Academic literature on the topic 'Silicon Surfaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Silicon Surfaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Silicon Surfaces"
Bradley, David. "Snappy silicon surfaces." Materials Today 13, no. 1-2 (January 2010): 13. http://dx.doi.org/10.1016/s1369-7021(10)70012-2.
Full textHaneman, D. "Surfaces of silicon." Reports on Progress in Physics 50, no. 8 (August 1, 1987): 1045–86. http://dx.doi.org/10.1088/0034-4885/50/8/003.
Full textLi, Gang. "Superhydrophobicity of Silicon-Based Microstructured Surfaces." Advanced Materials Research 989-994 (July 2014): 267–69. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.267.
Full textBuriak, Jillian M. "Silicon-Carbon Bonds on Porous Silicon Surfaces." Advanced Materials 11, no. 3 (March 1999): 265–67. http://dx.doi.org/10.1002/(sici)1521-4095(199903)11:3<265::aid-adma265>3.0.co;2-w.
Full textMeieran, Eugene S., Ilan A. Blech, and Michael H. Herman. "Chemography of silicon surfaces." Journal of Applied Physics 57, no. 2 (January 15, 1985): 516–20. http://dx.doi.org/10.1063/1.334785.
Full textAndoh, Yasuko, and Reizo Kaneko. "Microwear of Silicon Surfaces." Japanese Journal of Applied Physics 34, Part 1, No. 6B (June 30, 1995): 3380–81. http://dx.doi.org/10.1143/jjap.34.3380.
Full textBudnitzki, M., and M. Kuna. "Scratching of silicon surfaces." International Journal of Solids and Structures 162 (May 2019): 211–16. http://dx.doi.org/10.1016/j.ijsolstr.2018.11.024.
Full textMcLean, A. B., I. G. Hill, J. A. Lipton Duffin, J. M. MacLeod, R. H. Miwa, and G. P. Srivastava. "Nanolines on silicon surfaces." International Journal of Nanotechnology 5, no. 9/10/11/12 (2008): 1018. http://dx.doi.org/10.1504/ijnt.2008.019830.
Full textCHABAL, Y. J., A. L. HARRIS, KRISHNAN RAGHAVACHARI, and J. C. TULLY. "INFRARED SPECTROSCOPY OF H-TERMINATED SILICON SURFACES." International Journal of Modern Physics B 07, no. 04 (February 14, 1993): 1031–78. http://dx.doi.org/10.1142/s0217979293002237.
Full textMuntele, Claudiu. "Microprobing Silicon Surfaces Reveals Low-Resistance Surface Reconstructions." MRS Bulletin 25, no. 12 (December 2000): 5–6. http://dx.doi.org/10.1557/mrs2000.237.
Full textDissertations / Theses on the topic "Silicon Surfaces"
Knight, Patrick J. "Nitride formation at silicon surfaces." Thesis, University of Southampton, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238903.
Full textKlaes, Stefan. "Photo-switching of organic monolayers on silicon surfaces." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX071/document.
Full textThe design of “smart” surfaces responsive to external stimuli (light, electromagnetic field, chemical environment…) is attracting considerable interest because of their potential for a wide range of applications. Within this context we are studying the photoswitching properties of a monolayer of organic photochromes immobilized onto silicon surfaces.Fulgimide groups are anchored through covalent linkage atop of functionalized alkyl monolayers grafted on oxide free Si(111) surfaces. The monolayers composition at the photo stationary states PSS-UV and PSS-Vis is determined from quantitative analysis of the infrared band intensity characteristic of open (E,Z) and closed (C) isomers. The UV-Vis surface photocommutation is monitored by in-situ real time FTIR measurements during UV-Vis illumination. Time dependence studies of photocommutation evidence decreasing quantum efficiency during the commutation. This decrease in quantum efficiency only weakly depends on fulgimide density and is not observed in solution. However, PC measurements as a function of photon flux enabled determining a PC cross section (σ) of the majority of switching molecules. Polarization dependent photocommutation studies show the strong dependence of σ with respect to the local electric field of the isomerization-exciting light.Analytical models and Monte Carlo simulations based on nearest neighbor interactions are performed to gain deeper insight in the experimental observations. These simulations qualitatively explain the temperature dependence of the commutation kinetics, decreasing quantum efficiency and weak surface density dependence of the photocommutation.It has been shown in this thesis that σ depends on the local electric field. Similar to the Surface Enhanced Raman Spectroscopy the local electric field at surfaces is increased due to the plasmon of gold nanoparticles. The plasmon of the gold nanoparticle monolayer and thereby the enhancement of the electric field depends on the wavelength of the external irradiation. Exploitation of this effect improves the photo switching kinetics significantly depending on the wavelength of the irradiation. This wavelength dependent amplification of the switching kinetics is explained by the same wavelength dependent enhancement of the electric field
Gibbons, Brian J. "Electromigration induced step instabilities on silicon surfaces." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1143235175.
Full textThirtle, P. N. "Neutron reflection from modified silicon surfaces." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301731.
