Academic literature on the topic 'Silicon Surfaces'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Silicon Surfaces.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Silicon Surfaces"

1

Bradley, David. "Snappy silicon surfaces." Materials Today 13, no. 1-2 (January 2010): 13. http://dx.doi.org/10.1016/s1369-7021(10)70012-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Haneman, D. "Surfaces of silicon." Reports on Progress in Physics 50, no. 8 (August 1, 1987): 1045–86. http://dx.doi.org/10.1088/0034-4885/50/8/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Gang. "Superhydrophobicity of Silicon-Based Microstructured Surfaces." Advanced Materials Research 989-994 (July 2014): 267–69. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.267.

Full text
Abstract:
Here, a simple method was presented for fabricating superhydrophobic silicon surfaces. Square-pillar-array samples were fabricated on silicon substrates by using the femtosecond laser micromachining technology. We measured the static and dynamic contact angles for water on these surfaces. The contact angles and the rolling angles on the silicon surfaces were measured through an optical contact angle meter. Wettability studies revealed the films exhibited a superhydrophobic behaviour with a higher contact angle and lower rolling angle-a water droplet moved easily on the surface.
APA, Harvard, Vancouver, ISO, and other styles
4

Buriak, Jillian M. "Silicon-Carbon Bonds on Porous Silicon Surfaces." Advanced Materials 11, no. 3 (March 1999): 265–67. http://dx.doi.org/10.1002/(sici)1521-4095(199903)11:3<265::aid-adma265>3.0.co;2-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Meieran, Eugene S., Ilan A. Blech, and Michael H. Herman. "Chemography of silicon surfaces." Journal of Applied Physics 57, no. 2 (January 15, 1985): 516–20. http://dx.doi.org/10.1063/1.334785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Andoh, Yasuko, and Reizo Kaneko. "Microwear of Silicon Surfaces." Japanese Journal of Applied Physics 34, Part 1, No. 6B (June 30, 1995): 3380–81. http://dx.doi.org/10.1143/jjap.34.3380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Budnitzki, M., and M. Kuna. "Scratching of silicon surfaces." International Journal of Solids and Structures 162 (May 2019): 211–16. http://dx.doi.org/10.1016/j.ijsolstr.2018.11.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

McLean, A. B., I. G. Hill, J. A. Lipton Duffin, J. M. MacLeod, R. H. Miwa, and G. P. Srivastava. "Nanolines on silicon surfaces." International Journal of Nanotechnology 5, no. 9/10/11/12 (2008): 1018. http://dx.doi.org/10.1504/ijnt.2008.019830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

CHABAL, Y. J., A. L. HARRIS, KRISHNAN RAGHAVACHARI, and J. C. TULLY. "INFRARED SPECTROSCOPY OF H-TERMINATED SILICON SURFACES." International Journal of Modern Physics B 07, no. 04 (February 14, 1993): 1031–78. http://dx.doi.org/10.1142/s0217979293002237.

Full text
Abstract:
In this review, the present level of infrared spectroscopy at surfaces is described by using hydrogen-terminated silicon surfaces as model systems. The electronic structure of the adsorbate, H, and the large mass difference between H and Si simplify the interpretation of the data and make it possible for the theories to give reliable quantitative information. In particular, ab initio cluster calculations provide an accurate structural description and precise vibrational frequencies for various surface configurations, and are used as the basis of a priori simulations of the line shape of H on silicon. A special emphasis is given to the recent discovery of chemical etching to prepare H-terminated silicon surfaces because it has greatly helped in understanding structural and dynamical properties of H-terminated silicon surfaces. In particular, both the energy and phase relaxation of the Si-H stretching vibration on the flat, ideally hydrogen terminated Si(111) surface have been measured directly and evidence for vibrational energy diffusion has been obtained on vicinal, H-terminated Si(111) surfaces. The data and current theoretical understanding of the chemically prepared Si(111) surfaces are presented and discussed.
APA, Harvard, Vancouver, ISO, and other styles
10

Muntele, Claudiu. "Microprobing Silicon Surfaces Reveals Low-Resistance Surface Reconstructions." MRS Bulletin 25, no. 12 (December 2000): 5–6. http://dx.doi.org/10.1557/mrs2000.237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Silicon Surfaces"

1

Knight, Patrick J. "Nitride formation at silicon surfaces." Thesis, University of Southampton, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Klaes, Stefan. "Photo-switching of organic monolayers on silicon surfaces." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX071/document.

