Dissertations / Theses on the topic 'Sign language recognition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Sign language recognition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Nel, Warren. "An integrated sign language recognition system." Thesis, University of Western Cape, 2014. http://hdl.handle.net/11394/3584.
Full textResearch has shown that five parameters are required to recognize any sign language gesture: hand shape, location, orientation and motion, as well as facial expressions. The South African Sign Language (SASL) research group at the University of the Western Cape has created systems to recognize Sign Language gestures using single parameters. Using a single parameter can cause ambiguities in the recognition of signs that are similarly signed resulting in a restriction of the possible vocabulary size. This research pioneers work at the group towards combining multiple parameters to achieve a larger recognition vocabulary set. The proposed methodology combines hand location and hand shape recognition into one combined recognition system. The system is shown to be able to recognize a very large vocabulary of 50 signs at a high average accuracy of 74.1%. This vocabulary size is much larger than existing SASL recognition systems, and achieves a higher accuracy than these systems in spite of the large vocabulary. It is also shown that the system is highly robust to variations in test subjects such as skin colour, gender and body dimension. Furthermore, the group pioneers research towards continuously recognizing signs from a video stream, whereas existing systems recognized a single sign at a time. To this end, a highly accurate continuous gesture segmentation strategy is proposed and shown to be able to accurately recognize sentences consisting of five isolated SASL gestures.
Zafrulla, Zahoor. "Automatic recognition of American sign language classifiers." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53461.
Full textNayak, Sunita. "Representation and learning for sign language recognition." [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002362.
Full textNurena-Jara, Roberto, Cristopher Ramos-Carrion, and Pedro Shiguihara-Juarez. "Data collection of 3D spatial features of gestures from static peruvian sign language alphabet for sign language recognition." Institute of Electrical and Electronics Engineers Inc, 2020. http://hdl.handle.net/10757/656634.
Full textPeruvian Sign Language Recognition (PSL) is approached as a classification problem. Previous work has employed 2D features from the position of hands to tackle this problem. In this paper, we propose a method to construct a dataset consisting of 3D spatial positions of static gestures from the PSL alphabet, using the HTC Vive device and a well-known technique to extract 21 keypoints from the hand to obtain a feature vector. A dataset of 35, 400 instances of gestures for PSL was constructed and a novel way to extract data was stated. To validate the appropriateness of this dataset, a comparison of four baselines classifiers in the Peruvian Sign Language Recognition (PSLR) task was stated, achieving 99.32% in the average in terms of F1 measure in the best case.
Revisión por pares
Cooper, H. M. "Sign language recognition : generalising to more complex corpora." Thesis, University of Surrey, 2010. http://epubs.surrey.ac.uk/843617/.
Full textLi, Pei. "Hand shape estimation for South African sign language." Thesis, University of the Western Cape, 2012. http://hdl.handle.net/11394/4374.
Full textHand shape recognition is a pivotal part of any system that attempts to implement Sign Language recognition. This thesis presents a novel system which recognises hand shapes from a single camera view in 2D. By mapping the recognised hand shape from 2D to 3D,it is possible to obtain 3D co-ordinates for each of the joints within the hand using the kinematics embedded in a 3D hand avatar and smooth the transformation in 3D space between any given hand shapes. The novelty in this system is that it does not require a hand pose to be recognised at every frame, but rather that hand shapes be detected at a given step size. This architecture allows for a more efficient system with better accuracy than other related systems. Moreover, a real-time hand tracking strategy was developed that works efficiently for any skin tone and a complex background.
Belissen, Valentin. "From Sign Recognition to Automatic Sign Language Understanding : Addressing the Non-Conventionalized Units." Electronic Thesis or Diss., université Paris-Saclay, 2020. http://www.theses.fr/2020UPASG064.
Full textSign Languages (SLs) have developed naturally in Deaf communities. With no written form, they are oral languages, using the gestural channel for expression and the visual channel for reception. These poorly endowed languages do not meet with a broad consensus at the linguistic level. These languages make use of lexical signs, i.e. conventionalized units of language whose form is supposed to be arbitrary, but also - and unlike vocal languages, if we don't take into account the co-verbal gestures - iconic structures, using space to organize discourse. Iconicity, which is defined as the existence of a similarity between the form of a sign and the meaning it carries, is indeed used at several levels of SL discourse.Most research in automatic Sign Language Recognition (SLR) has in fact focused on recognizing lexical signs, at first in the isolated case and then within continuous SL. The video corpora associated with such research are often relatively artificial, consisting of the repetition of elicited utterances in written form. Other corpora consist of interpreted SL, which may also differ significantly from natural SL, as it is strongly influenced by the surrounding vocal language.In this thesis, we wish to show the limits of this approach, by broadening this perspective to consider the recognition of elements used for the construction of discourse or within illustrative structures.To do so, we show the interest and the limits of the corpora developed by linguists. In these corpora, the language is natural and the annotations are sometimes detailed, but not always usable as input data for machine learning systems, as they are not necessarily complete or coherent. We then propose the redesign of a French Sign Language dialogue corpus, Dicta-Sign-LSF-v2, with rich and consistent annotations, following an annotation scheme shared by many linguists.We then propose a redefinition of the problem of automatic SLR, consisting in the recognition of various linguistic descriptors, rather than focusing on lexical signs only. At the same time, we discuss adapted metrics for relevant performance assessment.In order to perform a first experiment on the recognition of linguistic descriptors that are not only lexical, we then develop a compact and generalizable representation of signers in videos. This is done by parallel processing of the hands, face and upper body, using existing tools and models that we have set up. Besides, we preprocess these parallel representations to obtain a relevant feature vector. We then present an adapted and modular architecture for automatic learning of linguistic descriptors, consisting of a recurrent and convolutional neural network.Finally, we show through a quantitative and qualitative analysis the effectiveness of the proposed model, tested on Dicta-Sign-LSF-v2. We first carry out an in-depth analysis of the parameterization, evaluating both the learning model and the signer representation. The study of the model predictions then demonstrates the merits of the proposed approach, with a very interesting performance for the continuous recognition of four linguistic descriptors, especially in view of the uncertainty related to the annotations themselves. The segmentation of the latter is indeed subjective, and the very relevance of the categories used is not strongly demonstrated. Indirectly, the proposed model could therefore make it possible to measure the validity of these categories. With several areas for improvement being considered, particularly in terms of signer representation and the use of larger corpora, the results are very encouraging and pave the way for a wider understanding of continuous Sign Language Recognition
Rupe, Jonathan C. "Vision-based hand shape identification for sign language recognition /." Link to online version, 2005. https://ritdml.rit.edu/dspace/handle/1850/940.
