To see the other types of publications on this topic, follow the link: Signal-noise-ratio.

Journal articles on the topic 'Signal-noise-ratio'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Signal-noise-ratio.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Smith, Robert C., and Robert C. Lange. "Signal to Noise Ratio." Critical Reviews in Diagnostic Imaging 42, no. 2 (January 2001): 135–40. http://dx.doi.org/10.3109/20014091086711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Johnson, Don. "Signal-to-noise ratio." Scholarpedia 1, no. 12 (2006): 2088. http://dx.doi.org/10.4249/scholarpedia.2088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Muhammad Basharat, Muhammad Basharat, Ming Ding Ming Ding, Yang Li Yang Li, Hongwei Cai Hongwei Cai, and Jiancheng Fang Jiancheng Fang. "Noise reduction and signal to noise ratio improvement in magneto-optical polarization rotation measurement." Chinese Optics Letters 16, no. 8 (2018): 081201. http://dx.doi.org/10.3788/col201816.081201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Davidson, Steven J. "The Signal-to-Noise Ratio." Emergency Medicine News 26, no. 8 (August 2004): 38. http://dx.doi.org/10.1097/00132981-200408000-00023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jenkin, Robin. "Contrast Signal to Noise Ratio." Electronic Imaging 2021, no. 17 (January 18, 2021): 186–1. http://dx.doi.org/10.2352/issn.2470-1173.2021.17.avm-186.

Full text
Abstract:
The detection and recognition of objects is essential for the operation of autonomous vehicles and robots. Designing and predicting the performance of camera systems intended to supply information to neural networks and vision algorithms is nontrivial. Optimization has to occur across many parameters, such as focal length, f-number, pixel and sensor size, exposure regime and transmission schemes. As such numerous metrics are being explored to assist with these design choices. Detectability index (SNRI) is derived from signal detection theory as applied to imaging systems and is used to estimate the ability of a system to statistically distinguish objects [1], most notably in the medical imaging and defense fields [2]. A new metric is proposed, Contrast Signal to Noise Ratio (CSNR), which is calculated simply as mean contrast divided by the standard deviation of the contrast. This is distinct from contrast to noise ratio which uses the noise of the image as the denominator [3,4]. It is shown mathematically that the metric is proportional to the idealized observer for a cobblestone target and a constant may be calculated to estimate SNRI from CSNR, accounting for target size. Results are further compared to Contrast Detection Probability (CDP), which is a relatively new objective image quality metric proposed within IEEE P2020 to rank the performance of camera systems intended for use in autonomous vehicles [5]. CSNR is shown to generate information in illumination and contrast conditions where CDP saturates and further can be modified to provide CDP-like results.
APA, Harvard, Vancouver, ISO, and other styles
6

Cunbao Lin, Cunbao Lin, Shuhua Yan Shuhua Yan, Zhiguang Du Zhiguang Du, Guochao Wang Guochao Wang, and Chunhua Wei Chunhua Wei. "Symmetrical short-period and high signal-to-noise ratio heterodyne grating interferometer." Chinese Optics Letters 13, no. 10 (2015): 100501–5. http://dx.doi.org/10.3788/col201513.100501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bosworth, B. T., W. R. Bernecky, J. D. Nickila, B. Adal, and G. C. Carter. "Estimating Signal-to-Noise Ratio (SNR)." IEEE Journal of Oceanic Engineering 33, no. 4 (October 2008): 414–18. http://dx.doi.org/10.1109/joe.2008.2001780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schultz, Simon. "Signal-to-noise ratio in neuroscience." Scholarpedia 2, no. 6 (2007): 2046. http://dx.doi.org/10.4249/scholarpedia.2046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Redpath, T. W. "Signal-to-noise ratio in MRI." British Journal of Radiology 71, no. 847 (July 1998): 704–7. http://dx.doi.org/10.1259/bjr.71.847.9771379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dhara, Asish K. "Enhancement of signal-to-noise ratio." Journal of Statistical Physics 87, no. 1-2 (April 1997): 251–71. http://dx.doi.org/10.1007/bf02181487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Choli, Morwan, Peter M. Jakob, Ralf B. Loeffler, and Claudia M. Hillenbrand. "Mixed-bandwidth acquisitions: Signal-to-noise ratio and signal-to-noise efficiency." Journal of Magnetic Resonance Imaging 32, no. 4 (September 29, 2010): 997–1002. http://dx.doi.org/10.1002/jmri.22327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Sodickson, Daniel K., Mark A. Griswold, Peter M. Jakob, Robert R. Edelman, and Warren J. Manning. "Signal-to-noise ratio and signal-to-noise efficiency in SMASH imaging." Magnetic Resonance in Medicine 41, no. 5 (May 1999): 1009–22. http://dx.doi.org/10.1002/(sici)1522-2594(199905)41:5<1009::aid-mrm21>3.0.co;2-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Li, Rong, Guang-Rong Qin, Gang Hu, Xiao-Dong Wen, and Heng-Jing Zhu. "Signal-to-Noise Ratio in Bistable System Subject to Signal and Monochromatic Noise." Communications in Theoretical Physics 24, no. 1 (July 30, 1995): 19–26. http://dx.doi.org/10.1088/0253-6102/24/1/19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Madu, Ifeanyi E., and Christian N. Madu. "Design optimization using signal-to-noise ratio." Simulation Practice and Theory 7, no. 4 (June 1999): 349–72. http://dx.doi.org/10.1016/s0928-4869(99)00008-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Roman, V. I. "Signal-noise ratio of adaptive geophysical studies." Geofizicheskiy Zhurnal 36, no. 2 (November 24, 2014): 186–91. http://dx.doi.org/10.24028/gzh.0203-3100.v36i2.2014.116137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Thong, J. T. L., K. S. Sim, and J. C. H. Phang. "Single-image signal-to-noise ratio estimation." Scanning 23, no. 5 (December 7, 2006): 328–36. http://dx.doi.org/10.1002/sca.4950230506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Long, T., Y. Wang, and T. Zeng. "Signal-to-noise ratio in stretch processing." Electronics Letters 46, no. 10 (2010): 720. http://dx.doi.org/10.1049/el.2010.0349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

