Dissertations / Theses on the topic 'Silicon-on-insulator (SOI)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Silicon-on-insulator (SOI).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Su, Lisa T. (Lisa Tzu-Feng). "Extreme-submicrometer silicon-on-insulator (SOI) MOSFETs." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/11618.
Full textDe, Luca Andrea. "SOI smart multi-sensor platform for harsh environment applications." Thesis, University of Cambridge, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709510.
Full textWainwright, Simon Peter. "A study of silicon on insulator (SOI) : materials, devices and circuits." Thesis, University of Liverpool, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338453.
Full textSherony, Melanie J. (Melanie Jane). "Design, process, and reliability considerations in silicon-on-insulator (SOI) MOSFETs." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/10049.
Full textIncludes bibliographical references (p. 111-119
by Melanie J. Sherony.
Ph.D.
Zissis, Nikolaos. "Design and study of an electron beam system for silicon recrystallization." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241194.
Full textNgwa, Chrisantus Soh. "Electrical characterisation of SIMOX SiOâ†2 for silicon-on-insulator technology." Thesis, University of Liverpool, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263706.
Full textMd, Zain Ahmad Rifqi. "One-dimensional photonic crystal / photonic wire cavities based on silicon-on-insulator (SOI)." Thesis, University of Glasgow, 2009. http://theses.gla.ac.uk/996/.
Full textHeinle, Ulrich. "Vertical High-Voltage Transistors on Thick Silicon-on-Insulator." Doctoral thesis, Uppsala universitet, Fasta tillståndets elektronik, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3179.
Full textZheng, Qi. "Performance Characterization of Silicon-On-Insulator (SOI) Corner Turning and Multimode Interference Devices." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23234.
Full textHaneef, Ibraheem. "SOI CMOS MEMS flow sensors." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611843.
Full textNayfeh, Hasan M. (Hasan Munir) 1974. "Correlation of silicon microroughness with electrical parameters of SOI-AS (silicon-on-insulator with active substrate)." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/47504.
Full textMohd, Zain Anis Suhaila. "Scaling and variability in ultra thin body silicon on insulator (UTB SOI) MOSFETs." Thesis, University of Glasgow, 2013. http://theses.gla.ac.uk/4281/.
Full textTashtush, Aktham Atallah Mofleh. "Characterization of integrated Bragg gratings in silicon-on-insulator." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/7670/.
Full textShen, Chao. "Study of CMOS active pixel image sensor on SOI/SOS substrate /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?ELEC%202003%20SHEN.
Full textIncludes bibliographical references (leaves 67-69). Also available in electronic version. Access restricted to campus users.
Wu, I.-Tsang. "Integrated Electrostatically- and Piezoelectrically-Transduced Contour-Mode MEMS Resonator on Silicon-on-Insulator (SOI) Wafer." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5336.
Full textEngland, Troy Daniel. "Silicon-germanium BiCMOS and silicon-on-insulator CMOS analog circuits for extreme environment applications." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51806.
Full textSäll, Erik. "Implementation of Flash Analog-to-Digital Converters in Silicon-on-Insulator CMOS Technology." Doctoral thesis, Linköpings universitet, Elektroniksystem, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8712.
Full textLim, Soon Thor. "Flat spectral response arrayed waveguide grating (AWG) in silicon-on-insulator (SOI) via ion implantation." Thesis, University of Surrey, 2005. http://epubs.surrey.ac.uk/844540/.
Full textDeng, Henghua. "Design and Characterization of Silicon-on-Insulator Passive Polarization Converter with Finite-Element Analysis." Thesis, University of Waterloo, 2005. http://hdl.handle.net/10012/833.
Full textIn this dissertation, the silicon-on-insulator (SOI) technology is introduced to the design and fabrication of passive polarization rotators (PR). Efficient and accurate full-vectorial finite-element eigenmode solvers as well as propagation schemes for characterizing novel SOI PRs are developed because commercial software packages based on finite-difference techniques are inefficient in dealing with arbitrary waveguide geometries.