Full textMudduluru, Sravani. "Indian Sign Language Numbers Recognition using Intel RealSense Camera." DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1815.
Full textBrashear, Helene Margaret. "Improving the efficacy of automated sign language practice tools." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34703.
Full textYin, Pei. "Segmental discriminative analysis for American Sign Language recognition and verification." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33939.
Full textStarner, Thad. "Visual recognition of American sign language using hidden Markov models." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/29089.
Full textAdam, Jameel. "Video annotation wiki for South African sign language." Thesis, University of the Western Cape, 2011. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_1540_1304499135.
Full textThe SASL project at the University of the Western Cape aims at developing a fully automated translation system between English and South African Sign Language (SASL). Three important aspects of this system require SASL documentation and knowledge. These are: recognition of SASL from a video sequence, linguistic translation between SASL and English and the rendering of SASL. Unfortunately, SASL documentation is a scarce resource and no official or complete documentation exists. This research focuses on creating an online collaborative video annotation knowledge management system for SASL where various members of the community can upload SASL videos to and annotate them in any of the sign language notation systems, SignWriting, HamNoSys and/or Stokoe. As such, knowledge about SASL structure is pooled into a central and freely accessible knowledge base that can be used as required. The usability and performance of the system were evaluated. The usability of the system was graded by users on a rating scale from one to five for a specific set of tasks. The system was found to have an overall usability of 3.1, slightly better than average. The performance evaluation included load and stress tests which measured the system response time for a number of users for a specific set of tasks. It was found that the system is stable and can scale up to cater for an increasing user base by improving the underlying hardware.
Feng, Qianli. "Automatic American Sign Language Imitation Evaluator." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461233570.
Full textZhou, Mingjie. "Deep networks for sign language video caption." HKBU Institutional Repository, 2020. https://repository.hkbu.edu.hk/etd_oa/848.
Full textHolden, Eun-Jung. "Visual recognition of hand motion." University of Western Australia. Dept. of Computer Science, 1997. http://theses.library.uwa.edu.au/adt-WU2003.0007.
Full textBuehler, Patrick. "Automatic learning of British Sign Language from signed TV broadcasts." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:2930e980-4307-41bf-b4ff-87e8c4d0d722.
Full textAchmed, Imran. "Independent hand-tracking from a single two-dimensional view and its application to South African sign language recognition." Thesis, University of Western Cape, 2014. http://hdl.handle.net/11394/3330.
Full textHand motion provides a natural way of interaction that allows humans to interact not only with the environment, but also with each other. The effectiveness and accuracy of hand-tracking is fundamental to the recognition of sign language. Any inconsistencies in hand-tracking result in a breakdown in sign language communication. Hands are articulated objects, which complicates the tracking thereof. In sign language communication the tracking of hands is often challenged by the occlusion of the other hand, other body parts and the environment in which they are being tracked. The thesis investigates whether a single framework can be developed to track the hands independently of an individual from a single 2D camera in constrained and unconstrained environments without the need for any special device. The framework consists of a three-phase strategy, namely, detection, tracking and learning phases. The detection phase validates whether the object being tracked is a hand, using extended local binary patterns and random forests. The tracking phase tracks the hands independently by extending a novel data-association technique. The learning phase exploits contextual features, using the scale-invariant features transform (SIFT) algorithm and the fast library for approximate nearest neighbours (FLANN) algorithm to assist tracking and the recovering of hands from any form of tracking failure. The framework was evaluated on South African sign language phrases that use a single hand, both hands without occlusion, and both hands with occlusion. These phrases were performed by 20 individuals in constrained and unconstrained environments. The experiments revealed that integrating all three phases to form a single framework is suitable for tracking hands in both constrained and unconstrained environments, where a high average accuracy of 82,08% and 79,83% was achieved respectively.
Naidoo, Nathan Lyle. "South African sign language recognition using feature vectors and Hidden Markov Models." Thesis, University of the Western Cape, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_8533_1297923615.
Full textThis thesis presents a system for performing whole gesture recognition for South African Sign Language. The system uses feature vectors combined with Hidden Markov models. In order to constuct a feature vector, dynamic segmentation must occur to extract the signer&rsquo
s hand movements. Techniques and methods for normalising variations that occur when recording a signer performing a gesture, are investigated. The system has a classification rate of 69%
Ding, Liya. "Modelling and Recognition of Manuals and Non-manuals in American Sign Language." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1237564092.
Full textBlair, James M. "Architectures for Real-Time Automatic Sign Language Recognition on Resource-Constrained Device." UNF Digital Commons, 2018. https://digitalcommons.unf.edu/etd/851.
Full textNeyra-Gutierrez, Andre, and Pedro Shiguihara-Juarez. "Feature Extraction with Video Summarization of Dynamic Gestures for Peruvian Sign Language Recognition." Institute of Electrical and Electronics Engineers Inc, 2020. http://hdl.handle.net/10757/656630.
Full textIn peruvian sign language (PSL), recognition of static gestures has been proposed earlier. However, to state a conversation using sign language, it is also necessary to employ dynamic gestures. We propose a method to extract a feature vector for dynamic gestures of PSL. We collect a dataset with 288 video sequences of words related to dynamic gestures and we state a workflow to process the keypoints of the hands, obtaining a feature vector for each video sequence with the support of a video summarization technique. We employ 9 neural networks to test the method, achieving an average accuracy ranging from 80% and 90%, using 10 fold cross-validation.
Viswavarapu, Lokesh Kumar. "Real-Time Finger Spelling American Sign Language Recognition Using Deep Convolutional Neural Networks." Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1404616/.
Full textDe, Villiers Hendrik Adrianus Cornelis. "A vision-based South African sign language tutor." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86333.
Full textENGLISH ABSTRACT: A sign language tutoring system capable of generating detailed context-sensitive feedback to the user is presented in this dissertation. This stands in contrast with existing sign language tutor systems, which lack the capability of providing such feedback. A domain specific language is used to describe the constraints placed on the user’s movements during the course of a sign, allowing complex constraints to be built through the combination of simpler constraints. This same linguistic description is then used to evaluate the user’s movements, and to generate corrective natural language feedback. The feedback is dynamically tailored to the user’s attempt, and automatically targets that correction which would require the least effort on the part of the user. Furthermore, a procedure is introduced which allows feedback to take the form of a simple to-do list, despite the potential complexity of the logical constraints describing the sign. The system is demonstrated using real video sequences of South African Sign Language signs, exploring the different kinds of advice the system can produce, as well as the accuracy of the comments produced. To provide input for the tutor system, the user wears a pair of coloured gloves, and a video of their attempt is recorded. A vision-based hand pose estimation system is proposed which uses the Earth Mover’s Distance to obtain hand pose estimates from images of the user’s hands. A two-tier search strategy is employed, first obtaining nearest neighbours using a simple, but related, metric. It is demonstrated that the two-tier system’s accuracy approaches that of a global search using only the Earth Mover’s Distance, yet requires only a fraction of the time. The system is shown to outperform a closely related system on a set of 500 real images of gloved hands.
AFRIKAANSE OPSOMMING: ’n Gebaretaaltutorstelsel met die vermo¨e om konteks-sensitiewe terugvoer te lewer aan die gebruiker word uiteengesit in hierdie proefskrif. Hierdie staan in kontras met bestaande tutorstelsels, wat nie hierdie kan bied vir die gebruiker nie. ’n Domein-spesifieke taal word gebruik om beperkinge te definieer op die gebruiker se bewegings deur die loop van ’n gebaar. Komplekse beperkinge kan opgebou word uit eenvoudiger beperkinge. Dieselfde linguistieke beskrywing van die gebaar word gebruik om die gebruiker se bewegings te evalueer, en om korrektiewe terugvoer te genereer in teksvorm. Die terugvoer word dinamies aangepas met betrekking tot die gebruiker se probeerslag, en bepaal outomaties die maklikste manier wat die gebruiker sy/haar fout kan korrigeer. ’n Prosedure word uiteengesit om die terugvoer in ’n eenvoudige lysvorm aan te bied, ongeag die kompleksiteit van die linguistieke beskrywing van die gebaar. Die stelsel word gedemonstreer aan die hand van opnames van gebare uit Suid-Afrikaanse Gebaretaal. Die verskeie tipes terugvoer wat die stelsel kan lewer, asook die akkuraatheid van hierdie terugvoer, word ondersoek. Om vir die tutorstelsel intree te bied, dra die gebruiker ’n stel gekleurde handskoene. ’n Visie-gebaseerde handvormafskattingstelsel wat gebruik maak van die Aardverskuiwersafstand (Earth Mover’s Distance) word voorgestel. ’n Twee-vlak soekstrategie word gebruik. ’n Rowwe afstandsmate word gebruik om ’n stel voorlopige handpostuurkandidate te verkry, waarna die stel verfyn word deur gebruik van die Aardverskuiwersafstand. Dit word gewys dat hierdie benaderde strategie se akkuraatheid grens aan die van eksakte soektogte, maar neem slegs ’n fraksie van die tyd. Toetsing op ’n stel van 500 re¨ele beelde, wys dat hierdie stelsel beter presteer as ’n naverwante stelsel uit die literatuur.
Potrus, Dani. "Swedish Sign Language Skills Training and Assessment." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209129.
Full textTeckenspråk används i stor grad runt om i världen som ett modersmål för dom som inte kan använda vardagligt talsspråk och utav grupper av personer som har en funktionsnedsättning (t.ex. en hörselskada). Betydelsen av effektivt lärande av teckenspråk och dess tillämpningar i modern datavetenskap har ökat i stor utsträckning i det moderna samhället, och forskning kring teckenspråklig igenkänning har spirat i många olika riktningar, ett exempel är med hjälp av statistika modeller såsom dolda markovmodeller (eng. Hidden markov models) för att träna modeller för att känna igen olika teckenspråksmönster (bland dessa ingår Svenskt teckenspråk, Amerikanskt teckenspråk, Koreanskt teckenspråk, Tyskt teckenspråk med flera). Denna rapport undersöker bedömningen och skickligheten av att använda ett enkelt teckenspråksspel som har utvecklats för att lära ut enkla Svenska teckenspråksmönster för barn i åldrarna 10 till 11 års ålder som inte har några inlärningssjukdomar eller några problem med allmän hälsa. Under projektets experiment delas 38 barn upp i två lika stora grupper om 19 i vardera grupp, där varje grupp kommer att få spela ett teckenspråksspel. Sammanhanget för spelet är detsamma för båda grupperna, där de får höra och se en tredimensionell figur (eng. 3D Avatar) tala till dom med både talsspråk och teckenspråk. Den första gruppen spelar spelet och svarar på frågor som ges till dem med hjälp av teckenspråk, medan den andra gruppen svarar på frågor som ges till dem genom att klicka på ett av fem alternativ som finns på spelets skärm. En vecka efter att barnen har utfört experimentet med teckenspråksspelet bedöms deras teckenspråkliga färdigheter som de har fått från spelet genom att de ombeds återuppge några av de tecknena som de såg under spelets varaktighet. Rapportens hypotes är att de barn som tillhör gruppen som fick ge teckenspråk som svar till frågorna som ställdes överträffar den andra gruppen, genom att både komma ihåg tecknena och återuppge dom på korrekt sätt. En statistisk hypotesprövning utförs på denna hypotes, där denna i sin tur bekräftas. Slutligen beskrivs det i rapportens sista kapitel om framtida forskning inom teckenspråksbedömning med tv spel och deras effektivitet.
Segers, Vaughn Mackman. "The efficacy of the Eigenvector approach to South African sign language identification." Thesis, University of the Western Cape, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_2697_1298280657.
Full textThe communication barriers between deaf and hearing society mean that interaction between these communities is kept to a minimum. The South African Sign Language research group, Integration of Signed and Verbal Communication: South African Sign Language Recognition and Animation (SASL), at the University of the Western Cape aims to create technologies to bridge the communication gap. In this thesis we address the subject of whole hand gesture recognition. We demonstrate a method to identify South African Sign Language classifiers using an eigenvector ap- proach. The classifiers researched within this thesis are based on those outlined by the Thibologa Sign Language Institute for SASL. Gesture recognition is achieved in real- time. Utilising a pre-processing method for image registration we are able to increase the recognition rates for the eigenvector approach.