CHATTAH, A. K., C. B. BRIOZZO, O. OSENDA, and M. O. CÁCERES. "SIGNAL-TO-NOISE RATIO IN STOCHASTIC RESONANCE." Modern Physics Letters B 10, no. 22 (September 20, 1996): 1085–94. http://dx.doi.org/10.1142/s0217984996001231.

Full text
Abstract:
We solve the Fokker-Planck equation for an overdamped Brownian particle in a periodically forced bistable potential by means of a path integral method, obtaining the propagators in the steepest-descent (small-noise) approximation. We compute the long-times asymptotic probability distribution, the asymptotic correlation functions, and the time-averaged spectral density, which allows us the immediate calculation of the signal to noise ratio, a directly measurable quantity useful to characterize the phenomenon of stochastic resonance. Our numerical algorithm is fast and runs on a desktop computer, and the results agree with experiments and with former theoretical calculations of the amplification factor; in addition it allows us to calculate the experimentally more accessible signal to noise ratio.
APA, Harvard, Vancouver, ISO, and other styles
19

Fox Timothy, R., and J. Faehnrich Richard. "5347222 Signal/noise ratio optimization tuning system." Magnetic Resonance Imaging 13, no. 5 (January 1995): XVII. http://dx.doi.org/10.1016/0730-725x(95)98046-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wurz, P., S. A. Fuselier, E. Möbius, H. O. Funsten, P. C. Brandt, F. Allegrini, A. G. Ghielmetti, et al. "IBEX Backgrounds and Signal-to-Noise Ratio." Space Science Reviews 146, no. 1-4 (June 9, 2009): 173–206. http://dx.doi.org/10.1007/s11214-009-9515-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kolar, Petar, Lovro Blažok, and Dario Bojanjac. "NMR spectroscopy threshold signal-to-noise ratio." tm - Technisches Messen 88, no. 9 (April 17, 2021): 571–80. http://dx.doi.org/10.1515/teme-2021-0008.

Full text
Abstract:
Abstract Ever since noise was spotted and proven to cause problems for the transmission and detection of information through a communication channel, a standard procedure in the process of characterizing a detection system of the communication channel is to determine the level of the lowest detectable signal. In signal processing, this is usually done by determining the so-called threshold signal-to-noise ratio (SNR). This determination is especially important for the communication channels and systems that constantly operate with low-level signals. A good example of such a system is definitely the NMR spectroscopy system. However, to the authors’ knowledge, the threshold SNR value of NMR spectroscopy systems has not been determined yet. That is why the experts in the field of NMR spectroscopy were asked to assess, using an online questionnaire, which SNR level they considered to be the NMR threshold SNR level. Afterwards, the threshold value was calculated from the obtained data. Finally, it was compared to the existing rule of thumb and thus, a conclusion about its legitimacy was made. The described questionnaire is still available online (https://forms.gle/Y9hyDZ1v1iJoEbk27). This enables everyone to form their own opinion about the threshold SNR level, which the authors encourage the readers to do.
APA, Harvard, Vancouver, ISO, and other styles
22

Choi, Wongyu, Michael B. Pate, and James F. Sweeney. "Uncertainty and Signal-to-Noise Ratio for Unsteady Background Noise." Noise Control Engineering Journal 66, no. 2 (April 1, 2018): 131–41. http://dx.doi.org/10.3397/1/376612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Wei Chen, R. S. Tucker, Xingwen Yi, W. Shieh, and J. S. Evans. "Optical signal-to-noise ratio monitoring using uncorrelated beat noise." IEEE Photonics Technology Letters 17, no. 11 (November 2005): 2484–86. http://dx.doi.org/10.1109/lpt.2005.858100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Rasnikov, M. D., and I. T. Rozhkov. "ASSESSMENT OF THE SIGNAL/NOISE RATIO IN A BINARY SIGNAL." Telecommunications and Radio Engineering 71, no. 5 (2012): 445–53. http://dx.doi.org/10.1615/telecomradeng.v71.i5.60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Gonzalez-Moreno, Alicia, Sara Aurtenetxe, Maria-Eugenia Lopez-Garcia, Francisco del Pozo, Fernando Maestu, and Angel Nevado. "Signal-to-noise ratio of the MEG signal after preprocessing." Journal of Neuroscience Methods 222 (January 2014): 56–61. http://dx.doi.org/10.1016/j.jneumeth.2013.10.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Bingjie Wang, Bingjie Wang, Tong Zhao Tong Zhao, and Huakui Wang Huakui Wang. "Improvement of signal-to-noise ratio in chaotic laser radar based on algorithm implementation." Chinese Optics Letters 10, no. 5 (2012): 052801–52804. http://dx.doi.org/10.3788/col201210.052801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Yao Zhao, Yao Zhao, Qian Chen Qian Chen, Guohua Gu Guohua Gu, and Xiubao Sui Xiubao Sui. "Simple and effective method to improve the signal-to-noise ratio of compressive imaging." Chinese Optics Letters 15, no. 10 (2017): 101101. http://dx.doi.org/10.3788/col201715.101101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Maamor, Nashrah, and Curtis J. Billings. "Cortical signal-in-noise coding varies by noise type, signal-to-noise ratio, age, and hearing status." Neuroscience Letters 636 (January 2017): 258–64. http://dx.doi.org/10.1016/j.neulet.2016.11.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Peltoketo, Veli-Tapani. "Signal to Noise Ratio and Visual Noise of Mobile Phone Cameras." Journal of Imaging Science and Technology 59, no. 1 (January 1, 2015): 104011–17. http://dx.doi.org/10.2352/j.imagingsci.technol.2015.59.1.010401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Shi Ping, Ma Jian, Qian Xuan, Ji Yang, and Li Wei. "Signal-to-noise ratio of spin noise spectroscopy in rubidium vapor." Acta Physica Sinica 66, no. 1 (2017): 017201. http://dx.doi.org/10.7498/aps.66.017201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Lo, Ying-Siew, Heng-Siong Lim, and Alan Wee-Chiat Tan. "Robust Signal-to-Noise Ratio Estimation in Non-Gaussian Noise Channel." Wireless Personal Communications 91, no. 2 (July 5, 2016): 561–75. http://dx.doi.org/10.1007/s11277-016-3477-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kumar, Arun Thitai, Jonathan Ophir, and Thomas A. Krouskop. "Noise Performance and Signal-to-Noise Ratio of Shear Strain Elastograms." Ultrasonic Imaging 27, no. 3 (July 2005): 145–65. http://dx.doi.org/10.1177/016173460502700302.

Full text
Abstract:
In this paper, we develop a theoretical expression for the signal-to-noise ratio (SNR) of shear strain elastograms. The previously-developed ideas for the axial strain filter (ASF) and lateral strain filter (LSF) are extended to define the concept of the shear strain filter (SSF). Some of our theoretical results are verified using simulations and phantom experiments. The results indicate that the signal-to-noise ratio of shear-strain elastograms ( SNRsse) improves with increasing shear strain and with improvements in system parameters such as the sonographic signal-to-noise ratio ( SNRs) beamwidth, center frequency and fractional bandwidth. The results also indicate that the amount of axial strain present along with the shear strain is an important parameter that determines the upper bound on SNRsse. The SNRsse will be higher in the absence of additional deformation due to axial strain.
APA, Harvard, Vancouver, ISO, and other styles
33

Lugli, Marco. "Acoustics of fish shelters: Background noise and signal-to-noise ratio." Journal of the Acoustical Society of America 136, no. 6 (December 2014): 3382–88. http://dx.doi.org/10.1121/1.4901707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Good, Michael D., and Robert H. Gilkey. "Sound localization in noise: The effect of signal‐to‐noise ratio." Journal of the Acoustical Society of America 99, no. 2 (February 1996): 1108–17. http://dx.doi.org/10.1121/1.415233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Jianrui Li, Jianrui Li, Jiachuan Lin Jiachuan Lin, Xiaoguang Zhang Xiaoguang Zhang, Lixia Xi Lixia Xi, Xianfeng Tang Xianfeng Tang, and Yaojun Qiao Yaojun Qiao. "Scheme for generation of flat top and high signal-to-noise ratio optical frequency comb." Chinese Optics Letters 13, no. 1 (2015): 010605–10610. http://dx.doi.org/10.3788/col201513.010605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

CHAKRABORTY, SOHAM, and PATHIK MANDAL. "VARIANCE FUNCTION ESTIMATION USING SIGNAL-TO-NOISE RATIO." IAPQR Transactions 43, no. 2 (April 29, 2019): 178–211. http://dx.doi.org/10.32381/iapqrt.2019.43.02.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Shutler, Paul M. E., and Kevin Byard. "Signal-to-noise ratio of Singer product apertures." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 867 (September 2017): 237–58. http://dx.doi.org/10.1016/j.nima.2017.05.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Khattree, R., and R. D. Gupta. "Generalized signal-to-noise ratio and its estimation." IEEE Transactions on Acoustics, Speech, and Signal Processing 38, no. 12 (1990): 2136–39. http://dx.doi.org/10.1109/29.61540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Shutler, Paul M. E., Alireza Talebitaher, and Stuart V. Springham. "Signal-to-noise ratio in coded aperture imaging." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 669 (March 2012): 22–31. http://dx.doi.org/10.1016/j.nima.2011.12.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ryan, Stu, Dan Grube, and Martin M. Mokgwathi. "Signal-to-Noise Ratio in Physical Education Settings." Research Quarterly for Exercise and Sport 81, no. 4 (December 2010): 524–28. http://dx.doi.org/10.1080/02701367.2010.10599714.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Yoon, Yang‐soo, and Jont B. Allen. "Signal to noise ratio loss and consonant confusions." Journal of the Acoustical Society of America 117, no. 4 (April 2005): 2608. http://dx.doi.org/10.1121/1.4777897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Gugat, Jascha Lukas, Matthias C. Krantz, Julius Schmalz, and Martina Gerken. "Signal-to-Noise Ratio in Cantilever Magnetoelectric Sensors." IEEE Transactions on Magnetics 52, no. 9 (September 2016): 1–5. http://dx.doi.org/10.1109/tmag.2016.2557305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zhang, Qingshuang, Aijun Liu, and Yingxian Zhang. "Signal‐to‐noise ratio mismatch in polar codes." Electronics Letters 52, no. 5 (March 2016): 365–67. http://dx.doi.org/10.1049/el.2015.3729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Krivosheev, I. A., M. I. Ignat’eva, and A. I. Shamurina. "Improving signal-to-noise ratio in ultrasonic testing." Russian Journal of Nondestructive Testing 52, no. 6 (June 2016): 310–14. http://dx.doi.org/10.1134/s106183091606005x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Petrov, R., F. Roddier, and C. Aime. "Signal-to-noise ratio in differential speckle interferometry." Journal of the Optical Society of America A 3, no. 5 (May 1, 1986): 634. http://dx.doi.org/10.1364/josaa.3.000634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kapur, Kailash C., and Guangming Chen. "Signal-to-noise ratio development for quality engineering." Quality and Reliability Engineering International 4, no. 2 (April 1988): 133–41. http://dx.doi.org/10.1002/qre.4680040208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ocali, Ogan, and Ergin Atalar. "Ultimate intrinsic signal-to-noise ratio in MRI." Magnetic Resonance in Medicine 39, no. 3 (March 1998): 462–73. http://dx.doi.org/10.1002/mrm.1910390317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Olczak, Andrzej, and Michele Cianci. "The signal-to-noise ratio in SAD experiments." Crystallography Reviews 24, no. 2 (October 23, 2017): 73–101. http://dx.doi.org/10.1080/0889311x.2017.1386182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Miyanabe, Shogo, Hiroki Kuribayashi, and Kaoru Yamamoto. "New Equalizer to Improve Signal-to-Noise Ratio." Japanese Journal of Applied Physics 38, Part 1, No. 3B (March 30, 1999): 1715–19. http://dx.doi.org/10.1143/jjap.38.1715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Sheppard, C. J. R., Min Gu, and Maitreyee Roy. "Signal-to-noise ratio in confocal microscope systems." Journal of Microscopy 168, no. 3 (December 1992): 209–18. http://dx.doi.org/10.1111/j.1365-2818.1992.tb03264.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography