Academic literature on the topic 'Sigmoid approximation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sigmoid approximation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Sigmoid approximation"
Ito, Yoshifusa. "Approximation Capability of Layered Neural Networks with Sigmoid Units on Two Layers." Neural Computation 6, no. 6 (November 1994): 1233–43. http://dx.doi.org/10.1162/neco.1994.6.6.1233.
Full textBagul, Yogesh J., and Christophe Chesneau. "Sigmoid functions for the smooth approximation to the absolute value function." Moroccan Journal of Pure and Applied Analysis 7, no. 1 (January 1, 2021): 12–19. http://dx.doi.org/10.2478/mjpaa-2021-0002.
Full textVlček, Miroslav. "CHEBYSHEV POLYNOMIAL APPROXIMATION FOR ACTIVATION SIGMOID FUNCTION." Neural Network World 22, no. 4 (2012): 387–93. http://dx.doi.org/10.14311/nnw.2012.22.023.
Full textNGUYEN, Vantruong, Jueping CAI, Linyu WEI, and Jie CHU. "Neural Networks Probability-Based PWL Sigmoid Function Approximation." IEICE Transactions on Information and Systems E103.D, no. 9 (September 1, 2020): 2023–26. http://dx.doi.org/10.1587/transinf.2020edl8007.
Full textWaissi, Gary R., and Donald F. Rossin. "A sigmoid approximation of the standard normal integral." Applied Mathematics and Computation 77, no. 1 (June 1996): 91–95. http://dx.doi.org/10.1016/0096-3003(95)00190-5.
Full textHornik, Kurt, Maxwell Stinchcombe, Halbert White, and Peter Auer. "Degree of Approximation Results for Feedforward Networks Approximating Unknown Mappings and Their Derivatives." Neural Computation 6, no. 6 (November 1994): 1262–75. http://dx.doi.org/10.1162/neco.1994.6.6.1262.
Full textPark, J., and I. W. Sandberg. "Universal Approximation Using Radial-Basis-Function Networks." Neural Computation 3, no. 2 (June 1991): 246–57. http://dx.doi.org/10.1162/neco.1991.3.2.246.
Full textBhattacharyya, C., and S. S. Keerthi. "Mean Field Methods for a Special Class of Belief Networks." Journal of Artificial Intelligence Research 15 (August 1, 2001): 91–114. http://dx.doi.org/10.1613/jair.734.
Full textChiluveru, S. R., M. Tripathy, and B. Mohapatra. "Accuracy controlled iterative method for efficient sigmoid function approximation." Electronics Letters 56, no. 18 (September 3, 2020): 914–16. http://dx.doi.org/10.1049/el.2020.0854.
Full textKoutroumbas, K. "On the Partitioning Capabilities of Feedforward Neural Networks with Sigmoid Nodes." Neural Computation 15, no. 10 (October 1, 2003): 2457–81. http://dx.doi.org/10.1162/089976603322362437.
Full textDissertations / Theses on the topic "Sigmoid approximation"
Minařík, Miloš. "Souběžný evoluční návrh hardwaru a softwaru." Doctoral thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2018. http://www.nusl.cz/ntk/nusl-412594.
Full textBharkhada, Bharat Kishore. "Efficient Fpga Implementation of a Generic Function Approximator and Its Application to Neural Net Computation." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1060978658.
Full textQuee, Graham. "Ramp approximations of finitely steep sigmoid control functions in soft-switching ODE networks." Thesis, 2019. http://hdl.handle.net/1828/10746.
Full textGraduate
Book chapters on the topic "Sigmoid approximation"
Zhen-zhen, Xie, and Zhang Su-yu. "A Non-linear Approximation of the Sigmoid Function Based FPGA." In Advances in Intelligent and Soft Computing, 125–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25188-7_15.
Full textMinarik, Milos, and Lukas Sekanina. "On Evolutionary Approximation of Sigmoid Function for HW/SW Embedded Systems." In Lecture Notes in Computer Science, 343–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55696-3_22.
Full textDineva, Adrienn, József K. Tar, Annamária Várkonyi-Kóczy, János T. Tóth, and Vincenzo Piuri. "Non-conventional Control Design by Sigmoid Generated Fixed Point Transformation Using Fuzzy Approximation." In Studies in Systems, Decision and Control, 1–15. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78437-3_1.
Full textAnastassiou, George A. "Univariate Sigmoidal Neural Network Quantitative Approximation." In Intelligent Systems Reference Library, 1–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21431-8_1.
Full textAnastassiou, George A. "Multivariate Sigmoidal Neural Network Quantitative Approximation." In Intelligent Systems Reference Library, 67–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21431-8_3.
Full textLenze, Burkhard. "Constructive Multivariate Approximation with Sigmoidal Functions and Applications to Neural Networks." In Numerical Methods in Approximation Theory, Vol. 9, 155–75. Basel: Birkhäuser Basel, 1992. http://dx.doi.org/10.1007/978-3-0348-8619-2_9.
Full textMontaña, José L., and Cruz E. Borges. "Lower Bounds for Approximation of Some Classes of Lebesgue Measurable Functions by Sigmoidal Neural Networks." In Lecture Notes in Computer Science, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02478-8_1.
Full textChan, Veronica, and Christine W. Chan. "Towards Developing the Piece-Wise Linear Neural Network Algorithm for Rule Extraction." In Deep Learning and Neural Networks, 1632–49. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-0414-7.ch091.
Full textConference papers on the topic "Sigmoid approximation"
Murugadoss, R., and M. Ramakrishnan. "Universal approximation using probabilistic neural networks with sigmoid activation functions." In 2014 International Conference on Advances in Engineering and Technology Research (ICAETR). IEEE, 2014. http://dx.doi.org/10.1109/icaetr.2014.7012920.
Full textXie, Zhenzhen. "A non-linear approximation of the sigmoid function based on FPGA." In 2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI). IEEE, 2012. http://dx.doi.org/10.1109/icaci.2012.6463155.
Full textZaki, Peter W., Ahmed M. Hashem, Emad A. Fahim, Mostafa A. Masnour, Sarah M. ElGenk, Maggie Mashaly, and Samar M. Ismail. "A Novel Sigmoid Function Approximation Suitable for Neural Networks on FPGA." In 2019 15th International Computer Engineering Conference (ICENCO). IEEE, 2019. http://dx.doi.org/10.1109/icenco48310.2019.9027479.
Full textRussell, Gary, and Laurene V. Fausett. "Comparison of function approximation with sigmoid and radial basis function networks." In Aerospace/Defense Sensing and Controls, edited by Steven K. Rogers and Dennis W. Ruck. SPIE, 1996. http://dx.doi.org/10.1117/12.235903.
Full textStinchcombe and White. "Universal approximation using feedforward networks with non-sigmoid hidden layer activation functions." In International Joint Conference on Neural Networks. IEEE, 1989. http://dx.doi.org/10.1109/ijcnn.1989.118640.
Full textMurugadoss, R., and M. Ramakrishnan. "Universal approximation of nonlinear system predictions in sigmoid activation functions using artificial neural networks." In 2014 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). IEEE, 2014. http://dx.doi.org/10.1109/iccic.2014.7238539.
Full textLopez-Benitez, Miguel, and Dhaval Patel. "Sigmoid Approximation to the Gaussian $Q$-function and its Applications to Spectrum Sensing Analysis." In 2019 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2019. http://dx.doi.org/10.1109/wcnc.2019.8886061.
Full textMarar, Joao F., and Ana C. Patrocionio. "Comparative study between powers of sigmoid functions, MLP backpropagation, and polynomials in function approximation problems." In AeroSense '99, edited by Ivan Kadar. SPIE, 1999. http://dx.doi.org/10.1117/12.357191.
Full textWong, Harry W. H., Jack P. K. Ma, Donald P. H. Wong, Lucien K. L. Ng, and Sherman S. M. Chow. "Learning Model with Error -- Exposing the Hidden Model of BAYHENN." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/488.
Full textTarasov, Dmitry A., Andrey G. Tyagunov, and Oleg B. Milder. "Approximating heat resistance of nickel-based superalloys by a sigmoid." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0026744.
Full text