Sarella, Kanthi. "An image processing technique for the improvement of Sign2 using a dual camera approach /." Online version of thesis, 2008. http://hdl.handle.net/1850/5721.
Full textAchmed, Imran. "Upper body pose recognition and estimation towards the translation of South African sign language." Thesis, University of the Western Cape, 2011. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_2493_1304504127.
Full textRecognising and estimating gestures is a fundamental aspect towards translating from a sign language to a spoken language. It is a challenging problem and at the same time, a growing phenomenon in Computer Vision. This thesis presents two approaches, an example-based and a learning-based approach, for performing integrated detection, segmentation and 3D estimation of the human upper body from a single camera view. It investigates whether an upper body pose can be estimated from a database of exemplars with labelled poses. It also investigates whether an upper body pose can be estimated using skin feature extraction, Support Vector Machines (SVM) and a 3D human body model. The example-based and learning-based approaches obtained success rates of 64% and 88%, respectively. An analysis of the two approaches have shown that, although the learning-based system generally performs better than the example-based system, both approaches are suitable to recognise and estimate upper body poses in a South African sign language recognition and translation system.
Gonzalez, Preciado Matilde. "Computer vision methods for unconstrained gesture recognition in the context of sign language annotation." Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1798/.
Full textThis PhD thesis concerns the study of computer vision methods for the automatic recognition of unconstrained gestures in the context of sign language annotation. Sign Language (SL) is a visual-gestural language developed by deaf communities. Continuous SL consists on a sequence of signs performed one after another involving manual and non-manual features conveying simultaneous information. Even though standard signs are defined in dictionaries, we find a huge variability caused by the context-dependency of signs. In addition signs are often linked by movement epenthesis which consists on the meaningless gesture between signs. The huge variability and the co-articulation effect represent a challenging problem during automatic SL processing. It is necessary to have numerous annotated video corpus in order to train statistical machine translators and study this language. Generally the annotation of SL video corpus is manually performed by linguists or computer scientists experienced in SL. However manual annotation is error-prone, unreproducible and time consuming. In addition de quality of the results depends on the SL annotators knowledge. Associating annotator knowledge to image processing techniques facilitates the annotation task increasing robustness and speeding up the required time. The goal of this research concerns on the study and development of image processing technique in order to assist the annotation of SL video corpus: body tracking, hand segmentation, temporal segmentation, gloss recognition. Along this PhD thesis we address the problem of gloss annotation of SL video corpus. First of all we intend to detect the limits corresponding to the beginning and end of a sign. This annotation method requires several low level approaches for performing temporal segmentation and for extracting motion and hand shape features. First we propose a particle filter based approach for robustly tracking hand and face robust to occlusions. Then a segmentation method for extracting hand when it is in front of the face has been developed. Motion is used for segmenting signs and later hand shape is used to improve the results. Indeed hand shape allows to delete limits detected in the middle of a sign. Once signs have been segmented we proceed to the gloss recognition using lexical description of signs. We have evaluated our algorithms using international corpus, in order to show their advantages and limitations. The evaluation has shown the robustness of the proposed methods with respect to high dynamics and numerous occlusions between body parts. Resulting annotation is independent on the annotator and represents a gain on annotation consistency
Mohamed, Asif, Paul Sujeet, and Vishnu Ullas. "Gauntlet-X1: Smart Glove System for American Sign Language translation using Hand Activity Recognition." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-428743.
Full textJacobs, Kurt. "South African Sign Language Hand Shape and Orientation Recognition on Mobile Devices Using Deep Learning." University of the Western Cape, 2017. http://hdl.handle.net/11394/5647.
Full textIn order to classify South African Sign Language as a signed gesture, five fundamental parameters need to be considered. These five parameters to be considered are: hand shape, hand orientation, hand motion, hand location and facial expressions. The research in this thesis will utilise Deep Learning techniques, specifically Convolutional Neural Networks, to recognise hand shapes in various hand orientations. The research will focus on two of the five fundamental parameters, i.e., recognising six South African Sign Language hand shapes for each of five different hand orientations. These hand shape and orientation combinations will be recognised by means of a video stream captured on a mobile device. The efficacy of Convolutional Neural Network for gesture recognition will be judged with respect to its classification accuracy and classification speed in both a desktop and embedded context. The research methodology employed to carry out the research was Design Science Research. Design Science Research refers to a set of analytical techniques and perspectives for performing research in the field of Information Systems and Computer Science. Design Science Research necessitates the design of an artefact and the analysis thereof in order to better understand its behaviour in the context of Information Systems or Computer Science.
National Research Foundation (NRF)
Yang, Ruiduo. "Dynamic programming with multiple candidates and its applications to sign language and hand gesture recognition." [Tampa, Fla.] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002310.
Full textParashar, Ayush S. "Representation and Interpretation of Manual and Non-Manual Information for Automated American Sign Language Recognition." [Tampa, Fla.] : University of South Florida, 2003. http://purl.fcla.edu/fcla/etd/SFE0000055.
Full textRajah, Christopher. "Chereme-based recognition of isolated, dynamic gestures from South African sign language with Hidden Markov Models." Thesis, University of the Western Cape, 2006. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_4979_1183461652.
Full textMuch work has been done in building systems that can recognize gestures, e.g. as a component of sign language recognition systems. These systems typically use whole gestures as the smallest unit for recognition. Although high recognition rates have been reported, these systems do not scale well and are computationally intensive. The reason why these systems generally scale poorly is that they recognize gestures by building individual models for each separate gesture
as the number of gestures grows, so does the required number of models. Beyond a certain threshold number of gestures to be recognized, this approach become infeasible. This work proposed that similarly good recognition rates can be achieved by building models for subcomponents of whole gestures, so-called cheremes. Instead of building models for entire gestures, we build models for cheremes and recognize gestures as sequences of such cheremes. The assumption is that many gestures share cheremes and that the number of cheremes necessary to describe gestures is much smaller than the number of gestures. This small number of cheremes then makes it possible to recognized a large number of gestures with a small number of chereme models. This approach is akin to phoneme-based speech recognition systems where utterances are recognized as phonemes which in turn are combined into words.