A set of general design procedures are accordingly developed to design a series of slanted-angle polarization converters, regardless of the material system (SOI or III-V), outer-slab layer configuration (symmetric or asymmetric), and longitudinal loading (single- or multi-section). In particular, our normalized design charts and simple empirical formula for SOI polarization converters are applicable to a wide range of silicon-guiding-film thickness, e. g. , from 1 to 30 μm, enabling fast and accurate polarization rotator design on most commercial SOI wafers. With these procedures, in principle 100% polarization conversion efficiency can be achieved by optimizing waveguide geometric parameters.
A novel configuration with asymmetric external waveguiding layers is proposed, which is advantageous for fabrication procedure, manufacturing tolerance, single-mode region, and conversion efficiency. By etching along the crystallographic plane, the angled-facet can be perfectly fabricated. Completely removing external waveguiding layer beside the sloped sidewall not only simplifies production procedures but also enhances fabrication tolerances.
To accurately and efficiently characterize asymmetric slanted-angle SOI polarization converters, adaptive mesh generation procedures are incorporated into our finite-element method (FEM) analysis. In addition, anisotropic perfectly-matched-layer (PML) boundary condition (BC) is employed in the beam propagation method (BPM) in order to effectively suppress reflections from the edges of the computation window. For the BPM algorithm, the power conservation is strictly monitored, the non-unitarity is thoroughly analyzed, and the inherent numerical dissipation is reduced by adopting the quasi-Crank-Nicholson scheme and adaptive complex reference index.
Advantages of SOI polarization rotators over III-V counterparts are studied through comprehensive research on power exchange, single-mode condition, fabrication tolerance, wavelength stability, bending characteristics, loss and coupling properties. The performance of SOI PRs is stable for wavelengths in the ITU-T C-band and L-band, making such devices quite suitable for DWDM applications. Due to the flexible cross-section of SOI polarization converters, the coupling loss to laser diodes and single mode fibers (SMF) can be designed to be very small and can be further reduced by a tapered waveguide with cross-sections always satisfying the single-mode criteria. Slanted-angle SOI polarization rotators display asymmetric bending characteristics and permit extremely small curvatures with negligible radiation loss when the angled-facet is located at the outer bend radius. Moreover, SOI polarization rotators can be manufactured with low-price processing techniques that are fully compatible with CMOS integrated circuits (IC) technology, and thus can be integrated on both photonic and electronic chips.
Experimental verifications have shown good agreement with theoretical analysis and have confirmed the promising characteristics of our novel asymmetric SOI polarization converters. Similar asymmetric-outer-slab geometry has recently been employed by peer researchers to fabricate high performance III-V polarization rotators. We therefore believe that results in this dissertation will contribute much to related research fields.
Forhan, Neisy Amparo Escobar. "Fabricação de novas heteroestruturas a partir de estruturas SOI obtidas pela técnica \'smart-cut\'." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/3/3140/tde-02042008-112321/.
Full textIn this work we study new semiconductors heterostructures, based on SOI (Silicon-On- Insulator) structures obtained by \"Smart-Cut\" process, that were studied in the last years at Departamento de Engenharia de Sistemas Eletrônicos da Escola Politécnica da Universidade de São Paulo (EPUSP). This technique combines high-dose hydrogen ion implantation (I/I) and direct wafer bonding. To produce SOI structures some processes are essential: I/I process, cleaning and activation of the surfaces, and conventional thermal treatments at moderated temperatures. We also investigate different methods to obtain new heterostructures, basically combining SOI technologies and silicon carbide (SiC) growth processes, which will be called as SiCOI (Silicon Carbide-On-Insulator) heterostructures. The utilized methods to obtain the SiC are related, in each case, with the desired film\'s characteristics, which at the same time are associated with the final application. We analyze three methods to obtain SiC material with specific different characteristics. The proposed methodology approaches the following tasks: Task 1: Fabrication of SOI structures by the conventional technology previously used by us, and the improvement of superficial characteristic of the final structure. Task 2: Fabrication of SiC/insulator/Si heterostructures from Si substrate previously covered with an insulator capping layer, where the SiC layer is deposited by plasma enhanced chemical vapor deposition (PECVD). The PECVD film is amorphous and therefore, a thermal annealing step is necessary for crystallization. Task 3: Fabrication of SiC/SiO2/Si heterostructures from SOI structure, where the SiC layer is synthesized through a high dose carbon implantation into the thin silicon overlayer of a SOI wafer. Task 4: Fabrication of SiC/SiO2/Si heterostructures from SOI structure, where the SiC layer is achieved by direct carbonization conversion of the silicon overlayer of a SOI wafer In this work we have obtained Smart Cut SOI structures with surface roughness similar to the previous reported. We also obtained SiC/insulator/Si heterostructures with good structural characteristics using PECVD technique. The investigated N2 thermal annealing appears to be suitable for the crystallization of all the amorphous films deposited by PECVD. We have shown the possibility of using carbon ion implantation and subsequent thermal annealing to form c-SiC for SiC/insulator/Si heterostructures.
