Academic literature on the topic 'Si heterojunction solar cells'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Si heterojunction solar cells.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Si heterojunction solar cells"

1

Lin, C. H. "Si/Ge/Si double heterojunction solar cells." Thin Solid Films 518, no. 6 (2010): S255—S258. http://dx.doi.org/10.1016/j.tsf.2009.10.101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hafdi, Zoubeida. "Electrical and Optical Characterization of Non-Hydrogenated a-Si/c-Si Heterojunction Solar Cells." Journal of Renewable Energies 24, no. 2 (2021): 202–13. http://dx.doi.org/10.54966/jreen.v24i2.981.

Full text
Abstract:
This work deals with the performance of a heterojunction with intrinsic thin layer solar cell by sputtering silicon on p-type crystalline silicon substrate in argon ambient without hydrogen addition. This first effort was an attempt to use cost-effective means to convert light into electricity and to find fabrication processes which use fewer and cheaper materials for the fabrication of solar cells. Since transport mechanisms of amorphous silicon/crystalline silicon heterojunctions are still under investigation, the aim is to examine the behavior of the fabricated samples under electrical and
APA, Harvard, Vancouver, ISO, and other styles
3

Zerbo, Bienlo Flora, Mircea Modreanu, Ian Povey, et al. "Study of MoS2 Deposited by ALD on c-Si, Towards the Development of MoS2/c-Si Heterojunction Photovoltaics." Crystals 12, no. 10 (2022): 1363. http://dx.doi.org/10.3390/cryst12101363.

Full text
Abstract:
Silicon-based heterojunction (SHJ) solar cells demonstrate high efficiencies over their homojunction counterparts, revealing the potential of such technologies. We present here the first steps towards the development of molybdenum disulfide (MoS2)/c-silicon heterojunction solar cells, consisting of a preliminary study of the MoS2 material and numerical device simulations of MoS2/Si heterojunction solar cells, using SILVACO ATLAS. Through the optical and structural characterization of MoS2/SiO2/Si samples, we found a significant sensitivity of the MoS2 to ambient oxidation. Optical ellipsometry
APA, Harvard, Vancouver, ISO, and other styles
4

Zelentsov, K. S., and A. S. Gudovskikh. "GaP/Si anisotype heterojunction solar cells." Journal of Physics: Conference Series 741 (August 2016): 012096. http://dx.doi.org/10.1088/1742-6596/741/1/012096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ruan, Kaiqun, Ke Ding, Yuming Wang, et al. "Flexible graphene/silicon heterojunction solar cells." Journal of Materials Chemistry A 3, no. 27 (2015): 14370–77. http://dx.doi.org/10.1039/c5ta03652f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dai, Ruijie, Tengzuo Huang, Weijie Zhou, et al. "Improved Interfacial Contact for Pyramidal Texturing of Silicon Heterojunction Solar Cells." Molecules 27, no. 5 (2022): 1710. http://dx.doi.org/10.3390/molecules27051710.

Full text
Abstract:
Reducing the surface reflectivity of silicon substrates is essential for preparing high-performance Si-based solar cells. We synthesized pyramid-nanowire-structured Si (Si-PNWs) anti-reflection substrates, which have excellent light-trapping ability (<4% reflectance). Furthermore, diethyl phthalate (DEP), a water-insoluble phthalic acid ester, was applied to optimize the Si-PNWs/PEDOT:PSS interface; the photoelectric conversion efficiency of heterojunction solar cells was shown to increase from 9.82% to 13.48%. We performed a detailed examination of the shape and optical characteristics of
APA, Harvard, Vancouver, ISO, and other styles
7

Nakamura, Motonori, Keisuke Sugimoto, Junichiro Kono, and Koji Takamura. "Polarization-dependent conversion efficiency of carbon nanotube-Si heterojunction solar cells based on aligned carbon nanotube films." Japanese Journal of Applied Physics 61, no. 3 (2022): 031006. http://dx.doi.org/10.35848/1347-4065/ac52b9.