Halvardsson, Gustaf, and Johanna Peterson. "Interpretation of Swedish Sign Language using Convolutional Neural Networks and Transfer Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-277859.
Full textAutomatisk tolkning av tecken i ett teckenspråk involverar bildigenkänning. Ett ändamålsenligt tillvägagångsätt för denna uppgift är att använda djupinlärning, och mer specifikt, Convolutional Neural Networks. Denna metod behöver generellt stora mängder data för att prestera väl. Därför kan transfer learning vara en rimlig metod för att nå en hög precision trots liten mängd data. Avhandlingens hypotes är att utvärdera om transfer learning fungerar för att tolka det svenska teckenspråkets handalfabet. Målet med projektet är att implementera en modell som kan tolka tecken, samt att bygga en användarvänlig webapplikation för detta syfte. Modellen lyckas klassificera 85% av testinstanserna korrekt. Då denna precision är jämförbar med de från andra studier, tyder det på att projektets hypotes är korrekt. Det slutgiltiga nätverket baseras på den förtränade modellen InceptionV3 med fem frysta lager, samt optimiseringsalgoritmen mini-batch gradient descent med en batchstorlek på 32 och en stegfaktor på 1,2. Transfer learning användes, men däremot inte till den nivå så att nätverket blev för specialiserat på den förtränade modellen och dess data. Nätverket har visat sig vara ickepartiskt för det mångfaldiga testningsdatasetet. Förslag på framtida arbeten inkluderar att integrera dynamisk teckendata för att kunna tolka ord och meningar, evaluera metoden på andra teckenspråkshandalfabet, samt att integrera dynamisk tolkning i webapplikationen så flera bokstäver eller ord kan tolkas efter varandra. I det långa loppet kan denna studie gagna döva personer som har tillgång till teknik, och därmed öka chanserna för god hälsa, kvalitetsundervisning, anständigt arbete och minskade ojämlikheter.
Ghaziasgar, Mehrdad. "The use of mobile phones as service-delivery devices in sign language machine translation system." Thesis, University of the Western Cape, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_7216_1299134611.
Full textThis thesis investigates the use of mobile phones as service-delivery devices in a sign language machine translation system. Four sign language visualization methods were evaluated on mobile phones. Three of the methods were synthetic sign language visualization methods. Three factors were considered: the intelligibility of sign language, as rendered by the method
the power consumption
and the bandwidth usage associated with each method. The average intelligibility rate was 65%, with some methods achieving intelligibility rates of up to 92%. The average le size was 162 KB and, on average, the power consumption increased to 180% of the idle state, across all methods. This research forms part of the Integration of Signed and Verbal Communication: South African Sign Language Recognition and Animation (SASL) project at the University of the Western Cape and serves as an integration platform for the group's research. In order to perform this research a machine translation system that uses mobile phones as service-delivery devices was developed as well as a 3D Avatar for mobile phones. It was concluded that mobile phones are suitable service-delivery platforms for sign language machine translation systems.
Glatt, Ruben [UNESP]. "Deep learning architecture for gesture recognition." Universidade Estadual Paulista (UNESP), 2014. http://hdl.handle.net/11449/115718.
Full textO reconhecimento de atividade de visão de computador desempenha um papel importante na investigação para aplicações como interfaces humanas de computador, ambientes inteligentes, vigilância ou sistemas médicos. Neste trabalho, é proposto um sistema de reconhecimento de gestos com base em uma arquitetura de aprendizagem profunda. Ele é usado para analisar o desempenho quando treinado com os dados de entrada multi-modais em um conjunto de dados de linguagem de sinais italiana. A área de pesquisa subjacente é um campo chamado interação homem-máquina. Ele combina a pesquisa sobre interfaces naturais, reconhecimento de gestos e de atividade, aprendizagem de máquina e tecnologias de sensores que são usados para capturar a entrada do meio ambiente para processamento posterior. Essas áreas são introduzidas e os conceitos básicos são descritos. O ambiente de desenvolvimento para o pré-processamento de dados e algoritmos de aprendizagem de máquina programada em Python é descrito e as principais bibliotecas são discutidas. A coleta dos fluxos de dados é explicada e é descrito o conjunto de dados utilizado. A arquitetura proposta de aprendizagem consiste em dois passos. O pré-processamento dos dados de entrada e a arquitetura de aprendizagem. O pré-processamento é limitado a três estratégias diferentes, que são combinadas para oferecer seis diferentes perfis de préprocessamento. No segundo passo, um Deep Belief Network é introduzido e os seus componentes são explicados. Com esta definição, 294 experimentos são realizados com diferentes configurações. As variáveis que são alteradas são as definições de pré-processamento, a estrutura de camadas do modelo, a taxa de aprendizagem de pré-treino e a taxa de aprendizagem de afinação. A avaliação dessas experiências mostra que a abordagem de utilização de uma arquitetura ... (Resumo completo, clicar acesso eletrônico abaixo)
Activity recognition from computer vision plays an important role in research towards applications like human computer interfaces, intelligent environments, surveillance or medical systems. In this work, a gesture recognition system based on a deep learning architecture is proposed. It is used to analyze the performance when trained with multi-modal input data on an Italian sign language dataset. The underlying research area is a field called human-machine interaction. It combines research on natural user interfaces, gesture and activity recognition, machine learning and sensor technologies, which are used to capture the environmental input for further processing. Those areas are introduced and the basic concepts are described. The development environment for preprocessing data and programming machine learning algorithms with Python is described and the main libraries are discussed. The gathering of the multi-modal data streams is explained and the used dataset is outlined. The proposed learning architecture consists of two steps. The preprocessing of the input data and the actual learning architecture. The preprocessing is limited to three different strategies, which are combined to offer six different preprocessing profiles. In the second step, a Deep Belief network is introduced and its components are explained. With this setup, 294 experiments are conducted with varying configuration settings. The variables that are altered are the preprocessing settings, the layer structure of the model, the pretraining and the fine-tune learning rate. The evaluation of these experiments show that the approach of using a deep learning architecture on an activity or gesture recognition task yields acceptable results, but has not yet reached a level of maturity, which would allow to use the developed models in serious applications.