Full textKing, David J. "Modelling of fullerenes on silicon surfaces." Thesis, Loughborough University, 2008. https://dspace.lboro.ac.uk/2134/4644.
Full textFrangou, Paul Christopher. "Modelling of fullerenes on silicon surfaces." Thesis, Loughborough University, 2008. https://dspace.lboro.ac.uk/2134/13499.
Full textWilson, Jon H. "Silicon surfaces : STM, theory and experiment." Thesis, University of Oxford, 1991. http://ora.ox.ac.uk/objects/uuid:64998ae3-9316-42b5-967f-da93ff2bfd6c.
Full textLindsay, Robert. "Structure of adsorbates on silicon surfaces." Thesis, University of Liverpool, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385261.
Full textRamstad, Monte Jerome. "Instabilities of vicinal silicon (111) surfaces." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/42571.
Full textHarte, Sean Paul. "Surface EXAFS studies of chromium and titanium upon #alpha#-quartz (0001) surfaces." Thesis, University of Liverpool, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263901.
Full textBooks on the topic "Silicon Surfaces"
Lifshits, V. G. Surface phases on silicon: Preparation, structures, and properties. Chichester [England]: J.Wiley, 1994.
Find full textNissim, Yves I. Heterostructures on Silicon: One Step Further with Silicon. Dordrecht: Springer Netherlands, 1989.
Find full textLevy, R. A. Novel Silicon Based Technologies. Dordrecht: Springer Netherlands, 1991.
Find full textInternational Symposium on the Physics and Chemistry of SiO₂ and the Si-SiO₂ Interface (3rd 1996 Los Angeles, Calif.). The physics and chemistry of SiO₂ and the Si-SiO₂ interface-3, 1996: Proceedings of the Third International Symposium on the Physics and Chemistry of SiO₂ and the Si-SiO₂ Interface. Edited by Massoud Hisham Z, Poindexter Edward H, and Helms C. Robert. Pennington, NJ: Electrochemical Society, 1996.
Find full textAngeles, CA) International Symposium on the Physics and Chemistry of SiO₂ and the Si-SiO₂ Interface (5th 2005 Los. The physics and chemistry of SiO₂ and the Si-SiO₂ interface--5. Pennington, NJ: Electrochemical Society, 2005.
Find full textChoyke, W. J. Silicon Carbide: Recent Major Advances. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
Find full textChabal, Yves J. Fundamental Aspects of Silicon Oxidation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001.
Find full textTreitinger, Ludwig. Ultra-Fast Silicon Bipolar Technology. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988.
Find full textGraff, Klaus. Metal Impurities in Silicon-Device Fabrication. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.
Find full textGraff, Klaus. Metal Impurities in Silicon-Device Fabrication. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995.
Find full textBook chapters on the topic "Silicon Surfaces"
Starke, U. "Atomic Structure of SiC Surfaces." In Silicon Carbide, 281–316. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18870-1_12.
Full textBerger, C., E. H. Conrad, and W. A. de Heer. "Silicon carbide and epitaxial graphene on silicon carbide." In Physics of Solid Surfaces, 683–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_166.
Full textBertoni, C. M., G. Cappellini, F. Finocchi, and P. Monachesi. "7.4.1 Silicon oxides." In Physics of Solid Surfaces, 393–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47736-6_104.
Full textFeenstra, R. M., and S. W. Hla. "2.3.14 Si, Silicon." In Physics of Solid Surfaces, 62–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47736-6_31.
Full textMönch, Winfried. "{100} Surfaces of Silicon, Germanium, and Cubic Silicon Carbide." In Semiconductor Surfaces and Interfaces, 151–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03134-6_9.
Full textMönch, Winfried. "{100} Surfaces of Silicon, Germanium, and Cubic Silicon Carbide." In Semiconductor Surfaces and Interfaces, 137–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-02882-7_9.
Full textSweetman, Adam, Samuel Paul Jarvis, and Philip Moriarty. "Mechanochemistry at Silicon Surfaces." In Noncontact Atomic Force Microscopy, 247–74. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15588-3_13.
Full textMönch, Winfried. "{100} Surfaces of Diamond, Silicon, Germanium, and Cubic Silicon Carbide." In Semiconductor Surfaces and Interfaces, 169–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04459-9_9.
Full textFeenstra, R. M., and S. W. Hla. "2.3.15 SiC, Silicon Carbide." In Physics of Solid Surfaces, 65–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47736-6_32.
Full textOwen, Michael J., and Petar R. Dvornic. "General Introduction to Silicone Surfaces." In Advances in Silicon Science, 1–21. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-3876-8_1.
Full textConference papers on the topic "Silicon Surfaces"
Martínez-Duart, José M., Ricardo Guerrero-Lemus, and José D. Moreno. "Luminescent porous silicon." In The 8th Latin American congress on surface science: Surfaces , vacuum, and their applications. AIP, 1996. http://dx.doi.org/10.1063/1.51108.
Full textRomero-Paredes R., G. "Optical anisotropy in porous silicon films related to silicon substrate resistivity." In The 8th Latin American congress on surface science: Surfaces , vacuum, and their applications. AIP, 1996. http://dx.doi.org/10.1063/1.51115.
