Contents
Academic literature on the topic 'Signaux multivariés'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Signaux multivariés.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Signaux multivariés"
Pattirajawane, Ignatius Danny, and Erfen G. Suwangto. "METODE ANALISIS KOMPONEN INDEPENDEN DAN PENGGUNAANNYA PADA DEKOMPOSISI SINYAL ELEKTROENSEFALOGRAFI." Jurnal Matematika Sains dan Teknologi 19, no. 2 (September 12, 2018): 114–25. http://dx.doi.org/10.33830/jmst.v19i2.116.2018.
Full textPenm, Jonathan, Neil J. MacKinnon, Derek Jorgenson, Jun Ying, and Jennifer Smith. "Need for Formal Specialization in Pharmacy in Canada: A Survey of Hospital Pharmacists." Canadian Journal of Hospital Pharmacy 69, no. 5 (October 31, 2016). http://dx.doi.org/10.4212/cjhp.v69i5.1590.
Full textDissertations / Theses on the topic "Signaux multivariés"
Barthélemy, Quentin. "Représentations parcimonieuses pour les signaux multivariés." Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00853362.
Full textBarthelemy, Quentin. "Représentations parcimonieuses pour les signaux multivariés." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENU008/document.
Full textIn this thesis, we study approximation and learning methods which provide sparse representations. These methods allow to analyze very redundant data-bases thanks to learned atoms dictionaries. Being adapted to studied data, they are more efficient in representation quality than classical dictionaries with atoms defined analytically. We consider more particularly multivariate signals coming from the simultaneous acquisition of several quantities, as EEG signals or 2D and 3D motion signals. We extend sparse representation methods to the multivariate model, to take into account interactions between the different components acquired simultaneously. This model is more flexible that the common multichannel one which imposes a hypothesis of rank 1. We study models of invariant representations: invariance to temporal shift, invariance to rotation, etc. Adding supplementary degrees of freedom, each kernel is potentially replicated in an atoms family, translated at all samples, rotated at all orientations, etc. So, a dictionary of invariant kernels generates a very redundant atoms dictionary, thus ideal to represent the redundant studied data. All these invariances require methods adapted to these models. Temporal shift-invariance is an essential property for the study of temporal signals having a natural temporal variability. In the 2D and 3D rotation invariant case, we observe the efficiency of the non-oriented approach over the oriented one, even when data are not revolved. Indeed, the non-oriented model allows to detect data invariants and assures the robustness to rotation when data are revolved. We also observe the reproducibility of the sparse decompositions on a learned dictionary. This generative property is due to the fact that dictionary learning is a generalization of K-means. Moreover, our representations have many invariances that is ideal to make classification. We thus study how to perform a classification adapted to the shift-invariant model, using shift-consistent pooling functions
Aminghafari, Mina. "Méthodes d'ondelettes en statistique des signaux temporels uni et multivariés." Paris 11, 2006. http://www.theses.fr/2006PA112045.
Full textThis thesis takes place in statistics and deals with the applications of wavelets to the univariate and multivariate signals. The first part is devoted to a multivariate extension of the well known wavelet denoising procedure widely examined for scalar valued signals. It combines a straightforward multivariate generalization of a classical one and principal component analysis. This new procedure exhibits promising behavior on classical bench signals and the associated estimator is found to be near minimax in the one-dimensional sense, for Besov balls. The method is finally illustrated by an application to multichannel neural recordings. The second part is devoted to the forecasting problem of a stationary or non-stationary one dimensional time series, using non-decimated wavelet transform. A new proposal method to prediction stationary data and stationary data contaminated by additive trend is proposed. It consists of generalizing a procedure whose idea is to select the wavelet coefficients built from the past observations then to directly estimate the forecasting equation by the regression of the process on the past wavelet coefficients. This scheme is extended to an arbitrary orthogonal wavelet and to the introduction a non-stationary component. The third part relates to a topic a little bit different from the others. We introduce a method for prior selection. This method can be considered as an alternative approach to the parametric empirical Bayes method for priorselection and can then be applied to the choice of threshold in the denoising procedure using wavelets
Fedotenkova, Mariia. "Extraction de composants multivariés des signaux cérébraux obtenus pendant l'anesthésie générale." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0189/document.
Full textNowadays, surgical operations are impossible to imagine without general anesthesia, which involves loss of consciousness, immobility, amnesia and analgesia. Understanding mechanisms underlying each of these effects guarantees well-controlled medical treatment. This thesis focuses on analgesia effect of general anesthesia, more specifically, on patients reaction to nociceptive stimuli. We also study differences in the reaction between different anesthetic drugs. The study was conducted on dataset consisting of 230 EEG signals: pre- and post-incision recordings obtained form 115 patients, who received desflurane and propofol. The first stage of the study comprise power spectral analysis, which is a widespread approach in signal processing. Spectral information was described by fitting the background activity, that exposes $1/f$ behavior, to power spectral density estimates of the EEG signals and measuring power contained in delta and alpha bands relatively to the power of background activity. A further improvement was done by expanding spectra with time information due to observed non-stationary nature of EEG signals. To obtain time-frequency representations of the signals we apply three different methods: scalogram (based on continuous wavelet transform), conventional spectrogram, and spectrogram reassignment. The latter allows to ameliorate readability of a time-frequency representation by reassigning energy contained in spectrogram to more precise positions. Subsequently, obtained spectrograms were used as phase space reconstruction in recurrence analysis and its quantification by complexity measure. Recurrence analysis allows to describe and visualize recurrent dynamics of a system and discover structural patterns contained in the data. Here, recurrence plots were used as rewriting grammar to turn an original signal into a symbolic sequence, where each symbol represents a certain state of the system. After computing three different complexity measures of resulting symbolic sequences they are used as features for classification. Finally, combining features obtained with power spectral analysis and recurrence symbolic analysis, we perform classification of the data using two classification methods: linear discriminant analysis and support vector machines. Classification was carried out on two-class problem, distinguishing between pre-/post-incision EEG signals, as well as between two different anesthetic drugs, desflurane and propofol
Lung-Yut-Fong, Alexandre. "Détection de ruptures pour les signaux multidimensionnels. Application à la détection d'anomalies dans les réseaux." Phd thesis, Télécom ParisTech, 2011. http://pastel.archives-ouvertes.fr/pastel-00675543.
Full textFrusque, Gaëtan. "Inférence et décomposition modale de réseaux dynamiques en neurosciences." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEN080.
Full textDynamic graphs make it possible to understand the evolution of complex systems evolving over time. This type of graph has recently received considerable attention. However, there is no consensus on how to infer and study these graphs. In this thesis, we propose specific methods for dynamical graph analysis. A dynamical graph can be seen as a succession of complete graphs sharing the same nodes, but with the weights associated with each link changing over time. The proposed methods can have applications in neuroscience or in the study of social networks such as Twitter and Facebook for example. The issue of this thesis is epilepsy, one of the most common neurological diseases in the world affecting around 1% of the population.The first part concerns the inference of dynamical graph from neurophysiological signals. To assess the similarity between each pairs of signals, in order to make the graph, we use measures of functional connectivity. The comparison of these measurements is therefore of great interest to understand the characteristics of the resulting graphs. We then compare functional connectivity measurements involving the instantaneous phase and amplitude of the signals. We are particularly interested in a measure called Phase-Locking-Value (PLV) which quantifies the phase synchrony between two signals. We then propose, in order to infer robust and interpretable dynamic graphs, two new indexes that are conditioned and regularized PLV. The second part concerns tools for dynamical graphs decompositions. The objective is to propose a semi-automatic method in order to characterize the most important patterns in the pathological network from several seizures of the same patient. First, we consider seizures that have similar durations and temporal evolutions. In this case the data can be conveniently represented as a tensor. A specific tensor decomposition is then applied. Secondly, we consider seizures that have heterogeneous durations. Several strategies are proposed and compared. These are methods which, in addition to extracting the characteristic subgraphs common to all the seizures, make it possible to observe their temporal activation profiles specific to each seizures. Finally, the selected method is used for a clinical application. The obtained decompositions are compared to the visual interpretation of the clinician. As a whole, we found that activated subgraphs corresponded to brain regions involved during the course of the seizures and their time course were highly consistent with classical visual interpretation
Michaud, François-Thomas. "Profilage protéomique par analyse multivariée de signaux LCMS appliqué en ingénierie cellulaire." Thesis, Université Laval, 2009. http://www.theses.ulaval.ca/2009/26366/26366.pdf.
Full textDumont, Jerome. "Fouille de dynamiques multivariées, application à des données temporelles en cardiologie." Phd thesis, Université Rennes 1, 2008. http://tel.archives-ouvertes.fr/tel-00364720.
Full textDumont, Jérôme. "Fouille de dynamiques multivariées : application à des données temporelles en cardiologie." Rennes 1, 2008. http://www.theses.fr/2008REN1S078.
Full textThis manuscript focuses on the problem of analysing dynamics of time series observed in cardiology. The proposed solution is divided into two steps. The first one consists in the extraction of useful information from the ECG by segmenting each beat with a wavelet decomposition algorithmn, adapted from the litterature. The difficult problem of optimising both thresholds and time windows is solved with evolutionary algorithms. The second step relies on Hidden Semi-Markovian models to represent the time series made up of the extracted variables. An algorithm of unsupervised classification is proposed to retrieve the natural groups. The application of this method to the detection of ischemic episodes and to the analysis of stress ECG from patients suffering from Brugada syndrome presents a higher performance than more tradionnal approaches
Altuve, Miguel. "Détection multivariée des épisodes d'apnée-bradycardie chez le prématuré par modèles semi-markovien cachés." Rennes 1, 2011. http://www.theses.fr/2011REN1S053.
Full textThis dissertation studies the early detection of apnea-bradycardia (AB) events in preterm infants. After defining the importance of AB detection from a clinical point of view, a methodological approach is proposed. It relies on a data mining process that includes data cleansing and feature extraction. In chapter 3, a novel method based on evolutionary algorithms, for optimizing the thresholds and the analysis windows, is proposed to adapt the algorithms of the ECG signal to the specific characteristics of preterm infants, very different from the EGC of adult. In chapter 4, a semi-Markovian approach is adapted for modeling of dynamics and several improvements are proposed : heterogeneous models, adaptation to online processing, optimization of experiments, are reported on simulated and read signals. They clearly highlight the importance of considering the dynamic of the signals. They also emphasize that with a suitable pre-treatment such as the quantification of observations and the introduction of delay between the observable, a significant gain in performance can be observed