Glatt, Ruben. "Deep learning architecture for gesture recognition /." Guaratinguetá, 2014. http://hdl.handle.net/11449/115718.
Full textCoorientador: Daniel Julien Barros da Silva Sampaio
Banca: Galeno José de Sena
Banca: Luiz de Siqueira Martins Filho
Resumo: O reconhecimento de atividade de visão de computador desempenha um papel importante na investigação para aplicações como interfaces humanas de computador, ambientes inteligentes, vigilância ou sistemas médicos. Neste trabalho, é proposto um sistema de reconhecimento de gestos com base em uma arquitetura de aprendizagem profunda. Ele é usado para analisar o desempenho quando treinado com os dados de entrada multi-modais em um conjunto de dados de linguagem de sinais italiana. A área de pesquisa subjacente é um campo chamado interação homem-máquina. Ele combina a pesquisa sobre interfaces naturais, reconhecimento de gestos e de atividade, aprendizagem de máquina e tecnologias de sensores que são usados para capturar a entrada do meio ambiente para processamento posterior. Essas áreas são introduzidas e os conceitos básicos são descritos. O ambiente de desenvolvimento para o pré-processamento de dados e algoritmos de aprendizagem de máquina programada em Python é descrito e as principais bibliotecas são discutidas. A coleta dos fluxos de dados é explicada e é descrito o conjunto de dados utilizado. A arquitetura proposta de aprendizagem consiste em dois passos. O pré-processamento dos dados de entrada e a arquitetura de aprendizagem. O pré-processamento é limitado a três estratégias diferentes, que são combinadas para oferecer seis diferentes perfis de préprocessamento. No segundo passo, um Deep Belief Network é introduzido e os seus componentes são explicados. Com esta definição, 294 experimentos são realizados com diferentes configurações. As variáveis que são alteradas são as definições de pré-processamento, a estrutura de camadas do modelo, a taxa de aprendizagem de pré-treino e a taxa de aprendizagem de afinação. A avaliação dessas experiências mostra que a abordagem de utilização de uma arquitetura ... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Activity recognition from computer vision plays an important role in research towards applications like human computer interfaces, intelligent environments, surveillance or medical systems. In this work, a gesture recognition system based on a deep learning architecture is proposed. It is used to analyze the performance when trained with multi-modal input data on an Italian sign language dataset. The underlying research area is a field called human-machine interaction. It combines research on natural user interfaces, gesture and activity recognition, machine learning and sensor technologies, which are used to capture the environmental input for further processing. Those areas are introduced and the basic concepts are described. The development environment for preprocessing data and programming machine learning algorithms with Python is described and the main libraries are discussed. The gathering of the multi-modal data streams is explained and the used dataset is outlined. The proposed learning architecture consists of two steps. The preprocessing of the input data and the actual learning architecture. The preprocessing is limited to three different strategies, which are combined to offer six different preprocessing profiles. In the second step, a Deep Belief network is introduced and its components are explained. With this setup, 294 experiments are conducted with varying configuration settings. The variables that are altered are the preprocessing settings, the layer structure of the model, the pretraining and the fine-tune learning rate. The evaluation of these experiments show that the approach of using a deep learning architecture on an activity or gesture recognition task yields acceptable results, but has not yet reached a level of maturity, which would allow to use the developed models in serious applications.
Mestre
de, la Cruz Nathan. "Autonomous facial expression recognition using the facial action coding system." University of the Western Cape, 2016. http://hdl.handle.net/11394/5121.
Full textThe South African Sign Language research group at the University of the Western Cape is in the process of creating a fully-edged machine translation system to automatically translate between South African Sign Language and English. A major component of the system is the ability to accurately recognise facial expressions, which are used to convey emphasis, tone and mood within South African Sign Language sentences. Traditionally, facial expression recognition research has taken one of two paths: either recognising whole facial expressions of which there are six i.e. anger, disgust, fear, happiness, sadness, surprise, as well as the neutral expression; or recognising the fundamental components of facial expressions as defined by the Facial Action Coding System in the form of Action Units. Action Units are directly related to the motion of specific muscles in the face, combinations of which are used to form any facial expression. This research investigates enhanced recognition of whole facial expressions by means of a hybrid approach that combines traditional whole facial expression recognition with Action Unit recognition to achieve an enhanced classification approach.
Koller, Oscar Anatol Tobias [Verfasser], Hermann [Akademischer Betreuer] Ney, and Richard [Akademischer Betreuer] Bowden. "Towards large vocabulary continuous sign language recognition: from artificial to real-life tasks / Oscar Tobias Anatol Koller ; Hermann Ney, Richard Bowden." Aachen : Universitätsbibliothek der RWTH Aachen, 2020. http://d-nb.info/1233315951/34.
Full textClark, Evan M. "A multicamera system for gesture tracking with three dimensional hand pose estimation /." Link to online version, 2006. https://ritdml.rit.edu/dspace/handle/1850/1909.
Full textFreitas, Fernando de Almeida. "Reconhecimento automático de expressões faciais gramaticais na língua brasileira de sinais." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/100/100131/tde-10072015-100311/.
Full textThe facial expression recognition has attracted most of the researchers attention over the last years, because of that it can be very useful in many applications. The Sign Language is a spatio-visual language and it does not have the speech intonation support, so Facial Expression gain relative importance to convey grammatical information in a signed sentence and they contributed to morphological and/or syntactic level to a Sign Language. Those expressions are called Grammatical Facial Expression and they cooperate to solve the ambiguity between signs and give meaning to sentences. Thus, this research project aims to develop models that make possible to recognize automatically Grammatical Facial Expressions from Brazilian Sign Language (Libras)
Mekala, Priyanka. "Field Programmable Gate Array Based Target Detection and Gesture Recognition." FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/723.
Full textBorgia, Fabrizio. "Informatisation d'une forme graphique des Langues des Signes : application au système d'écriture SignWriting." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30030/document.