Full textMcGuire, G. E., and D. Temple. "Fabrication of silicon-based field emitter arrays." In The 8th Latin American congress on surface science: Surfaces , vacuum, and their applications. AIP, 1996. http://dx.doi.org/10.1063/1.51123.
Full textLambropoulos, John C., Kang-Hua Chen, and Theodore J. Lambropoulos. "Deformation of silicon surfaces." In Optical Science and Technology, SPIE's 48th Annual Meeting, edited by William A. Goodman. SPIE, 2003. http://dx.doi.org/10.1117/12.506332.
Full textWeisz, S. Z., J. Avalos, M. Gomez, A. Many, Y. Goldstein, and E. Savir. "Bulk and surface states on hydrogenated amorphous silicon." In The 8th Latin American congress on surface science: Surfaces , vacuum, and their applications. AIP, 1996. http://dx.doi.org/10.1063/1.51116.
Full textMatsumoto, Yasuhiro, René Asomoza, Gustavo Hirata, and Leonel Cota-Araiza. "Boron-carbide p-type layer for amorphous silicon solar cells." In The 8th Latin American congress on surface science: Surfaces , vacuum, and their applications. AIP, 1996. http://dx.doi.org/10.1063/1.51130.
Full textLeiderer, Paul, Johannes Boneberg, Mario Mosbacher, Andreas Schilling, and Oguz Yavas. "Laser cleaning of silicon surfaces." In Optoelectronics and High-Power Lasers & Applications, edited by Jan J. Dubowski and Peter E. Dyer. SPIE, 1998. http://dx.doi.org/10.1117/12.309495.
Full textBeleznai, Cs, Laszlo Nanai, Seppo Leppaevuori, Janne Remes, Hannu Moilanen, and Thomas F. George. "Nickel deposition on silicon surfaces." In OPTIKA '98: Fifth Congress on Modern Optics, edited by Gyorgy Akos, Gabor Lupkovics, and Andras Podmaniczky. SPIE, 1998. http://dx.doi.org/10.1117/12.320989.
Full textÖnder, Tuba, Mona Zolfaghari Borra, and Hisham Nasser. "Surface Enhanced Raman Scattering with Photochemically Roughened Silicon Surfaces." In Frontiers in Optics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/fio.2018.jtu2a.51.
Full textSkvortsov, A. A., M. V. Koryachko, and D. E. Pshonkin. "Phase transitions on silicon surfaces with local surface heating." In 2016 International Conference on Actual Problems of Electron Devices Engineering (APEDE). IEEE, 2016. http://dx.doi.org/10.1109/apede.2016.7879079.
Full textReports on the topic "Silicon Surfaces"
Carey, JE, and E. Mazur. Microtextured Silicon Surfaces for Detectors, Sensors & Photovoltaics. Office of Scientific and Technical Information (OSTI), May 2005. http://dx.doi.org/10.2172/840172.
Full textNelson, E. J. Structural studies of alkali metal adsorption on silicon surfaces. Office of Scientific and Technical Information (OSTI), December 1999. http://dx.doi.org/10.2172/753248.
Full textGupta, P., A. C. Dillon, A. S. Bracker, and S. M. George. FTIR Studies of H2O and D2O Decomposition on Porous Silicon Surfaces. Fort Belvoir, VA: Defense Technical Information Center, July 1990. http://dx.doi.org/10.21236/ada226581.
Full textRUBY, DOUGLAS S., RICHARD J. BUSS, SHANALYN A. KEMME, and SALEEM H. ZAIDI. Nanostructured Silicon Surfaces for Cost-Effective Photovoltaic Efficiency Improvements: LDRD Final Report. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/808623.
Full textYates, Jr, Cheng J. T., Gao C. C., Colaianni Q., Choyke M. L., and W. J. Atomic Hydrogen - A Reagent for the Extraction of Chemical Species from Silicon Surfaces. Fort Belvoir, VA: Defense Technical Information Center, June 1992. http://dx.doi.org/10.21236/ada252804.
Full textChongsawangvirod, S., and E. A. Irene. A Spectroscopic Differential Reflectometry Study of (100), (110), (111), (311), and (511) Silicon Surfaces. Fort Belvoir, VA: Defense Technical Information Center, December 1990. http://dx.doi.org/10.21236/ada231022.
Full textTakaura, Norikatsu. Synchrotron Radiation Total Reflection X-ray Fluorescence Spectroscopy for Microcontamination Analysis on Silicon Wafer Surfaces. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/784854.
Full textZAIDI, SALEEM H. Formation of Random, RIE-Textured Silicon Surfaces with Reduced Reflection and Enhanced Near IR Absorption. Office of Scientific and Technical Information (OSTI), April 2001. http://dx.doi.org/10.2172/780311.
Full textWampler, W. R. Segregation of copper to (100) and (111) silicon surfaces from internal Cu{sub 3}Si precipitates. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/414392.
Full textGordon, Mark S. Theoretical Studies of Silicon and Related Elements Reaction Surfaces and Dynamics of Potential High Energy Species. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada268149.
Full text