Full text
Abstract:
La conception de surfaces "intelligentes" sensibles aux stimuli externes (lumière, champ électromagnétique, environnement chimique ...) attire un intérêt considérable en raison de leur potentiel pour une large gamme d'applications. Dans ce contexte, nous étudions les propriétés de transfert de photos d'une monocouche de photochromes organiques immobilisés sur des surfaces de silicium.Les groupes Fulgimide sont ancrés par liaison covalente au-dessus de monocouches alkyliques fonctionnalisées greffées sur des surfaces Si (111) exemptes d'oxyde. La composition des monocouches dans les états stationnaires photo EPS-UV et EPS-Vis est déterminée à partir de l'analyse quantitative de l'intensité de la bande infrarouge caractéristique des isomères ouverts (E, Z) et fermés (C). La photocommutation de surface UV-Vis est surveillée par des mesures infrarouge à transformée de Fourier in situ en temps réel lors de l'éclairage UV-Vis. Les études de dépendance temporelle de la photocommutation montrent une diminution de l'efficacité quantique pendant la commutation. Cette diminution de l'efficacité quantique dépend faiblement de la densité de fulgimide et n'est pas observée en solution. Cependant, les mesures de PC en fonction du flux de photons ont permis de déterminer une section efficace de la PC (σ) de la majorité des molécules commutables. Les études de photocommutation dépendantes de la polarisation montrent une forte dépendance de σ par rapport au champ électrique local de la lumière excitante d'isomérisation.Les modèles analytiques et les simulations de Monte Carlo basées sur les interactions des voisins les plus proches sont effectuées pour obtenir une meilleure compréhension des observations expérimentales. Ces simulations expliquent qualitativement la dépendance à la température de la cinétique de commutation, diminuant l'efficacité quantique et la faible densité de surface de la photocommutation.Il a été montré dans cette thèse que σ dépend du champ électrique local. À l'instar de la spectroscopie Raman améliorée en surface, le champ électrique local sur les surfaces augmente en raison du plasmon des nanoparticules d'or. Le plasmon de la monocouche de nanoparticules d'or et ainsi l'amélioration du champ électrique dépend de la longueur d'onde de l'irradiation externe. L'exploitation de cet effet améliore significativement la cinétique de la commutation en fonction de la longueur d'onde de l'irradiation. Cette amplification dépendant de la longueur d'onde de la cinétique de la commutation s'explique par la même amplification dépendante de la longueur d'onde du champ électrique
The design of “smart” surfaces responsive to external stimuli (light, electromagnetic field, chemical environment…) is attracting considerable interest because of their potential for a wide range of applications. Within this context we are studying the photoswitching properties of a monolayer of organic photochromes immobilized onto silicon surfaces.Fulgimide groups are anchored through covalent linkage atop of functionalized alkyl monolayers grafted on oxide free Si(111) surfaces. The monolayers composition at the photo stationary states PSS-UV and PSS-Vis is determined from quantitative analysis of the infrared band intensity characteristic of open (E,Z) and closed (C) isomers. The UV-Vis surface photocommutation is monitored by in-situ real time FTIR measurements during UV-Vis illumination. Time dependence studies of photocommutation evidence decreasing quantum efficiency during the commutation. This decrease in quantum efficiency only weakly depends on fulgimide density and is not observed in solution. However, PC measurements as a function of photon flux enabled determining a PC cross section (σ) of the majority of switching molecules. Polarization dependent photocommutation studies show the strong dependence of σ with respect to the local electric field of the isomerization-exciting light.Analytical models and Monte Carlo simulations based on nearest neighbor interactions are performed to gain deeper insight in the experimental observations. These simulations qualitatively explain the temperature dependence of the commutation kinetics, decreasing quantum efficiency and weak surface density dependence of the photocommutation.It has been shown in this thesis that σ depends on the local electric field. Similar to the Surface Enhanced Raman Spectroscopy the local electric field at surfaces is increased due to the plasmon of gold nanoparticles. The plasmon of the gold nanoparticle monolayer and thereby the enhancement of the electric field depends on the wavelength of the external irradiation. Exploitation of this effect improves the photo switching kinetics significantly depending on the wavelength of the irradiation. This wavelength dependent amplification of the switching kinetics is explained by the same wavelength dependent enhancement of the electric field
APA, Harvard, Vancouver, ISO, and other styles
3

Gibbons, Brian J. "Electromigration induced step instabilities on silicon surfaces." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1143235175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Thirtle, P. N. "Neutron reflection from modified silicon surfaces." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

King, David J. "Modelling of fullerenes on silicon surfaces." Thesis, Loughborough University, 2008. https://dspace.lboro.ac.uk/2134/4644.

Full text
Abstract:
An extension to the capabilities of an ab-initio density functional theory package, PLATO, has been undertaken. This concerned the calculation of Slater-Koster integrals and their derivatives, via the recursive methods initially proposed by Podolskiy and Vogl, and developed by Elena and Meister. This extension provides the ability to include the previously unavailable f -orbitals (and beyond) within PLATO calculations. Calculations have been performed, including f - orbitals, on silver, silicon and nitrogen systems. The results show a modest improvement, in terms of the convergence of the total energies calculated, when comparing the calculations including f -orbitals to those without. The impact on computational time is mixed, with both decreases and increases in compuational time demonstrated, dependent on the system in question and the type of calculation performed. The interactions between C60 molecules and the Si (100) surface, as well as the interactions between the endohedrally doped N@C60 molecules and the Si (100) surface have been explored via ab-initio total energy calculations. Configurations which have the cage located upon the dimer row bonded to two dimers (r2) and within the dimer trench bonded to four dimers (t4) have been investigated, as these have previously been found to be the most stable for the C60 molecule. We show that our results for the adsorption of the C60 molecule upon the Si (100) surface are comparable with previous studies. We have investigated the differences between the adsorption of the C60 and N@C60 molecules upon the Si (100) surface and found that there are only minimal differences. It is shown that the effects on the endohedral nitrogen atom, due to its placement within the fullerene cage, are small. Bader analysis has been used to explore differences between the C60 and N@C60 molecules. The interactions between pairs of C60 molecules adsorbed upon the Si (100) surface have also been studied. The same selection of t4 configurations used for the isolated fullerenes is explored in all possible pairs of fullerene configuration combinations. A previous study by Frangou explored pairs of fullerenes in adjacent bonding sites on the silicon surface, this study, however, investigates bonding sites separated by one silicon dimer. Comparisons between the two studies confirm the trend of the combinations becoming more favourable at a greater fullerene separation. There are several cases where the combined pair of fullerenes are less favourable than the two isolated cases, so these are studied indepth. The separation chosen in our study reflects the experimental separation observed by Moriarty et al..
APA, Harvard, Vancouver, ISO, and other styles
6

Frangou, Paul Christopher. "Modelling of fullerenes on silicon surfaces." Thesis, Loughborough University, 2008. https://dspace.lboro.ac.uk/2134/13499.

Full text
Abstract:
The interactions between fullerene cages and Si {100) surfaces are studied using density functional theory. This has previously been studied and the molecules are found to bind in four different locations upon the dimerised Si (100) surface. These are above the dimer row bound to one or two dimers (rl and r2 respectively) and within the dimer trench bound to two or four dimers (t2 and t4 respectively). Here we focus on the r2 and t4 configurations as these were found to have stronger binding energies due to the four bonds forming between cage and surface rather than two. The rl and t2 sites are actually metastable and minor displacements of the cages result in them falling in to one of the energy minima of the t4 and r2 sites. All of the configurations discovered by Godwin et al. via PLATO, are verified as are three of the additional configurations from the study by Hobbs et al. which used the SIESTA software package. A more complete basis set is employed here to ascertain the effect it has upon the basis set superposition error. It is found to reduce it to negligible levels.
APA, Harvard, Vancouver, ISO, and other styles
7

Wilson, Jon H. "Silicon surfaces : STM, theory and experiment." Thesis, University of Oxford, 1991. http://ora.ox.ac.uk/objects/uuid:64998ae3-9316-42b5-967f-da93ff2bfd6c.

Full text
Abstract:
The fundamental atomic and electronic behaviour of clean silicon surfaces has been studied within a simple tight-binding picture of bonding in solids. Of the various contributions to the surface binding energy, the lowering in the promotion energy (i.e. rehybridization) which accompanies localized Jahn-Teller distortions has been identified as a major electronic driving force underlying the stability of silicon surfaces. The structure of Si(113) has been experimentally determined by the technique of scanning tunnelling microscopy (STM). Despite its high index, the Si(113) surface is found to be highly stable. STM images of both empty and filled states provide strong evidence for a particular structural model with a 3x2 unit cell. The STM results are explained in terms of a general rehybridization principle, suggested by the earlier theoretical study, which accounts for the low surface energy as well as the observed spatial distribution of empty and filled states. In addition, the STM images reveal a high density of domain boundaries which introduce energy states that pin the Fermi level and explain earlier reports of a 3x1 reconstruction for this surface. Voltage-dependent STM image simulations for the Si(113)3x2 surface have been carried out using a simple tight-binding description of surface electronic structure. Quantitative agreement with experiment is obtained confirming the qualitative rehybridization arguments used previously. The local barrier for tunnelling electrons is shown to have an important effect on the interpretation of STM images. The high stability of clean Si(l 13) is shown by STM to be disrupted by adsorption of submonolayer amounts of atomic hydrogen which saturates dangling bonds. Mass transport of silicon occurs and structural models are proposed for the resultant mixed 2x2 and 2x3 surface.
APA, Harvard, Vancouver, ISO, and other styles
8

Lindsay, Robert. "Structure of adsorbates on silicon surfaces." Thesis, University of Liverpool, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ramstad, Monte Jerome. "Instabilities of vicinal silicon (111) surfaces." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/42571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Harte, Sean Paul. "Surface EXAFS studies of chromium and titanium upon #alpha#-quartz (0001) surfaces." Thesis, University of Liverpool, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263901.

Full text
Abstract:
In this thesis two studies of reactive metal adsorption upon a low index single crystal silicon dioxide surface are presented in addition to a study of sulphur adsorption upon a low index single crystal nickel surface. Chromium growth upon the a-quartz Si02(0001) (J84xJ84) Rll 0 surface is studied at three coverages, 0.25±O.08 ML, 0.5±O.16 ML and 1.0±0.33 ML, using surface extended x-ray absorption fine structure (SEXAFS). SEXAFS measurements, from the chromium K-edge, recorded at both grazing and normal incidence show that chromium growth proceeds via the formation of mesoscopic particles with a body centred cubic (b.c.c.) like structure having an average nearest neighbour Cr-Cr distance of 2.36±O.03 A. This represents a contraction of 5.6 % from the bulk b.c.c. lattice spacing of 2.49 A. There is no evidence of a surface reaction between chromium and the surface oxygen. SEXAFS was used to study titanium reactional growth on a-quartz (0001) (J84xJ84) Rll 0 and (lx1). Three nominal coverages were studied, 0.25±O.08 ML, 0.5±O.16 ML and 1.0±O.33 ML. Both normal and grazing incidence SEXAFS data were recorded and show the formation of a spatially extensive region in which an interfacial reaction has occurred between surface oxygen and adsorbate titanium atoms. Coupled with this is the formation of subnanometre titanium clusters. The metal oxide has nearest neighbour Ti-O distances close to those of both the anatase and rutile forms of titania with the metallic titanium clusters having a Ti-Ti distance within experimental error that of bulk hexagonal close packed (h.c.p.) titanium, 2.89 A. A re-examination of the surface geometry of Ni(1l0)c(2x2)S using SEXAFS has been performed. Data out to an electron wavevector of 9 A-I are analysed with a new code to assess the influence of multiple scattering. The first shell S-Ni distance is determined to be 2.20±O.02 A with the next nearest neighbour distance being 2.29±O.02 A, giving a top-layer Ni expansion of 14±3% relative to the bulk. The influence of multiple scattering does not significantly alter these values from earlier studies.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Silicon Surfaces"

1

Lifshits, V. G. Surface phases on silicon: Preparation, structures, and properties. Chichester [England]: J.Wiley, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nissim, Yves I. Heterostructures on Silicon: One Step Further with Silicon. Dordrecht: Springer Netherlands, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Levy, R. A. Novel Silicon Based Technologies. Dordrecht: Springer Netherlands, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