Full textThe studies and the software presented in this work are addressed to a relevant minority of our society, namely deaf people. Many studies demonstrate that, for several reasons, deaf people experience significant difficulties in exploiting a Vocal Language (VL English, Chinese, etc.). In fact, many of them prefer to communicate using Sign Language (SL). As computer scientists, we observed that SLs are currently a set of underrepresented linguistic minorities in the digital world. As a matter of fact, deaf people are among those individuals which are mostly affected by the digital divide. This work is our contribution towards leveling the digital divide affecting deaf people. In particular, we focused on the computer handling of SignWriting, which is one of the most promising systems devised to write SLs
Teodoro, Beatriz Tomazela. "Sistema de reconhecimento automático de Língua Brasileira de Sinais." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/100/100131/tde-20122015-212746/.
Full textThe recognition of sign language is an important research area that aims to mitigate the obstacles in the daily lives of people who are deaf and/or hard of hearing and increase their integration in the majority hearing society in which we live. Based on this, this dissertation proposes the development of an information system for automatic recognition of Brazilian Sign Language (BSL), which aims to simplify the communication between deaf talking in BSL and listeners who do not know this sign language. The recognition is accomplished through the processing of digital image sequences (videos) of people communicating in BSL without the use of colored gloves and/or data gloves and sensors or the requirement of high quality recordings in laboratories with controlled environments focusing on signals using only the hands. Given the great difficulty of setting up a system for this purpose, an approach divided in several stages was used. It considers that all stages of the proposed system are contributions for future works of sign recognition area, and can contribute to other types of works involving image processing, human skin segmentation, object tracking, among others. To achieve this purpose we developed a tool to segment sequences of images related to BSL and a tool for identifying dynamic signals in the sequences of images related to the BSL and translate them into portuguese. Moreover, it was also built an image bank of 30 basic words chosen by a BSL expert without the use of colored gloves, laboratory-controlled environments and/or making of the dress of individuals who performed the signs. The segmentation algorithm implemented and used in this study had a average accuracy rate of 99.02% and an overlap of 0.61, from a set of 180 preprocessed frames extracted from 18 videos recorded for the construction of database. The segmentation algorithm was able to target more than 70% of the samples. Regarding the accuracy for recognizing words, the proposed system reached 100% accuracy to recognize the 422 samples from the database constructed (the ones that were segmented), using a combination of the edit distance technique and a voting scheme with a binary classifier to carry out the recognition, thus reaching the purpose proposed in this work successfully.
Cardoso, Maria Eduarda de Araújo. "Segmentação automática de Expressões Faciais Gramaticais com Multilayer Perceptrons e Misturas de Especialistas." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/100/100131/tde-25112018-203224/.
Full textThe recognition of facial expressions is an area of interest in computer science and has been an attraction for researchers in different fields since it has potential for development of different types of applications. Automatically recognizing these expressions has become a goal primarily in the area of human behavior analysis. Especially for the study of sign languages, the analysis of facial expressions represents an important factor for the interpretation of discourse, since it is the element that allows expressing prosodic information, supports the development of the grammatical and semantic structure of the language, and eliminates ambiguities between similar signs. In this context, facial expressions are called grammatical facial expressions. These expressions collaborate in the semantic composition of the sentences. Among the lines of study that explore this theme is the one that intends to implement the automatic analysis of sign language. For applications aiming to interpret signal languages in an automated way, it is necessary that such expressions be identified in the course of a signaling, and that task is called \"segmentation of grammatical facial expressions\'\'. For this area, it is useful to develop an architecture capable of performing the identification of such expressions in a sentence, segmenting it according to each different type of expression used in its construction. Given the need to develop this architecture, this research presents: a review of studies already carried out in the area; the implementation of pattern recognition algorithms using Multilayer Perceptron and mixtures of experts to solve the facial expression recognition problem; the comparison of these algorithms as recognizers of grammatical facial expressions used in the conception of sentences in the Brazilian Language of Signs (Libras). The implementation and tests carried out with such algorithms showed that the automatic segmentation of grammatical facial expressions is practicable in user-dependent contexts. Regarding user-independent contexts, this is a challenge which demands the organization of a learning environment structured on datasets bigger and more diversified than those current available
Silva, Renato Kimura da. "Interfaces naturais e o reconhecimento das línguas de sinais." Pontifícia Universidade Católica de São Paulo, 2013. https://tede2.pucsp.br/handle/handle/18125.
Full textInterface is an intermediate layer between two faces. In the computational context, we could say that the interface exists on the interactive intermediation between two subjects, or between subject and program. Over the years, the interfaces have evolved constantly: from the monochromatic text lines to the mouse with the exploratory concept of graphic interfaces to the more recent natural interfaces ubique and that aims the interactive transparency. In the new interfaces, through the use of body, the user can interact with the computer. Today is not necessary to learn the interface, or the use of these interfaces is more intuitive, with recognition of voice, face and gesture. This technology advance fits well to basic needs from the individuals, like communication. With the evolution of the devices and the interfaces, is more feasible conceive new technologies that benefits people in different spheres. The contribution of this work lays on understanding the technical scenario that allow thinking and conceiving natural interfaces for the signal recognition of Sign Languages and considerable part of its grammar. To do so, this research was guided primarily in the study of the development of computer interfaces and their close relationship with videogames, basing on the contributions of authors such as Pierre Lévy, Sherry Turkle, Janet Murray and Louise Poissant. Thereafter, we approach to authors as William Stokoe, Scott Liddell, Ray Birdwhistell, Lucia Santaella and Winfried Nöth, concerning general and specific themes spanning the multidisciplinarity of Sign Languages. Finally, a research was made of State of Art of Natural Interfaces focused on the recognition of Sign Languages, besides the remarkable research study related to the topic, presenting possible future paths to be followed by new lines of multidisciplinary research
Interface é uma camada intermediária que está entre duas faces. No contexto computacional, podemos dizer que interface existe na intermediação interativa entre dois sujeitos, ou ainda entre sujeito e programa. Ao longo dos anos, as interfaces vêm evoluído constantemente: das linhas de texto monocromáticas, aos mouses com o conceito exploratório da interface gráfica até as mais recentes interfaces naturais ubíquas e que objetivam a transparência da interação. Nas novas interfaces, por meio do uso do corpo, o usuário interage com o computador, não sendo necessário aprender a interface. Seu uso é mais intuitivo, com o reconhecimento da voz, da face e dos gestos. O avanço tecnológico vai de encontro com necessidades básicas do indivíduo, como a comunicação, tornando-se factível conceber novas tecnologias que beneficiam pessoas em diferentes esferas. A contribuição desse trabalho está em entender o cenário técnico que possibilita idealizar e criar interfaces naturais para o reconhecimento dos signos das Línguas de Sinais e considerável parte de sua gramática. Para tanto, essa pesquisa foi primeiramente pautada no estudo do desenvolvimento das interfaces computacionais e da sua estreita relação com os videogames, fundamentando-se nas contribuições de autores como Pierre Lévy, Sherry Turkle, Janet Murray e Louise Poissant. Em momento posterior, aproximamo-nos de autores como William Stokoe, Scott Liddell, Ray Birdwhistell, Lúcia Santaella e Winfried Nöth, a respeito de temas gerais e específicos que abarcam a multidisciplinaridade das Línguas de Sinais. Por fim, foi realizado um levantamento do Estado da Arte das Interfaces Naturais voltadas ao Reconhecimento das Línguas de Sinais, além do estudo de pesquisas notáveis relacionadas ao tema, apresentando possíveis caminhos futuros a serem trilhados por novas linhas de pesquisa multidisciplinares
Anjo, Mauro dos Santos. "Avaliação das técnicas de segmentação, modelagem e classificação para o reconhecimento automático de gestos e proposta de uma solução para classificar gestos da libras em tempo real." Universidade Federal de São Carlos, 2013. https://repositorio.ufscar.br/handle/ufscar/523.
