nacional de Análisis Genómico (CNAG)). En conjunción con el mapper GEM3-GPU, durante esta tesis se ha creado una librería bioinformática en CUDA (GEM-cutter). La librería provee bloques de primitivas GPU básicas que han sido altamente optimizadas. Gem-cutter ofrece una API basada en primitivas de send and receive (message passing), e incorpora un scheduler para balancear el trabajo. Además, la librería soporta todas las arquitecturas GPU y Multi-GPU.<br>Genomic sequencing is the key component of new advances in medicine, and its democratization is an important step in improving accessibility for the patient. The benefits involved in discovering new genomic variations are vast and include everything from early cancer detection to personalized medicine, drug design and genome editing. All of these potential uses have greatly increased the interest of the scientific community in the field of bioinformatics in recent years. Moreover, the emergence of next-generation sequencing methods has contributed to the rapid reduction of sequencing costs, enabling new applications of genomics in precision medicine. The main goal of this thesis is to improve the state of the art in performance and accuracy for genome sequencing through the use of heterogeneous computing platforms and hybrid hardware systems. More specifically, the work is focused on accelerating the problem of short-read mapping, as it is described as one of the most computationally expensive parts of the pipeline process. Overall, we aim to reduce the processing time and cost of genome sequencing, and then increasing the availability of this type analysis. The main contribution of this thesis is the full GPU integration of the GEM3 mapper (GEM3-GPU), reporting significant improvements in performance and competitive accuracy results. The mapper reports the same output files for CPU and GPU and is one of the first GPU mappers to allow very long and variable read alignment. The proposals have been validated using real data, since the mapper has been running in production at a genomic sequencing center (Centro Nacional de Análisis Genómico (CNAG)). Together with the GEM3-GPU mapper, a complete bioinformatics CUDA library (GEM-cutter) has been created. The library provides the basic building blocks for genomic applications, which are highly optimised to run on GPUs. Gem-cutter offers an API based on send and receive primitives (message passing) and incorporates a scheduler to balance the work. Furthermore, the library supports all GPU architectures and Multi-GPU execution.<br>Universitat Autònoma de Barcelona. Programa de Doctorat en Informàtica
APA, Harvard, Vancouver, ISO, and other styles
3

Soundiramourtty, Abirami. "Exploring the transpositional landscape and recent transposable element activity in beech trees using long read mobilome and genome sequencing and with new computational tools." Electronic Thesis or Diss., Perpignan, 2024. http://www.theses.fr/2024PERP0043.