Ferreira, Luiz Fernando. "Double-gate nanotransistors in silicon-on-insulator : simulation of sub-20 nm FinFETs." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2012. http://hdl.handle.net/10183/65631.
Full textThis thesis presents the results of 3D-numerical simulation of electron transport in double-gate SOI-FinFETs in the decanometer size range. A basic review on the SOI technology and multiple gates MOSFETs is presented. The implementation of a chargesheet model for the fully-depleted SOI-MOSFET and a high frequency modeling of this device are first presented for a planar device topology. The second part of this work deals with FinFETs, a non-planar topology. The geometry of the silicon nano-wire (or “fin”) in this thesis is scaled down well below 100 nm, with fin thickness in the range of 10 to 20 nm. This work addresses the parameters for a viable 22 nm CMOS node, with electrical effective channel lengths below 20 nm. The basic 3D structure of the FinFET transistor is described in detail, then it is simulated with various device structural parameters, and results of 3D-numerical simulation (ID-VG curves, ID-VD, etc.), showing the main features of operation of this device, are presented. The impacts of varying silicon fin thicknesses, physical channel lengths, and silicon fin doping concentration on both the average threshold voltage and the subthreshold slope are investigated. With respect to the doping concentration, the discrete and highly statistical nature of impurity presence in the active area of the nanometer-range fin is considered in two limiting cases: (1) the zero-doping or undoped case, for highly improbable presence of active dopants, and (2) the many-dopants case, or high number (> 10 are probable) of active dopants in the device channel. A comparison between two 3D-numerical device simulators is performed in order to clarify differences between simulation models and features of the description of 3D structures. A structure for SOIFinFETs is optimized, for the undoped fin, showing its applicability for devices with electrical effective channel lengths below 20 nm. SOI-FinFET measurements were performed on experimental devices, analyzed and compared to device simulation results. This thesis uses parasitic resistance extraction methods that are tested in FinFET simulations and measurements. Finally, the main conclusions of this work are summarized and the future work and new directions in the FinFETs research are proposed.
Ndoye, Coumba. "Characterization of Dopant Diffusion in Bulk and lower dimensional Silicon Structures." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/46321.
Full textMaster of Science
Baudot, Sophie. "MOSFETs contraints sur SOI : analyse des déformations par diffraction des rayons X et étude des propriétés électriques." Phd thesis, Grenoble, 2010. http://www.theses.fr/2010GRENY064.
Full textThe use of mechanical stress in the channel of MOSFETs on SOI is mandatory for sub-22 nm technological nodes. Its efficiency depends on the device geometry and design. The impact of different steps of the transistor fabrication process (active area patterning, metal gate formation, Source/Drain (S/D) implantation) on the strain in strained Silicon-On-Insulator (sSOI) materials has been measured by Grazing Incidence X-Ray Diffraction (GIXRD). The electrical performance enhancement of MOSFETs on sSOI has also been estimated with respect to SOI (100% mobility enhancement for long and wide nMOS (L=W=10 μm), 35% saturation drive current (IDsat) enhancement for short and narrow nMOS (L=25 nm, W=77 nm)). Innovative strained structures have then been studied. We demonstrate a 37% (18%) IDsat enhancement for pMOS on SOI (sSOI) with SiGe S/D compared to sSOI with Si S/D, for a 60 nm gate length and a 15 nm film thickness. GIXRD measurements, together with mechanical simulations, enabled the study and optimization of new structures using the stress transfer from an embedded and stressed layer (SiGe or nitride) toward the channel
Litty, Antoine. "Conception, fabrication, caractérisation et modélisation de transistors MOSFET haute tension en technologie avancée SOI (Silicon-On-Insulator)." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAT002/document.
Full textNowadays the scaling of bulk silicon CMOS technologies is reaching physical limits. In this context, the FDSOI technology (fully depleted silicon-on-insulator) becomes an alternative for the industry because of its superior performances. The use of an ultra-thin SOI substrate provides an improvement of the MOSFETs behaviour and guarantees their electrostatic integrity for devices of 28nm and below. The development of high-voltage applications such DC/DC converters, voltage regulators and power amplifiers become necessary to integrate new functionalities in the technology. However, the standard devices are not designed to handle such high voltages. To overcome this limitation, this work is focused on the design of a high voltage MOSFET in FDSOI. Through simulations and electrical characterizations, we are exploring several solutions such as the hybridization of the SOI substrate (local opening of the buried oxide) or the implementation in the silicon film. An innovative architecture on SOI, the Dual Ground Plane EDMOS, is proposed, characterized and modelled. It relies on the biasing of a dedicated ground plane introduced below the device to offer promising RON.S/BV trade-off for the targeted applications
Säll, Erik. "Implementation of Flash Analog-to-Digital Converters in Silicon-on-Insulator Technology." Licentiate thesis, Linköping University, Linköping University, Electronics System, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5260.
Full textHigh speed analog-to-digital converters (ADCs) used in, e.g., read channel and ultra wideband (UWB) applications are often based on a flash topology. The read channel applications is the intended application of this work, where a part of the work covers the design of two different types of 6-bit flash ADCs. Another field of application is UWB receivers.
To optimize the performance of the whole system and derive the specifications for the sub-blocks of the system it is often desired to use a topdown design methodology. To facilitate the top-down design methodology the ADCs are modeled on behavioral level. The models are simulated in MATLAB®. The results are used to verify the functionality of the proposed circuit topologies and serve as a base to the circuit design phase.
The first flash ADC has a conventional topology. It has a resistor net connected to a number of latched comparators, but its thermometer-tobinary encoder is based on 2-to-1 multiplexers buffered with inverters. This gives a compact encoder with a regular structure and short critical path. The main disadvantage is the code dependent timing difference between the encoder outputs introduced by this topology. The ADC was simulated on schematic level in Cadence® using the foundry provided transistor models. The design obtained a maximum sampling frequency of 1 GHz, an effective resolution bandwidth of 390 MHz, and a power consumption of 170 mW.
The purpose of the second ADC is to demonstrate the concept of introducing dynamic element matching (DEM) into the reference net of a flash ADC. This design yields information about the performance improvements the DEM gives, and what the trade-offs are when introducing DEM. Behavioral level simulations indicate that the SFDR is improved by 11 dB when introducing DEM, but the settling time of the reference net with DEM will now limit the conversion speed of the converter. Further, the maximum input frequency is limited by the total resistance in the reference net, which gets increased in this topology. The total resistance is the total switch on-resistance plus the total resistance of the resistors. To increase the conversion speed and the maximum input frequency a new DEM topology is proposed in this work, which reduces the number of switches introduced into the reference net compared with earlier proposed DEM topologies. The transistor level simulations in Cadence® of the flash ADC with DEM indicates that the SFDR improves by 6 dB compared with when not using DEM, and is expected to improve more if more samples are used in the simulation. This was not possible in the current simulations due to the long simulation time. The improved SFDR is however traded for an increased chip area and a reduction of the maximum sampling frequency to 550 MHzfor this converter. The average power consumption is 92 mW.