Full textUniversidade Federal de Sao Carlos
Multimodal interfaces are becoming popular and trying to enhance user experience through the use of natural forms of interaction. Among these forms we have speech and gestures inputs. Speech recognition is already a common feature in our daily basis but gesture recognition has just now being widely used as a new form of interaction. The Brazilian Sign Language (Libras) was recently recognized as a legal way of communication since the Brazilian Government enacted the law N˚10.436 on 04/24/2002, and also has recently became an obligatory subject in teachers education and an elective subject in undergraduate courses through the enactment N˚5.626 on 12/22/2005. In this context, this dissertation presents a study of all the steps that are necessary to achieve a complete system to recognize Static and Dynamic gestures of Libras, being these steps: Segmentation; Modeling and Interpretation; and Classification. Results and proposed solutions will be presented for each one of these steps, and the system will be evaluated in the task of real-time recognition of static and dyamic gestures within a finite set of Libras gestures. All the solutions presented in this dissertation were embedded in the software GestureUI, in which the main goal is to simplify the research in the field of gesture recognition allowing the communication with multimodal interfaces through a TCP/IP protocol.
Interfaces multimodais estão cada vez mais populares e buscam a interação natural como recurso para enriquecer a experiência do usuário. Dentre as formas de interação natural, estão a fala e os gestos. O reconhecimento de fala já está presente em nosso dia a dia em variadas aplicações, porém o reconhecimento de gestos apareceu recentemente como uma nova forma de interação. A Linguagem Brasileira de Sinais (Libras) foi recentemente reconhecida como meio de comunicação e expressão através da Lei N˚10.436 de 24/04/2002, e também foi incluída como disciplina obrigatória em cursos de formação de professores e optativa em cursos de graduação através do Decreto N˚5.626 de 22/12/2005. Neste contexto, esta dissertação apresenta um estudo sobre todas as etapas necessárias para a construção de um sistema para reconhecimento de Gestos Estáticos e Dinâmicos da Libras, sendo estas: Segmentação; Modelagem e Identificação; e Reconhecimento. Resultados e soluções propostas serão apresentados para cada uma destas etapas, e o sistema será avaliado no reconhecimento em tempo real utilizando um conjunto finito de gestos estáticos e dinâmicos. Todas as soluções apresentadas nesta dissertação foram encapsuladas no Software GestureUI, que tem por objetivo simplificar as pesquisas na área de reconhecimento de gestos permitindo a comunicação com interfaces multimodais através de um protocolo TCP/IP.
Silva, Brunna Carolinne Rocha. "Desenvolvimento de tecnologia baseada em redes neurais artificiais para reconhecimento de gestos da língua de sinais." Universidade Federal de Goiás, 2018. http://repositorio.bc.ufg.br/tede/handle/tede/8725.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-07-19T11:21:27Z (GMT) No. of bitstreams: 2 Dissertação - Brunna Carolinne Rocha Silva - 2018.pdf: 18872874 bytes, checksum: 227a38d63020f0863a2632461b79e19c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2018-07-19T11:21:27Z (GMT). No. of bitstreams: 2 Dissertação - Brunna Carolinne Rocha Silva - 2018.pdf: 18872874 bytes, checksum: 227a38d63020f0863a2632461b79e19c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-04-06
The purpose of this paper is to design, develop and evaluate four devices capable of identifying configuration, orientation and movement of the hands, verifying which one has better performance recognition of sign language gestures. The methodology starts from the definition of the layout and the components of data acquisition and processing, the construction of the database treated for each gesture to be recognized and validation of the proposed devices. Signs of flex sensors, accelerometers and gyroscopes are collected, positioned differently on each device. The recognition of the patterns of each gesture is performed using artificial neural networks. After being trained, validated and tested, the neural network interconnected to the devices obtain a hit rate of up to 96.8%. The validated device offers efficacy and efficiency to identify sign language gestures and demonstrates that the use of the sensory approach is promising.
O intuito deste trabalho é projetar, desenvolver e avaliar quatro dispositivos capazes de identificar configuração, orientação e movimento das mãos, verificando qual possui melhor desempenho para reconhecimento de gestos da língua de sinais. A metodologia parte da definição do leiaute e dos componentes de aquisição e processamento de dados, da construção da base de dados tratados para cada gesto a ser reconhecido e da validação dos dispositivos propostos. São coletados sinais de sensores de flexão, acelerômetros e giroscópios, posicionados diferentemente em cada dispositivo. O reconhecimento dos padrões de cada gesto é realizado utilizando redes neurais artificiais. Após treinada, validada e testada, a rede neural interligada aos dispositivos obtêm média de acerto de até 96,8%. O dispositivo validado oferece eficácia e eficiência para identificar gestos da língua de sinais e demonstra que o uso da abordagem sensorial é promissora.
Bermingham, Rowena. "Describing and remembering motion events in British Sign Language." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/288080.
Full text