Full text
Abstract:
L’adaptation des organismes aux changements environnementaux est devenue une question fondamentale de la recherche, en particulier face aux impacts du réchauffement climatique. Un axe clé de recherche consiste à comprendre comment les éléments génétiques sous jacent, tels que les éléments transposables (ET). Les ET sont des séquences d'ADN répétés présentes chez tous les Eucaryotes, possédant la capacité unique de se déplacer au sein du génome, un phénomène appelé transposition active. Ainsi, ils peuvent provoquer des mutations en générant des insertions polymorphiques d'ET (TIPs) entre individus, voire des insertions somatiques. En général, les ET restent inactifs grâce à des mécanismes épigénétiques qui limitent leur prolifération incontrôlée. Cependant, ils peuvent être réactivés par divers stimuli environnementaux, rendant la transposition active relativement rare. Cette mobilité des ET peut être révélée en utilisant l'ADN circulaire extrachromosomique (ADNecc) comme marqueur de transposition. Le paysage transpostionnel des TEs et leur activité récente ont été décrits chez des organismes modèles, mais restent inexploités chez les espèces pérennes comme les arbres. Cette étude vise à explorer l’activité transpositionelle récente et la mobilité en cours des ET chez des espèces pérennes non modèles en utilisant le hêtre européen (Fagus sylvatica) comme notre modèle d’étude. Nous avons cherché à étudier l'activité récente des ET et leur mobilité continue en identifiant les variants causés par les ET au sein d'une population et chez un individu (à l'échelle somatique) en utilisant le séquençage du génome complet (WGS) et le séquençage du mobilome (ou ADNecc). Nous avons réalisé le séquençage WGS et du mobilome d'arbres de la forêt de Verzy, connue pour abriter des hêtres nains et tortillards, également appelés « mutants ». Ces arbres présentent des traits morphologiques instables, avec chez certains arbres de nouvelles branches qui se développent avec une forme normale. Nous avons identifié deux ET appartenant au type des Miniature Inverted Repeats Transposable Elements (MITEs), nommés SQUIRREL1 et SQUIRREL2, qui se mobilisent activement dans ces arbres, produisant une grande quantité dADNecc et causant même des variations somatiques. SQUIRREL1 et SQUIRREL2 sont également actifs dans les hêtres de la forêt de la Massane. De plus, dans tous ces arbres, plusieurs d’autres ET, principalement des MITEs, produisent une grande quantité dADNecc, bien que leur niveau d’activité semble varier en fonction des tissus, suggérant que l'activité des ET varie selon le stade de développement et indiquant une transposition dominée par les MITEs chez le hêtre. Parallèlement, nous avons étudié les TIPs dans une population de hêtres de la forêt de la Massane, une forêt ancienne classée au patrimoine mondial de l'UNESCO. En séquençant 150 arbres, nous avons cherché à comprendre comment les ET contribuent à la diversité génétique de l'ensemble de la population en détectant les TIPs générés par les Long Terminal Repeats rétrotransposons (LTR RT) et les MITEs en utilisant le séquençage WGS. Nous avons détecté environ 30 000 TIPs de LTR-RT chez chaque individu, contre 70 000 TIPs de MITEs. La plupart de ces TIPs restent à faible fréquence mais de nombreux MITE-TIPs restent localisés près de gènes fonctionnels et conservés au sein de la population. À partir des TIPs, nous avons identifié plusieurs points chauds de variation et des régions conservées le long du génome du hêtre permettant d’abordant la structuration du génome chez cette espèce. Pour conclure, notre étude met en lumière l’importance des ET dans la structuration du paysage génomique des arbres, en particulier dans la manière dont ces éléments contribuent à l’évolution des espèces à longue durée de vie. Les recherches futures pourraient étendre ces travaux à d’autres espèces d'arbres et explorer si les schémas observés se retrouvent dans d’autres espèces d’arbres<br>The adaptation of organisms to environmental changes has become a fundamental research question,particularly in the context of climate change. A key area of this research is to identify underlying genetic elements, such as transposable elements (TEs), contributing to this process. TEs are repetitive DNA sequences found across all eukaryotes, possessing the unique ability to move within the genome, a phenomenon known as active transposition. They can cause mutations by generating transposable element insertion polymorphisms (TIPs) between individuals, and even somatic insertions. Generally, TEs remain inactive by epigenetic mechanisms that limit their uncontrolled proliferation. However, they can be reactivated upon various environmental stimuli, making active transposition relatively rare. TE mobility can be detected using extrachromosomal circular DNA (eccDNA) as a marker of transposition. The transpositional landscape of TEs and their recent activity have been documented in model organisms but remain underexplored in perennial species such as trees. This study aims to investigate recent transpositional activity and ongoing mobility of TEs in non-model perennial species, using European beech (Fagus sylvatica) as our model. We sought to study recent TE activity and their continuous mobility byidentifying TE-induced variants within a population and in an individual (at the somatic scale) using whole-genome sequencing (WGS) and mobilome sequencing (eccDNA). We conducted WGS and mobilome sequencing of trees from the Verzy forest, known for its dwarf and tortuous beeches, also referred as "mutants." These trees exhibit unstable phenotypical traits, with some trees developing new normal branches. We identified two TEs belonging to the Miniature Inverted Repeat Transposable Elements (MITEs) type, named SQUIRREL1 and SQUIRREL2, which are actively mobilizing in these trees, producing large amounts of eccDNA and even causing somatic variations.SQUIRREL1 and SQUIRREL2 are also active in beech trees from the Massane forest. Furthermore, in all these trees, several other TEs,mainly MITEs, produce significant amounts of eccDNA, although their activity levels appear to vary depending on the tissues, suggesting that TE activity could be tissue-specific indicating MITE-dominated transposition in beech. Simultaneously, we investigated TIPs in a population of beech trees from the Massane forest, an ancient forest classified as a UNESCO World Heritage site. By sequencing 150 trees, we aimed to understand how TEs contribute to the genetic diversity of the entire population by detecting TIPs generated by Long Terminal Repeat retrotransposons (LTR-RTs) and MITEs using WGS. We detected approximately 30,000 LTR-RT TIPs in each individual, compared to 70,000 MITE TIPs. While most of these TIPs remain at low frequency, many MITE-TIPs are located near functional genes and more conserved within the population. Using these TIPs, we identified several hotspots of variation and conserved regions along the beech genome, providing insights into genome structure in this species. In conclusion, our study highlights the importance of TEs in shaping the genomic landscape of trees, particularly in understanding how these elements contribute to the evolution of long-lived species. Future research could expand this work to other tree species and explore whether the patterns observed in beeches are common in other types of trees
APA, Harvard, Vancouver, ISO, and other styles
4

Šalanda, Vojtěch. "Optimalizace zarovnání dat z next-generation sekvenování." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2014. http://www.nusl.cz/ntk/nusl-236077.

Full text
Abstract:
This thesis presents short DNA alignment tools optimization. These short DNA reads are products of next\nobreakdash-generation sequencing technologies. The results produced by existing align\-ment tools can be influenced by various parameters. For this purpose, an optimization framework to find the optimal values of selected parameters was developed. This framework is based on differencial evolution algorithm and its main goal is to maximize the alignment accuracy. The functionality of the framework was tested on both real and generated data sets of short DNA reads. An accurate alignment is crucial for correct prediction of various genetic characteristics.
APA, Harvard, Vancouver, ISO, and other styles
5

Natarajan, Santhi. "Accelerated and Accurate Alignment of Short Reads in High Throughput Next Generation Sequencing [NGS] Platforms." Thesis, 2016. http://etd.iisc.ac.in/handle/2005/4073.

Full text
Abstract:
The genome of an organism encompasses the unique set of genetic instructions for every individual in a species. The genome, in totality, guides the course of evolution, development, genetic and epigenetic growth factors of an individual. Genomics, the study of genome, presents an interdisciplinary landscape, with a multistage data analytics pipeline. Understanding the genome involves determining the order of the four constituent nucleotides or bases or genetic alphabets, namely adenine (A), cytosine (C), guanine (G) and thymine (T), within the genome’s DNA sequence, and the process is widely known as sequencing. Next Generation Sequencing (NGS) involves massively parallel sequencing of genetic data with high throughput. NGS offers an unparalleled interrogation of the genome, throwing deeper insight into the functional and structural investigation of genetic data. The deductions from such a study leave a huge impact across fields, including medical diagnostics, therapeutics and drug discovery, and as well form the basis for genomic medicine. Data processing with NGS happens over an elaborated multi-stage data analytics pipeline. During the primary data analysis, the sequencing process produces billions of short fragments, called short reads, of the target genome. This amounts to petabytes of unprocessed genomic raw data. Short read mapping (SRM) is the process of mapping these short reads to their respective positions in the target genome. Due to the sheer volume of data that needs to be handled, SRM serves as a major sequential bottleneck to the NGS data analytics pipeline in genomics, and presents profound technical and computing challenges. Classified as a complex big data engineering problem, SRM thus calls for innovative computational, scientific and statistical approaches towards big data analysis. A strict validation of various algorithms and softwares in an NGS pipeline is essential, to ensure reliable and accurate results. With growing volume of NGS big data, the SRM and subsequent analytic steps de-mand a High Performance Computing (HPC) environment for data storage and analyses. Existing solutions for accelerating SRM provide notable performance, while leveraging heuristics and incurring significant error rates. Given the impact of the results of SRM in subsequent diagnostics and therapeutics, such heuristics and error rates are not affordable. In this context, we need precise, affordable, reliable and actionable results from SRM, to support any application, with uncompromised accuracy and performance.In this work, we present a massively parallel and scalable archetype, for accurate alignment of short reads, at a fine-grained single nucleotide resolution. The significant contributions of this work are presented below: 1. We present a robust and efficient indexing scheme for the reference genome, which is devoid of heuristics. The scheme reports all possible regions of mapping for a short read, inclusive of repeat regions. The lookup scheme efficiently handles the redundancy in reads. Though this leaves the rest of the pipeline with more data for SRM as compared to the heuristic solutions, it provides the end user with reliable and actionable results. 2. We present an efficient parallel implementation of an accurate sequence alignment algorithm based on the Dynamic Programming (DP) method. Our alignment kernels can seamlessly perform the traceback process in hardware simultaneously with the forward scan, thus eliminating the computational and memory bottlenecks associated with such algorithms. These kernels thus report alignment in a minimum deterministic time, which forms the first level of acceleration for SRM. 3. We present AccuRA, a hardware accelerator targeting reconfigurable hardware platforms. The model scales well at multiple levels of granularity, which precisely aligns short reads, at a fine-grained single nucleotide resolution, and offers full coverage of the genome. 4. We present GMAccS, a GPGPU based solution, for the SRM accelerator. This employs a platform independent model, capable of targeting a heterogeneous set of GPU hardware. 5. We present a performance and scalability analysis model for both the archetypes. The results from the prototypes substantiate the scalability of these architectures at multiple levels of granularity. 6. We present the generalization of our solution across applications which exhibit similar data patterns in terms of volume, variety, rate of production and analysis, randomness and uncertainty involved in data, and use Approximate String Matching (ASM) as the fundamental operation for data analytics. 7. We present the various problems within the biological domain, in terms of complexity and quantity of data, to which our solution can be customized and scaled, at various levels of granularity. We have presented the results from various prototype models of both AccuRA and GMAccS. The AccuRA prototype, hosting eight kernel units on a single reconfigurable device, aligns short reads with an alignment performance of 20.48 Giga Cell Updates Per Second (GCUPs). AccuRA can be ported onto devices as diverse as SoCs, ASICs or reconfigurable platform based hardware coprocessors or accelerators. The scalability analysis proved to substantiate the parallel AccuRA architecture, making it a promising target to accelerate the SRM process in the NGS pipeline. The in-house supercomputing platform SahasraT, which is a Cray XC40 system, hosted the prototype for the GMAccS archetype. The GMAccS prototypes align with an optimal performance of 23.69 Million Maps Per Second (MMPS) to 528.69 MMPS, while scaling from a single GPU to 24 GPUs. The performance model for GMAccS, as well as the results from the prototypes, substantiates the scalability of the GMAccS archetype and the subsequent performance enhancement achieved by it. Both AccuRA and GMAccS accommodate the big data of genomics, with uncompromised accuracy, precision and performance, while aligning the smaller archeal, bacterial and fungal genomes, to the much larger mammalian human genomes. These models have successfully handled redundant reads and multiread alignments. The results from AccuRA and GMAccS are available in the Sequence Alignment/Map (SAM) format, making it compatible with the downstream applications in the NGS pipeline. With a basic parameterized SRM model, and the results from its various prototypes for small and large genome benchmarks, we have gained the confidence that this solution can serve the requirements of accurate and scalable alignment of NGS big data. We believe that our model can serve as a reliable candidate in the future of genomics, called the "genomic highway", where data belonging to multiple applications can be streamed in, and can be aligned real time, with minimal memory and storage requirements, on a generalized alignment engine.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Short-read sequencing"