A goal of this work is to evaluate a 130 nm partially depleted silicon-oninsulator (SOI) complementary metal oxide semiconductor (CMOS) technology with respect to analog circuit implementation. The converters are therefore implemented in this technology. When writing this the ADCs are still being manufactured. Since the technology evaluation will be based on the measurement results the final results of the evaluation are not included in this thesis. The conclusions regarding the SOI CMOS technology are therefore based on a literature study of published scientific papers in the SOI area, information extracted during the design phase of the ADCs, and from the transistor level circuit simulations. These inputs indicate that to fully utilize the potential performance advantages of the SOI CMOS technology the partially depleted SOI CMOS technology should be exchanged for a fully depleted SOI CMOS technology. The manufacturing difficulties regarding the control of the thin-film thickness must however first be solved before the exchange can be done.
Report code: LiU-Tek-Lic-2005:68.
Baudot, Sophie. "MOSFETs contraints sur SOI : analyse des déformations par diffraction des rayons X et étude des propriétés électriques." Phd thesis, Grenoble, 2010. http://tel.archives-ouvertes.fr/tel-00557963.
Full textJiang, Hao. "Numerical Modeling and Analysis of Micro-structuring on Silicon on Insulator (SOI) Film under Localized Single Pulse Laser Irradiation." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1302280541.
Full textDai, Daoxin. "Designs and simulations of silicon-based microphotonic devices." Doctoral thesis, Stockholm: Division of Electromagnetic Theory, Royal Institute of Technology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-226.
Full textMoolamalla, Himaja Reddy. "An analysis on the simulation of the leakage currents of independent double gate SOI MOSFET transistors a thesis presented to the faculty of the Graduate School, Tennessee Technological University /." Click to access online, 2009. http://proquest.umi.com/pqdweb?index=0&did=2000377751&SrchMode=1&sid=5&Fmt=6&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1277473834&clientId=28564.
Full textBellini, Marco. "Operation of silicon-germanium heterojunction bipolar transistors on." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28206.
Full textCommittee Chair: Cressler, John D.; Committee Member: Papapolymerou, John; Committee Member: Ralph, Stephen; Committee Member: Shen, Shyh-Chiang; Committee Member: Zhou, Hao Min.
Song, Jiguo. "Compact Trench-Based Silicon-on-Insulator Rib Waveguide 90-Degree and 105-Degree Bend and Splitter Design." Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2547.pdf.
Full textFoell, III Charles Alden. "Luminescent properties of Pb-based (PbX) colloidal quantum dots (CQDs) in vacuum, on silicon and integrated with a silicon-on-insulator (SOI) photonic integrated circuit (PIC)." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/57665.
Full textScience, Faculty of
Physics and Astronomy, Department of
Graduate
Singh, Siddhartha. "Phosphorus implants for off-state improvement of SOI CMOS fabricated at low temperature /." Online version of thesis, 2009. http://hdl.handle.net/1850/11427.
Full textGallet, Antonin. "Hybrid III-V on silicon lasers for optical communications." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLT019/document.
Full textPhotonic integration reduces the size and energy consumption of fiber optic communication systems compared to systems assembled from discrete components. This technology has recently attracted a great interest with the progress of integration on InP and the development of silicon photonics. The latter challenges the integration platform on InP as high-performance and low-cost components can be manufactured in foundries originally developed for microelectronics. Lasers are one of the main parts of transceivers for optical communications. With their integration on the silicon platform, transceivers that include the critical functions of light emission, modulation and detection on the same chip can be made. In the heterogeneous integration platform, components are manufactured in high volumes: several tens or even hundreds of components are produced per wafer. In this thesis, I studied theoretically and experimentally the properties of tunable lasers based on silicon ring resonators, directly modulated distributed feedback lasers and low noise high-quality factor lasers
Passanante, Thibault. "Mécanismes de démouillage à l'état solide : Etude par microscopie à électrons lents des systèmes SOI et GOI." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4020.
Full textThis work is devoted to the experimental study of the dewetting mechanisms of ultrathin solid films by which a metastable film transforms into an assembly of tridimensional crystallites. Using low energy Electron Microscopy (LEEM) we analyse, in situ and in real time, the morphology and the kinetics of the dewetting of Si/SiO2 (SOI) and Ge/SiO2 (GOI) systems obtained by molecular bonding (Smart Cut™ process). Further information has been obtained by Grazing Incidence Small Angle X–ray Scattering (GISAXS) and Atomic Force Microscopy (AFM) measurements. We show that the dewetting is driven by surface free energy minimization and mediated by surface diffusion. A complementary study of artificial well-oriented dewetting fronts obtained by lithography enables us to analyze the important role played by facets, the crystal anisotropy and the rim thickening mechanism. We show that the rim thickening proceeds in a layer-by-layer mode and is limited by 2D nucleation. Thanks to analytical models and Kinetics Monte Carlo simulations, numerical values of the pertinent physical parameters involved in the dewetting process are obtained and the morphological differences between SOI and GOI are attributed to the presence of specific facets
BREED, ANIKET A. "DESIGN, SIMULATION AND ANALYSIS OF THE SWITCHING AND RF PERFORMANCE OF MULTI-GATE SILICON-ON-INSULATOR MOSFET DEVICE STRUCTURES." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1121014432.
Full textBazin, Alexandre. "III-V Semiconductor Nanocavitieson Silicon-On-Insulator Waveguide : Laser Emission, Switching and Optical Memory." Phd thesis, Université Paris-Diderot - Paris VII, 2013. http://tel.archives-ouvertes.fr/tel-01007643.
Full textFarhi, Ghania. "Fabrication, simulation et caractérisation des propriétés de transport de composants à effet de champ latéral sur substrat de soi (Silicon-on-insulator)." Thèse, Université de Sherbrooke, 2014. http://hdl.handle.net/11143/6016.
Full textTruman, Sutanto Pagra. "Multifunktionsfeldeffekttransistoren zur Strömungs-, Chemo- und Biosensorik in Lab on a Chip-Systemen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1199907096113-76856.
Full textGallet, Antonin. "Hybrid III-V on silicon lasers for optical communications." Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLT019.
Full textPhotonic integration reduces the size and energy consumption of fiber optic communication systems compared to systems assembled from discrete components. This technology has recently attracted a great interest with the progress of integration on InP and the development of silicon photonics. The latter challenges the integration platform on InP as high-performance and low-cost components can be manufactured in foundries originally developed for microelectronics. Lasers are one of the main parts of transceivers for optical communications. With their integration on the silicon platform, transceivers that include the critical functions of light emission, modulation and detection on the same chip can be made. In the heterogeneous integration platform, components are manufactured in high volumes: several tens or even hundreds of components are produced per wafer. In this thesis, I studied theoretically and experimentally the properties of tunable lasers based on silicon ring resonators, directly modulated distributed feedback lasers and low noise high-quality factor lasers
Truman, Sutanto Pagra. "Multifunktionsfeldeffekttransistoren zur Strömungs-, Chemo- und Biosensorik in Lab on a Chip-Systemen." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A25010.
Full textEhteshami, Nasrin. "Silicon Photonic Devices for Microwave Signal Generation and Processing." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34111.
Full textBachi, Joe. "Design and implementation of high efficiency power amplifiers for 5G Applications." Electronic Thesis or Diss., Institut polytechnique de Paris, 2022. http://www.theses.fr/2022IPPAT039.
Full textThe increasing complexity of modulation schemes brought on by the evolution of mobile communication standards has led to high peak to average power ratio (PAPR) signals. As a result, traditional linear power amplifier (PA) architectures are no longer suitable as they exhibit low average efficiency when operating with such signals. One of the possible solutions to this issue is load modulation-based architectures which are capable of providing higher average efficiency. This work focuses on the analysis, design, and implementation of the two main load modulation architectures: Outphasing (OPA) and Doherty (DPA). The Outphasing architecture is studied under its different forms and a new unified design method is proposed for OPA combiners. A second analysis is conducted on DPA combiners, resulting in a new analysis method capable of determining the maximum back-off achievable by a given combiner architecture in Doherty mode. Unlike existing works, the proposed method also determines the required driving currents at the inputs of the combiner to maintain ideal Doherty conditions throughout the Doherty region. In order to validate this technique, a twostage class-E DPA with compact LC combiner is designed and implemented using 130nm RF-SOI. Measured performance is in-line with the state of the art as the PA achieves a peak PAE of 51% at 32dBm output power under 3.4V supply voltage at 2.3GHz in CW mode. From 2.1GHz to 2.5GHz, the PA shows an average output power and PAE higher than 26.9dBm and 39% respectively at -35dBc E-UTRA ACLR when using a 10MHz50RB QPSK LTE uplink signal with memoryless digital predistortion (DPD). At 2.3GHz, the PA achieves a linear Pout and PAE of 28.85dBm and 42.8% respectively. Next, a system analysis is performed on the Outphasing transmitter system (OTX) which contains both the RF OPA as well as the signal processing interface and analog interface known as the signal component separator (SCS). The design and operation of OPA in both class-B and class-E is studied resulting in a dual-input class-E OPA design. Different DPD architectures are studied including the look-up table DPD and the behavioural modelling-based architectures. Finally, an IN-SCS DPD architecture is put forward as a potential novel solution allowing the integration of the DPD block into the SCS providing abasis for future research
Coudrain, Perceval. "Contribution au développement d'une technologie d'intégration tridimensionnelle pour les capteurs d'images CMOS à pixels actifs." Toulouse, ISAE, 2009. http://www.theses.fr/2009ESAE0005.
Full textMassy, Damien. "Etude de la dynamique de fracture dans la technologie Smart Cut™." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAY101.
Full textThe Smart Cut™ technology is a generic way of transferring very thin layers of crystalline material onto a mechanical substrate. It is currently the industrial standard for Silicon On Insulator (SOI) manufacturing. The implantation of relatively high doses of gas ions in a thermally oxidized silicon substrate leads to the formation of a buried weakened layer in the crystal. The implanted wafer is then bonded onto a host substrate using direct wafer bonding. Under annealing, the implanted species evolve into microcracks lying parallel to the surface, and a controlled fracture process finally occurs along the implanted layer. The aim of this thesis is to study the dynamics of this fracture step.First of all, the fracture velocity and the deformation profile behind the crack tip have been measured using an original optical setup, which has been extended to full wafer studies. A model has been established to explain these data. Then, the interaction of the fracture front with self-generated acoustic waves has been studied. This interaction leads to the appearance of a macroscopic periodic pattern on post-split SOI wafers which is made of small variations of the SOI roughness on very large periods (mm). Experimental studies are first carried out to look at the fracture acoustic emission for different experimental conditions. Numerical simulations based on acoustic phase calculations are then performed to recover the typical pattern shape, with results consistent with experimental data. Finally, technologic solutions are proposed to prevent the pattern formation on the post-split SOI wafers
Arora, Rajan. "Trade-offs between performance and reliability of sub 100-nm RF-CMOS technologies." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/50140.
Full textPirro, Luca. "Caractérisation et modélisation électrique de substrats SOI avancés." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT096/document.
Full textSilicon-on-insulator (SOI) substrates represent the best solution to achieve high performance devices. Electrical characterization methods are required to monitor the material quality before full transistor fabrication. The classical configuration used for SOI measurements is the pseudo-MOSFET. In this thesis, we focused on the enrichment of techniques in Ψ-MOSFET for the characterization of bare SOI and III-V wafers. The experimental setup for static ID-VG was improved using a vacuum contact for the back gate, increasing the measurement stability. Furthermore, this contact proved to be critical for achieving correct capacitance values with split-CV and quasi-static techniques (QSCV). We addressed the possibility to extract Dit values from split-CV and we demonstrated by modeling that it is impossible in typical sized SOI samples because of the time constant associated to the channel formation. The limitation was solved performing QSCV measurements. Dit signature was experimentally evidenced and physically described. Several SOI structures (thick and ultra-thin silicon films and BOX) were characterized. In case of passivated samples, the QSCV is mostly sensitive to the silicon film-BOX interface. In non-passivated wafers, a large defect related peak appears at constant energy value, independently of the film thickness; it is associated to the native oxide present on the silicon surface. For low-frequency noise measurements, a physical model proved that the signal arises from localized regions surrounding the source and drain contacts
Petit, Antoine. "Initiation de la fracture dans la technologie Smart Cut." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALY019.
