Contents
Academic literature on the topic 'Siegel-Veech constants'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Siegel-Veech constants.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Siegel-Veech constants"
Dozier, Benjamin. "Convergence of Siegel–Veech constants." Geometriae Dedicata 198, no. 1 (February 20, 2018): 131–42. http://dx.doi.org/10.1007/s10711-018-0332-7.
Full textLelièvre, Samuel. "Siegel–Veech constants in ℋ(2)." Geometry & Topology 10, no. 2 (September 12, 2006): 1157–72. http://dx.doi.org/10.2140/gt.2006.10.1157.
Full textAggarwal, Amol. "Large Genus Asymptotics for Siegel–Veech Constants." Geometric and Functional Analysis 29, no. 5 (August 22, 2019): 1295–324. http://dx.doi.org/10.1007/s00039-019-00509-0.
Full textChen, Dawei, Martin Möller, and Don Zagier. "Quasimodularity and large genus limits of Siegel-Veech constants." Journal of the American Mathematical Society 31, no. 4 (April 30, 2018): 1059–163. http://dx.doi.org/10.1090/jams/900.
Full textGoujard, Elise. "Siegel–Veech Constants for Strata of Moduli Spaces of Quadratic Differentials." Geometric and Functional Analysis 25, no. 5 (October 2015): 1440–92. http://dx.doi.org/10.1007/s00039-015-0345-4.
Full textBauer, Max, and Elise Goujard. "Geometry of periodic regions on flat surfaces and associated Siegel–Veech constants." Geometriae Dedicata 174, no. 1 (October 5, 2014): 203–33. http://dx.doi.org/10.1007/s10711-014-0014-z.
Full textAggarwal, Amol, Vincent Delecroix, Élise Goujard, Peter Zograf, and Anton Zorich. "Conjectural Large Genus Asymptotics of Masur–Veech Volumes and of Area Siegel–Veech Constants of Strata of Quadratic Differentials." Arnold Mathematical Journal 6, no. 2 (May 20, 2020): 149–61. http://dx.doi.org/10.1007/s40598-020-00139-7.
Full textEskin, Alex, and Anton Zorich. "Volumes of Strata of Abelian Differentials and Siegel–Veech Constants in Large Genera." Arnold Mathematical Journal 1, no. 4 (November 5, 2015): 481–88. http://dx.doi.org/10.1007/s40598-015-0028-0.
Full textSauvaget, Adrien. "Volumes and Siegel–Veech constants of $${\mathcal{H}}$$H (2G − 2) and Hodge integrals." Geometric and Functional Analysis 28, no. 6 (September 14, 2018): 1756–79. http://dx.doi.org/10.1007/s00039-018-0468-5.
Full textEskin, Alex, Howard Masur, and Anton Zorich. "Moduli spaces of Abelian differentials: The principal boundary, counting problems, and the Siegel–Veech constants." Publications mathématiques de l'IHÉS 97, no. 1 (September 2003): 61–179. http://dx.doi.org/10.1007/s10240-003-0015-1.
Full textDissertations / Theses on the topic "Siegel-Veech constants"
Goujard, Élise. "Constantes de Siegel-Veech et volumes de strates d'espaces de modules de différentielles quadratiques." Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S054/document.
Full textWe study Siegel–Veech constants for flat surfaces and their links with the volumes of some strata of moduli spaces of quadratic differentials. Siegel–Veech constants give the asymptotics of the number of periodic geodesics in flat surfaces. For certain flat surfaces such geodesics correspond to periodic trajectories in related rational billiards. Siegel–Veech constants are strongly linked to the dynamics of the geodesic flow in related moduli spaces by the formula of Eskin–Kontsevich–Zorich, giving the sum of the Lyapunov exponents for the Hodge bundle along the Teichmüller geodesic flow in terms of the Siegel–Veech constant for the corresponding stratum and an explicit combinatorial expression. This dynamics is related to the dynamics of the linear flow in the original flat surface by a renormalization process. Using some properties of this dynamics we prove a criterion to detect whether a complex curve, embedded in the moduli space of Riemann surfaces and endowed with a line subbundle of the Hodge bundle, is a Teichmüller curve. We study ratios of Siegel–Veech constants and deduce geometric informations about the periodic regions in flat surfaces. The links between Siegel–Veech constants and volumes of moduli spaces were completely studied by Eskin, Masur and Zorich in the Abelian case, and by Athreya, Eskin and Zorich in the quadratic case in genus zero. We generalize their results to the quadratic case in higher genus, using the description of configurations of saddle-connections performed by Masur and Zorich. We provide explicit computations of volumes of some strata of low dimension
Lelièvre, Samuel. "Surfaces de Veech arithmétiques en genre deux: disques de Teichmüller, groupes de Veech et constantes de Siegel-Veech." Phd thesis, Université Rennes 1, 2004. http://tel.archives-ouvertes.fr/tel-00008722.
Full textLelièvre, Sameul. "Surfaces de Veech arithmétiques en genre deux : disques de Teichmüller, groupes de Veech et constantes de Siegel-Veech." Rennes 1, 2004. https://tel.archives-ouvertes.fr/tel-00008722.
Full text