1

Ribeca, Paolo. "Short-Read Mapping." In Bioinformatics for High Throughput Sequencing. Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0782-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bryant, Douglas W., and Todd C. Mockler. "De Novo Short-Read Assembly." In Bioinformatics for High Throughput Sequencing. Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0782-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vasquez-Velez, Laura, Veera D’Mello, and Patricia Soteropoulos. "RNA Sequencing Protocols for Short-Read Sequencing." In Methods in Molecular Biology. Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-4192-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Xueya, Suying Bao, Binbin Wang, Xuegong Zhang, and You-Qiang Song. "Short Read Mapping for Exome Sequencing." In Methods in Molecular Biology. Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-514-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Szolek, András. "HLA Typing from Short-Read Sequencing Data with OptiType." In Methods in Molecular Biology. Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8546-3_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stritt, Christoph, and Anne C. Roulin. "Detecting Signatures of TE Polymorphisms in Short-Read Sequencing Data." In Methods in Molecular Biology. Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1134-0_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mangalea, Mihnea R., Kristopher Keift, Breck A. Duerkop, and Karthik Anantharaman. "Assembly and Annotation of Viral Metagenomes from Short-Read Sequencing Data." In Metagenomic Data Analysis. Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3072-3_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bennett, Mark F., Arianna Tucci, and Melanie Bahlo. "Detecting Tandem Repeat Expansions Using Short-Read Sequencing for Clinical Use." In Neuromethods. Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2357-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mahajan, Milind C., and Andrew S. McLellan. "Whole-Exome Sequencing (WES) for Illumina Short Read Sequencers Using Solution-Based Capture." In Methods in Molecular Biology. Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9882-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hagmann, Jörg, and Claude Becker. "Assessing Distribution and Variation of Genome-Wide DNA Methylation Using Short-Read Sequencing." In Methods in Molecular Biology. Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7003-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Short-read sequencing"

1

Schatz, Florian, Lars Wienbrandt, and Manfred Schimmler. "Probability Model for Boundaries of Short-Read Sequencing." In 2012 International Conference on Advances in Computing and Communications (ICACC). IEEE, 2012. http://dx.doi.org/10.1109/icacc.2012.51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Harrath, Youssef, Amine Mahjoub, Fatima AbuBakr, and Mahreen Azhar. "Comparative Evaluation of Short Read Alignment Tools for next Generation DNA Sequencing." In 2019 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). IEEE, 2019. http://dx.doi.org/10.1109/3ict.2019.8910272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Haixiang Shi, B. Schmidt, Weiguo Liu, and W. Muller-Wittig. "Accelerating error correction in high-throughput short-read DNA sequencing data with CUDA." In amp; Distributed Processing (IPDPS). IEEE, 2009. http://dx.doi.org/10.1109/ipdps.2009.5160924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ludlow, Andrew T., Mohammed E. Sayed, Aaron L. Slusher, et al. "Abstract 2724: A combination of short-read and long-read RNA sequencing reveals NOVA1’s role in telomere biology." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-2724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ludlow, Andrew T., Mohammed E. Sayed, Aaron L. Slusher, et al. "Abstract 2724: A combination of short-read and long-read RNA sequencing reveals NOVA1’s role in telomere biology." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-2724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lu, Chen Hua, Chun Yuan Lin, and Chuan Yi Tang. "A re-sequencing tool for high mismatch-tolerant short read alignment based on Burrows-Wheeler Transform." In 2010 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW). IEEE, 2010. http://dx.doi.org/10.1109/bibmw.2010.5703860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hampton, Oliver A., Navin Rustagi, Jie Li, et al. "Abstract 4856: ITD Assembler: An algorithm for internal tandem duplication discovery from short-read sequencing data." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-4856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jiang, Yuan, Sven Bilke, and Paul S. Meltzer. "Abstract 5346: Combining droplet tagged short read sequencing with optical DNA mapping technology for improved assembly of cancer genomes." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-5346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Novel method for isoform-centered analysis of alternative splicing using a combination of long and short-read sequencing data." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kewin, E., H. Richardson, C. Hennayake, et al. "Comparison of Full Length Loopseq 16S rRNA Gene Sequencing and Illumina Short Read 16S Gene Sequencing in a Cohort of Patients With Chronic Obstructive Pulmonary Disease." In American Thoracic Society 2024 International Conference, May 17-22, 2024 - San Diego, CA. American Thoracic Society, 2024. http://dx.doi.org/10.1164/ajrccm-conference.2024.209.1_meetingabstracts.a6257.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Short-read sequencing"

1

Gur, Amit, Edward Buckler, Joseph Burger, Yaakov Tadmor, and Iftach Klapp. Characterization of genetic variation and yield heterosis in Cucumis melo. United States Department of Agriculture, 2016. http://dx.doi.org/10.32747/2016.7600047.bard.

Full text
Abstract:
Project objectives: 1) Characterization of variation for yield heterosis in melon using Half-Diallele (HDA) design. 2) Development and implementation of image-based yield phenotyping in melon. 3) Characterization of genetic, epigenetic and transcriptional variation across 25 founder lines and selected hybrids. The epigentic part of this objective was modified during the course of the project: instead of characterization of chromatin structure in a single melon line through genome-wide mapping of nucleosomes using MNase-seq approach, we took advantage of rapid advancements in single-molecule sequencing and shifted the focus to Nanoporelong-read sequencing of all 25 founder lines. This analysis provides invaluable information on genome-wide structural variation across our diversity 4) Integrated analyses and development of prediction models Agricultural heterosis relates to hybrids that outperform their inbred parents for yield. First generation (F1) hybrids are produced in many crop species and it is estimated that heterosis increases yield by 15-30% globally. Melon (Cucumismelo) is an economically important species of The Cucurbitaceae family and is among the most important fleshy fruits for fresh consumption Worldwide. The major goal of this project was to explore the patterns and magnitude of yield heterosis in melon and link it to whole genome sequence variation. A core subset of 25 diverse lines was selected from the Newe-Yaar melon diversity panel for whole-genome re-sequencing (WGS) and test-crosses, to produce structured half-diallele design of 300 F1 hybrids (MelHDA25). Yield variation was measured in replicated yield trials at the whole-plant and at the rootstock levels (through a common-scion grafted experiments), across the F1s and parental lines. As part of this project we also developed an algorithmic pipeline for detection and yield estimation of melons from aerial-images, towards future implementation of such high throughput, cost-effective method for remote yield evaluation in open-field melons. We found extensive, highly heritable root-derived yield variation across the diallele population that was characterized by prominent best-parent heterosis (BPH), where hybrids rootstocks outperformed their parents by 38% and 56 % under optimal irrigation and drought- stress, respectively. Through integration of the genotypic data (~4,000,000 SNPs) and yield analyses we show that root-derived hybrids yield is independent of parental genetic distance. However, we mapped novel root-derived yield QTLs through genome-wide association (GWA) analysis and a multi-QTLs model explained more than 45% of the hybrids yield variation, providing a potential route for marker-assisted hybrid rootstock breeding. Four selected hybrid rootstocks are further studied under multiple scion varieties and their validated positive effect on yield performance is now leading to ongoing evaluation of their commercial potential. On the genomic level, this project resulted in 3 layers of data: 1) whole-genome short-read Illumina sequencing (30X) of the 25 founder lines provided us with 25 genome alignments and high-density melon HapMap that is already shown to be an effective resource for QTL annotation and candidate gene analysis in melon. 2) fast advancements in long-read single-molecule sequencing allowed us to shift focus towards this technology and generate ~50X Nanoporesequencing of the 25 founders which in combination with the short-read data now enable de novo assembly of the 25 genomes that will soon lead to construction of the first melon pan-genome. 3) Transcriptomic (3' RNA-Seq) analysis of several selected hybrids and their parents provide preliminary information on differentially expressed genes that can be further used to explain the root-derived yield variation. Taken together, this project expanded our view on yield heterosis in melon with novel specific insights on root-derived yield heterosis. To our knowledge, thus far this is the largest systematic genetic analysis of rootstock effects on yield heterosis in cucurbits or any other crop plant, and our results are now translated into potential breeding applications. The genomic resources that were developed as part of this project are putting melon in the forefront of genomic research and will continue to be useful tool for the cucurbits community in years to come.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!