Full textThe purpose of this thesis is to study the fracture initiation in the Smart CutTM technology, used for the industrial production of silicon-on-insulator (SOI) substrates. For this purpose, statistical studies allowed us to quantify the temporal and spatial variability of the fracture initiation phenomenon. These studies helped to detect the influence of certainmanufacturing parameters on fracture initiation, but also revealed its randomnature. Then, the growth phenomenon of buried microcracks, which ultimately leads to fracture initiation, was characterized using the technique of confocal microscopy with infrared light. This showed the existence of a particular behaviour of the microcracks located in the preferential initiation zones which are at the origin of the spontaneous initiation of the fracture. A model has been proposed to showhowthe particular development of these microcracks and their rupture at the edge of the sample, or on a bonding defect, can trigger a fracture. Then, mechanical initiation, performed by applying stress at the bonding interface of the substrates, was studied. A new device, developed in this thesis, allowed to measure the force necessary to initiate the fracture. These results were then related to measurements of the gas quantity at the fracture interface in order to understand the evolution of the initiation force as a function of different experimental parameters. Finally, a mechanical initiation process compatible with an industrial SOI substrate fabrication, and allowing to improve the control of the fracture step, was developed
Diab, Amer El Hajj. "Nouvelles méthodes pseudo-MOSFET pour la caractérisation des substrats SOI avancés." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENT060/document.
Full textSilicon-On-Insulator (SOI) device architectures represent attractive alternatives to bulk ones thanks to the improvement of transistors and circuits performances. In this context, the SOI starting material should be of prime quality.In this thesis, we develop novel electrical characterization tools and models for advanced SOI substrates. The classical pseudo-MOSFET (-MOSFET) characterization for SOI was revisited and extended to low temperatures. Enriched variants of -MOSFET, proposed and demonstrated on numerous geometries, concern split C-V and low-frequency noise measurements. Based on split C-V, an extraction method for the effective mobility was validated. A model explaining the capacitance variations with the frequency shows good agreement with the experimental results. The -MOSFET was also extended to highly doped SOI films and a model for parameter extraction was derived. Furthermore, we proved the possibility to characterize SiGe nanowire 3D stacks using the -MOSFET concept. Finally thin film -MOSFET proved to be an interesting, technology-light detector for gold nanoparticles
Benea, Licinius Pompiliu. "Mesures de potentiel hors-équilibre sur substrats SOI : implémentation et applications pour la détection biochimique." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAT052.
Full textIn this thesis we propose a new paradigm for biochemical detection based on the out-of-equilibrium body potential in silicon on insulator (SOI) substrates was used in the Ψ-MOSFET configuration. This is typically used for SOI characterization and is an upside-down transistor in which the current though the silicon film is measured by two metallic pressure probes and which is driven by the back gate voltage applied on the bulk of the SOI. The channel is close to the top structure of the SOI, allowing a straightforward influence of any deposited charges on the conduction of the pseudo transistor. The originality of our work resides in the fact that instead of measuring a shift due to charges on the static I-V characteristics, we developed a new method based on the out-of-equilibrium body potential, which appears due to the lack of carriers at the transition between the accumulation and inversion regimes. Charge injection through the metallic probes for channel formation is consequently critical for this effect. Surprisingly, the metal probes on the silicon film show experimentally an ohmic behaviour, which we explained using the emergence of the metallic metastable high pressure phase of silicon by nanoindentation, due to the pressure applied by the pressure probes. Furthermore, we presented a simplified setup for the body potential measurements, which showed a great versatility and stability with regard to the pressure applied on the probes and the position of the probes. The measurements were replicated through TCAD simulations, which ultimately showed that the influence of deposited charges on the silicon film can be measured using this method. Finally, the application of the body potential method for biosensing was realized by an incremental study starting from basic silicon functionalization methods to the detection of DNA. The electric response was proportional to the DNA concentration and a limit of detection of 1µM was estimated from the experimental results. The proof of concept for this new reading method can be implemented to other field-effect devices (i.e. nanowires) and for other biochemical applications