Full text
Abstract:
Abstract We have fabricated solar cells that implement heterojunctions of Si and aligned carbon nanotube (CNT) films. Polarization-dependent optical absorption of highly aligned CNTs led to polarization-dependent conversion efficiencies, which in turn provided insight into the role of the CNT layer in the power generation mechanism in these heterojunction solar cells. When the incident light polarization was parallel to the CNT alignment direction so that the light absorption in the CNT layer was maximized, the short circuit photocurrent decreased by ∼25%. This indicates that electron–hole pai
APA, Harvard, Vancouver, ISO, and other styles
8

Yamamoto, Hiroshi, Yoshirou Takaba, Yuji Komatsu та ін. "High-efficiency μc-Si/c-Si heterojunction solar cells". Solar Energy Materials and Solar Cells 74, № 1-4 (2002): 525–31. http://dx.doi.org/10.1016/s0927-0248(02)00071-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yamamoto, Kenji, Kunta Yoshikawa, Hisashi Uzu, and Daisuke Adachi. "High-efficiency heterojunction crystalline Si solar cells." Japanese Journal of Applied Physics 57, no. 8S3 (2018): 08RB20. http://dx.doi.org/10.7567/jjap.57.08rb20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Li, Xinliang Chen, Yiming Liu, Ying Zhao, and Xiaodan Zhang. "Research on ZnO/Si heterojunction solar cells." Journal of Semiconductors 38, no. 5 (2017): 054005. http://dx.doi.org/10.1088/1674-4926/38/5/054005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Si heterojunction solar cells"

1

Lau, Yin Ping. "Si/CdTe heterojunction fabricated by closed hot wall system." HKBU Institutional Repository, 1995. http://repository.hkbu.edu.hk/etd_ra/44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Martin, de Nicolas Silvia. "a-Si : H/c-Si heterojunction solar cells : back side assessment and improvement." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112253/document.

Full text
Abstract:
Parmi les technologies photovoltaïques à base de silicium, les cellules solaires à hétérojonction a-Si:H/c-Si (HJ) ont montré une attention croissante en ce qui concerne leur fort potentiel d’amélioration du rendement et de la réduction de coûts. Dans cette thèse, des investigations sur les cellules solaires à hétérojonction a-Si:H/c-Si de type (n) développées à l'Institut National de l'Énergie Solaire sont présentées. Les aspects technologiques et physiques du dispositif à HJ ont été revus, en mettant l'accent sur la compréhension du rôle joué par la face arrière. À travers le développement e
APA, Harvard, Vancouver, ISO, and other styles
3

Meitzner, Karl. "Heterojunction-Assisted Impact Ionization and Other Free Carrier Dynamics in Si, ZnS/Si, and ZnSe/Si." Thesis, University of Oregon, 2015. http://hdl.handle.net/1794/19294.

Full text
Abstract:
With increasing global energy demand and diminishing fossil fuel supplies, the development of clean and affordable renewable energy technology is more important than ever. Photovoltaic devices harvest the sun’s energy to produce electricity and produce very little pollution compared to nonrenewable sources. In order to make these devices affordable, however, technological advances are required. In this dissertation a novel photovoltaic device architecture that is designed to enhance sunlight-to-electricity conversion efficiency of photovoltaics is proposed and demonstrated. The increase in
APA, Harvard, Vancouver, ISO, and other styles
4

Gogolin, Ralf [Verfasser]. "Analysis and optimization of a-Si:H/c-Si heterojunction solar cells / Ralf Gogolin." Hannover : Technische Informationsbibliothek (TIB), 2016. http://d-nb.info/1099098130/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Іващенко, Максим Миколайович, Максим Николаевич Иващенко, Maksym Mykolaiovych Ivashchenko, et al. "Design and Fabrication Heterojunction Solarcell of Si-CdS-ZnO Thin Film." Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/35487.

Full text
Abstract:
Cadmium sulphide (CdS) is a prominent candidate to be used a buffer layer in Si based solar cell. In this study, absorber layer parameters thickness have been investigated by (SCAPS) to find out the higher conversion. Moreover, it is found that Jsc,Voc, η is increased for the absorber layer thickness of 500-600 nm and quantum efficiency is nearly overlap after the 600 nm thickness of the Si absorber layer. In addition, it is revealed that the highest efficiency cell can be achieved with the absorber layer thickness of 600 nm. From the simulation results, numerous influences of absorber la
APA, Harvard, Vancouver, ISO, and other styles
6

Pehlivan, Ozlem. "Growth And Morphological Characterization Of Intrinsic Hydrogenated Amorphous Silicon Thin Film For A-si:h/c-si Heterojunction Solar Cells." Phd thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615488/index.pdf.

Full text
Abstract:
Passivation of the crystalline silicon (c-Si) wafer surface and decreasing the number of interface defects are basic requirements for development of high efficiency a-Si:H/c-Si heterojunction solar cells. Surface passivation is generally achieved by development of detailed silicon wafer cleaning processes and the optimization of PECVD parameters for the deposition of intrinsic hydrogenated amorphous silicon layer. a-Si:H layers are grown in UHV-PECVD system. Solar cells were deposited on the p type Cz-silicon substrates in the structure of Al front contact/a-Si:H(n)/a-Si:H(i)/c-Si(p)/Al back
APA, Harvard, Vancouver, ISO, and other styles
7

Müller, Thomas. "Heterojunction solar cells (a-Si, c-Si) investigations on PECV deposited hydrogenated silicon alloys for use as high quality surface passivation and emitter, BSF." Berlin Logos-Verl, 2009. http://d-nb.info/997563184/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hussain, Babar. "Development of n-ZnO/p-Si single heterojunction solar cell with and without interfacial layer." Thesis, The University of North Carolina at Charlotte, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10258481.

Full text
Abstract:
<p> The conversion efficiency of conventional silicon (Si) photovoltaic cells has not been improved significantly during last two decades but their cost decreased dramatically during this time. However, the higher price-per-watt of solar cells is still the main bottleneck in their widespread use for power generation. Therefore, new materials need to be explored for the fabrication of solar cells potentially with lower cost and higher efficiency. The n-type zinc oxide (n-ZnO) and p-type Si (p-Si) based single heterojunction solar cell (SHJSC) is one of the several attempts to replace convention
APA, Harvard, Vancouver, ISO, and other styles
9

Jakkala, Pratheesh Kumar. "Fabrication of Si/InGaN Heterojunction Solar Cells by RF Sputtering Method: Improved Electrical and Optical Properties of Indium Gallium Nitride (InGaN) Thin Films." Ohio University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1490714042486824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Labrune, Martin. "Silicon surface passivation and epitaxial growth on c-Si by low temperature plasma processes for high efficiency solar cells." Phd thesis, Palaiseau, Ecole polytechnique, 2011. https://pastel.hal.science/docs/00/61/16/52/PDF/thesis_Martin_LABRUNE.pdf.

Full text
Abstract:
This thesis presents a work which has been devoted to the growth of silicon thin films on crystalline silicon for photovoltaic applications by means of RF PECVD. The primary goal of this work was to obtain an amorphous growth on any c-Si surface in order to provide an efficient passivation, as required in heterojunction solar cells. Indeed, we demonstrated that epitaxial or mixed phase growths, easy to obtain on (100) Si, would lead to poor surface passivation. We proved that growing a few nm thin a-Si1-xCx:H alloy film was an efficient, stable and reproducible way to hinder epitaxy while keeping
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Si heterojunction solar cells"

1

Landis, Geoffrey A. Deposition and characterization of ZnS/Si heterojunctions produced by vaccum evaporation. National Aeronautics and Space Administration, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Landis, Geoffrey. Deposition and characterization of ZnS/Si heterojunctions produced by vaccum evaporation. National Aeronautics and Space Administration, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fahrner, Wolfgang Rainer, ed. Amorphous Silicon / Crystalline Silicon Heterojunction Solar Cells. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37039-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fahrner, Wolfgang Rainer. Amorphous Silicon / Crystalline Silicon Heterojunction Solar Cells. Springer Berlin Heidelberg, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

National Renewable Energy Laboratory (U.S.) and IEEE Photovoltaic Specialists Conference (37th : 2011 : Seattle, Wash.), eds. Junction transport in epitaxial film silicon heterojunction solar cells: Preprint. National Renewable Energy Laboratory, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nakajima, K., and Noritaka Usami. Crystal growth of Si for solar cells. Springer Verlag, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Weinberg, Irving. Heteroepitaxial InP solar cells on Si and GaAs substrates. National Aeronautics and Space Administration, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Solanki, Chetan Singh, and Hemant Kumar Singh. Anti-reflection and Light Trapping in c-Si Solar Cells. Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4771-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

National Renewable Energy Laboratory (U.S.), Colorado State University, Calisolar, and IEEE Photovoltaic Specialists Conference (37th : 2011 : Seattle, Wash.), eds. Defect-band emission photoluminescence imaging on multi-crystalline Si solar cells: Preprint. National Renewable Energy Laboratory, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ellison, T. Efficiency and throughput advances in continuous roll-to-roll a-Si alloy PV manufacturing technology. National Renewable Energy Laboratory, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Si heterojunction solar cells"

1

Fujiwara, Hiroyuki. "Amorphous/Crystalline Si Heterojunction Solar Cells." In Spectroscopic Ellipsometry for Photovoltaics. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75377-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Muñoz, Delfina, Thibaut Desrues, and Pierre-Jean Ribeyron. "a-Si:H/c-Si Heterojunction Solar Cells: A Smart Choice for High Efficiency Solar Cells." In Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22275-7_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sharma, Jayasree Roy, Debolina Saha, Arijit Bardhan Roy, et al. "Application of N-doped ZnO Nanorods in Heterojunction Si Solar Cells." In Springer Proceedings in Physics. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Anwer, Syed, and Mukul Das. "Performance analysis of ZnO/c-Si heterojunction solar cell." In Computer, Communication and Electrical Technology. CRC Press, 2017. http://dx.doi.org/10.1201/9781315400624-37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ren, Bingyan, Yan Zhang, Bei Guo, et al. "Computer Simulation of P-A-Si:H/N-C-Si Heterojunction Solar Cells." In Proceedings of ISES World Congress 2007 (Vol. I – Vol. V). Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75997-3_249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Manzoor, Rumysa, Prashant Singh, Sanjay K. Srivastava, P. Prathap, and C. M. S. Rauthan. "Alkaline Treatment of Silicon Nanostructures for Efficient PEDOT:PSS/Si Heterojunction Solar Cells." In Springer Proceedings in Physics. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_74.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Garg, A., and R. K. Ratnesh. "Design and Simulation of GaAs/InP and Si/SiC Heterojunction Solar Cells." In Lecture Notes in Electrical Engineering. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7753-4_66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mandal, Lipika, S. Sadique Anwer Askari, Manoj Kumar, and Muzaffar Imam. "Analysis of ZnO/Si Heterojunction Solar Cell with Interface Defect." In Advances in Computer, Communication and Control. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3122-0_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kim, Sang Kyun, Jung Chul Lee, Viresh Dutta, Sung Ju Park, and Kyung Hoon Yoon. "The Effect of ZnO:Al Sputtering Condition on a-Si:H / Si Wafer Heterojunction Solar Cells." In Solid State Phenomena. Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.1015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Guechi, Abla, and Mohamed Chegaar. "Seasonal Variations of Solar Radiation on the Performance of Crystalline Silicon Heterojunction (c-Si-HJ) Solar Cells." In Advanced Control Engineering Methods in Electrical Engineering Systems. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97816-1_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Si heterojunction solar cells"

1

Kurokawa, Yasuyoshi, Yoshiko Iseki, Kazuhiro Gotoh, et al. "Enhancement of Near-infrared Light Absorption by Nanoimprinted Light Trapping Structure Implemented into Si Heterojunction Solar Cells." In 2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC). IEEE, 2024. http://dx.doi.org/10.1109/pvsc57443.2024.10749203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Christopher T., Rebecca Saive, Hal S. Emmer, Shaul Aloni, and Harry A. Atwater. "GaP/Si heterojunction solar cells." In 2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC). IEEE, 2015. http://dx.doi.org/10.1109/pvsc.2015.7356244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ager, J. W., L. A. Reichertz, K. M. Yu, et al. "InGaN/Si heterojunction tandem solar cells." In 2008 33rd IEEE Photovolatic Specialists Conference (PVSC). IEEE, 2008. http://dx.doi.org/10.1109/pvsc.2008.4922663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Abdul Hadi, Sabina, Ammar Nayfeh, Pouya Hashemi, and Judy Hoyt. "a-Si/c-Si1−xGex/c-Si heterojunction solar cells." In 2011 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD 2011). IEEE, 2011. http://dx.doi.org/10.1109/sispad.2011.6035083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lombardo, Salvatore, Cosimo Gerardi, Andrea Scuto, et al. "Amorphous Si tandem solar cells with SiOx / microcrystalline Si heterojunction." In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). IEEE, 2018. http://dx.doi.org/10.1109/pvsc.2018.8547367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nakamura, J. "Development of Heterojunction Back Contact Si Solar Cells." In 2014 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2014. http://dx.doi.org/10.7567/ssdm.2014.g-8-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Syu, Hong-Jhang, Shu-Chia Shiu, and Ching-Fuh Lin. "Si/silicon nanowire/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) heterojunction solar cells." In SPIE Solar Energy + Technology, edited by Loucas Tsakalakos. SPIE, 2011. http://dx.doi.org/10.1117/12.893353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Falk, Fritz, Guobin Jia, Gudrun Andrä, Ingo Sill, and Nikolay Petkov. "Silicon nanowire solar cells with a-Si heterojunction showing 7.3% efficiency." In SPIE Solar Energy + Technology, edited by Loucas Tsakalakos. SPIE, 2011. http://dx.doi.org/10.1117/12.897369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Muralidharan, Pradyumna, Kunal Ghosh, Dragica Vasileska, and Stephen M. Goodnick. "Hot hole transport in a-Si/c-Si heterojunction solar cells." In 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC). IEEE, 2014. http://dx.doi.org/10.1109/pvsc.2014.6925443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Islam, Kazi, and Ammar Nayfeh. "Simulation of a-Si/c-GaAs/c-Si Heterojunction Solar Cells." In 2012 European Modelling Symposium (EMS). IEEE, 2012. http://dx.doi.org/10.1109/ems.2012.15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Si heterojunction solar cells"

1

Hegedus, Steven S. Low cost back contact heterojunction solar cells on thin c-Si wafers. integrating laser and thin film processing for improved manufacturability. Office of Scientific and Technical Information (OSTI), 2015. http://dx.doi.org/10.2172/1224531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hegedus, Steven S. Low cost back contact heterojunction solar cells on thin c-Si wafers. Integrating laser and thin film processing for improved manufacturability. Office of Scientific and Technical Information (OSTI), 2015. http://dx.doi.org/10.2172/1214156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Author, Not Given. High efficiency (> 20%) heterojunction solar cell on 30μm thin crystalline Si substrates using a novel exfoliation technology. Office of Scientific and Technical Information (OSTI), 2012. http://dx.doi.org/10.2172/1356325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zimanyi, Gergely, and Mariana Bertoni. EXPLORING SI HETEROJUNCTION SOLAR CELL DEGRADATION: BULK AND INTERFACE PROCESSES ANALYZED BY SIMULATIONS AND EXPERIMENTS IN ORDER TO DEVELOP MITIGATION STRATEGIES. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1836838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Redwing, Joan, Tom Mallouk, Theresa Mayer, Elizabeth Dickey, and Chris Wronski. High Aspect Ratio Semiconductor Heterojunction Solar Cells. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1350042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jen, Alex K. Development of Efficient Charge-Selective Materials for Bulk Heterojunction Polymer Solar Cells. Defense Technical Information Center, 2015. http://dx.doi.org/10.21236/ada616502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tao, Meng. CVD-Based Valence-Mending Passivation for Crystalline-Si Solar Cells. Office of Scientific and Technical Information (OSTI), 2015. http://dx.doi.org/10.2172/1171391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Compaan, A. D., X. Deng, and R. G. Bohn. High efficiency thin film CdTe and a-Si based solar cells. Office of Scientific and Technical Information (OSTI), 2000. http://dx.doi.org/10.2172/754623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Grassman, Tyler, Steven Ringel, Emily Warren, Stephen Bremner, and Alex Stavrides. GaAsP/Si Tandem Solar Cells: Pathway to Low-Cost, High-Efficiency Photovoltaics. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1784256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Qi. Film Si Solar Cells with Nano Si: Cooperative Research and Development Final Report, CRADA Number CRD-09-00356. Office of Scientific and Technical Information (OSTI), 2011. http://dx.doi.org/10.2172/1013897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!