International Symposium on the Physics and Chemistry of SiO₂ and the Si-SiO₂ Interface (3rd 1996 Los Angeles, Calif.). The physics and chemistry of SiO₂ and the Si-SiO₂ interface-3, 1996: Proceedings of the Third International Symposium on the Physics and Chemistry of SiO₂ and the Si-SiO₂ Interface. Edited by Massoud Hisham Z, Poindexter Edward H, and Helms C. Robert. Pennington, NJ: Electrochemical Society, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Angeles, CA) International Symposium on the Physics and Chemistry of SiO₂ and the Si-SiO₂ Interface (5th 2005 Los. The physics and chemistry of SiO₂ and the Si-SiO₂ interface--5. Pennington, NJ: Electrochemical Society, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Choyke, W. J. Silicon Carbide: Recent Major Advances. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chabal, Yves J. Fundamental Aspects of Silicon Oxidation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Treitinger, Ludwig. Ultra-Fast Silicon Bipolar Technology. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Graff, Klaus. Metal Impurities in Silicon-Device Fabrication. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Graff, Klaus. Metal Impurities in Silicon-Device Fabrication. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Silicon Surfaces"

1

Starke, U. "Atomic Structure of SiC Surfaces." In Silicon Carbide, 281–316. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18870-1_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Berger, C., E. H. Conrad, and W. A. de Heer. "Silicon carbide and epitaxial graphene on silicon carbide." In Physics of Solid Surfaces, 683–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bertoni, C. M., G. Cappellini, F. Finocchi, and P. Monachesi. "7.4.1 Silicon oxides." In Physics of Solid Surfaces, 393–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47736-6_104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Feenstra, R. M., and S. W. Hla. "2.3.14 Si, Silicon." In Physics of Solid Surfaces, 62–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47736-6_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mönch, Winfried. "{100} Surfaces of Silicon, Germanium, and Cubic Silicon Carbide." In Semiconductor Surfaces and Interfaces, 151–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03134-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mönch, Winfried. "{100} Surfaces of Silicon, Germanium, and Cubic Silicon Carbide." In Semiconductor Surfaces and Interfaces, 137–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-02882-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sweetman, Adam, Samuel Paul Jarvis, and Philip Moriarty. "Mechanochemistry at Silicon Surfaces." In Noncontact Atomic Force Microscopy, 247–74. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15588-3_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mönch, Winfried. "{100} Surfaces of Diamond, Silicon, Germanium, and Cubic Silicon Carbide." In Semiconductor Surfaces and Interfaces, 169–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04459-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Feenstra, R. M., and S. W. Hla. "2.3.15 SiC, Silicon Carbide." In Physics of Solid Surfaces, 65–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47736-6_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Owen, Michael J., and Petar R. Dvornic. "General Introduction to Silicone Surfaces." In Advances in Silicon Science, 1–21. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-3876-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Silicon Surfaces"

1

Martínez-Duart, José M., Ricardo Guerrero-Lemus, and José D. Moreno. "Luminescent porous silicon." In The 8th Latin American congress on surface science: Surfaces , vacuum, and their applications. AIP, 1996. http://dx.doi.org/10.1063/1.51108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Romero-Paredes R., G. "Optical anisotropy in porous silicon films related to silicon substrate resistivity." In The 8th Latin American congress on surface science: Surfaces , vacuum, and their applications. AIP, 1996. http://dx.doi.org/10.1063/1.51115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

McGuire, G. E., and D. Temple. "Fabrication of silicon-based field emitter arrays." In The 8th Latin American congress on surface science: Surfaces , vacuum, and their applications. AIP, 1996. http://dx.doi.org/10.1063/1.51123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lambropoulos, John C., Kang-Hua Chen, and Theodore J. Lambropoulos. "Deformation of silicon surfaces." In Optical Science and Technology, SPIE's 48th Annual Meeting, edited by William A. Goodman. SPIE, 2003. http://dx.doi.org/10.1117/12.506332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Weisz, S. Z., J. Avalos, M. Gomez, A. Many, Y. Goldstein, and E. Savir. "Bulk and surface states on hydrogenated amorphous silicon." In The 8th Latin American congress on surface science: Surfaces , vacuum, and their applications. AIP, 1996. http://dx.doi.org/10.1063/1.51116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Matsumoto, Yasuhiro, René Asomoza, Gustavo Hirata, and Leonel Cota-Araiza. "Boron-carbide p-type layer for amorphous silicon solar cells." In The 8th Latin American congress on surface science: Surfaces , vacuum, and their applications. AIP, 1996. http://dx.doi.org/10.1063/1.51130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Leiderer, Paul, Johannes Boneberg, Mario Mosbacher, Andreas Schilling, and Oguz Yavas. "Laser cleaning of silicon surfaces." In Optoelectronics and High-Power Lasers & Applications, edited by Jan J. Dubowski and Peter E. Dyer. SPIE, 1998. http://dx.doi.org/10.1117/12.309495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Beleznai, Cs, Laszlo Nanai, Seppo Leppaevuori, Janne Remes, Hannu Moilanen, and Thomas F. George. "Nickel deposition on silicon surfaces." In OPTIKA '98: Fifth Congress on Modern Optics, edited by Gyorgy Akos, Gabor Lupkovics, and Andras Podmaniczky. SPIE, 1998. http://dx.doi.org/10.1117/12.320989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Önder, Tuba, Mona Zolfaghari Borra, and Hisham Nasser. "Surface Enhanced Raman Scattering with Photochemically Roughened Silicon Surfaces." In Frontiers in Optics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/fio.2018.jtu2a.51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Skvortsov, A. A., M. V. Koryachko, and D. E. Pshonkin. "Phase transitions on silicon surfaces with local surface heating." In 2016 International Conference on Actual Problems of Electron Devices Engineering (APEDE). IEEE, 2016. http://dx.doi.org/10.1109/apede.2016.7879079.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Silicon Surfaces"

1

Carey, JE, and E. Mazur. Microtextured Silicon Surfaces for Detectors, Sensors & Photovoltaics. Office of Scientific and Technical Information (OSTI), May 2005. http://dx.doi.org/10.2172/840172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nelson, E. J. Structural studies of alkali metal adsorption on silicon surfaces. Office of Scientific and Technical Information (OSTI), December 1999. http://dx.doi.org/10.2172/753248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gupta, P., A. C. Dillon, A. S. Bracker, and S. M. George. FTIR Studies of H2O and D2O Decomposition on Porous Silicon Surfaces. Fort Belvoir, VA: Defense Technical Information Center, July 1990. http://dx.doi.org/10.21236/ada226581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

RUBY, DOUGLAS S., RICHARD J. BUSS, SHANALYN A. KEMME, and SALEEM H. ZAIDI. Nanostructured Silicon Surfaces for Cost-Effective Photovoltaic Efficiency Improvements: LDRD Final Report. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/808623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yates, Jr, Cheng J. T., Gao C. C., Colaianni Q., Choyke M. L., and W. J. Atomic Hydrogen - A Reagent for the Extraction of Chemical Species from Silicon Surfaces. Fort Belvoir, VA: Defense Technical Information Center, June 1992. http://dx.doi.org/10.21236/ada252804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chongsawangvirod, S., and E. A. Irene. A Spectroscopic Differential Reflectometry Study of (100), (110), (111), (311), and (511) Silicon Surfaces. Fort Belvoir, VA: Defense Technical Information Center, December 1990. http://dx.doi.org/10.21236/ada231022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Takaura, Norikatsu. Synchrotron Radiation Total Reflection X-ray Fluorescence Spectroscopy for Microcontamination Analysis on Silicon Wafer Surfaces. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/784854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

ZAIDI, SALEEM H. Formation of Random, RIE-Textured Silicon Surfaces with Reduced Reflection and Enhanced Near IR Absorption. Office of Scientific and Technical Information (OSTI), April 2001. http://dx.doi.org/10.2172/780311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wampler, W. R. Segregation of copper to (100) and (111) silicon surfaces from internal Cu{sub 3}Si precipitates. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/414392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gordon, Mark S. Theoretical Studies of Silicon and Related Elements Reaction Surfaces and Dynamics of Potential High Energy Species. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada268149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography