To see the other types of publications on this topic, follow the link: Silicophosphates.

Journal articles on the topic 'Silicophosphates'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Silicophosphates.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Neeraj, M. Eswaramoorthy, and C. N. R. Rao. "Mesoporous silicophosphates." Materials Research Bulletin 33, no. 10 (October 1998): 1549–54. http://dx.doi.org/10.1016/s0025-5408(98)00147-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schöneborn, M., W. Hoffbauer, J. Schmedt auf der Günne, and R. Glaum. "Beiträge zur Kristallchemie und zum thermischen Verhalten von wasserfreien Phosphaten, XXXVII [1]. Synthese, Kristallstruktur und kernresonanzspektroskopische Untersuchung von In2Ti6(PO4)6[Si2O(PO4)6] – Eine Hybride aus den NASICON und M4[Si2O(PO4)6] Strukturtypen / Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phospates, XXXVII [1]. Synthesis, Crystal Structure and Nuclear Magnetic Resonance Investigation of In2Ti6(PO4)6- [Si2O(PO4)6] – A Hybride Built from Layers with NASICON and M4[Si2O(PO4)6] Structures." Zeitschrift für Naturforschung B 61, no. 6 (June 1, 2006): 741–48. http://dx.doi.org/10.1515/znb-2006-0614.

Full text
Abstract:
In2Ti6(PO4)6[Si2O(PO4)6] has been obtained by heating (1100 °C) stoichiometric amounts of In2O3, SiP2O7, TiP2O7, and TiO2 in air. Colourless crystals of the phosphate-silicophosphate suitable for a single crystal structure investigation have been grown by chemical vapour transport (1000°C → 900°C, mixture of 70 mg PtCl2 and 3.5 mg TiP as transport agent). In2Ti6(PO4)6[Si2O(PO4)6] adopts its own structure type (R3̅ (No. 148), Z = 3, a = 8.4380(10) Å , c = 44.295(1) Å , 1809 independent reflections, 109 variables, R1 = 0.044, wR2 = 0.112). The crystal structure represents a hybride built up from alternating layers (⟂ to the c-axis) of the NASICON structure-type and those showing the structure of silicophosphates M4[Si2O(PO4)6]. Isolated heteropolyanions [Si2O(PO4)6]12− and double-octahedra [InIIITiIVO9] occur as coordination polyhedra besides isolated octahedra [TiIVO6] and tetrahedral phosphate groups. The results of 29Si and 31P-MAS-NMR studies are in agreement with one crystallographically independent site for silicon and two sites for phosphorus. The phosphorus resonances can be related to the two sites by 2-dimensional cross-polarisation experiments, by the anisotropies of their chemical shifts, and by the observed line widths. All criteria lead to the same assignment. Substitution of In3+ by several trivalent transition metal ions leads to phosphate-silicophosphates M2Ti6(PO4)6[Si2O(PO4)6] (M = Ti3+, V3+, Cr3+, Fe3+)
APA, Harvard, Vancouver, ISO, and other styles
3

Okada, Kenji, Masanari Takano, Yasuaki Tokudome, Yomei Tokuda, and Masahide Takahashi. "Preparation of Silicophosphate Alternating Hybrid Copolymers via Nonaqueous Acid-Base Reactions of Phosphoric Acid and Organo-Bridged Bis(chlorosilane)." Molecules 25, no. 1 (December 28, 2019): 127. http://dx.doi.org/10.3390/molecules25010127.

Full text
Abstract:
A design of atomic and oligomer level structure in organic-inorganic hybrid materials is highly important for various applications. Nonaqueous acid-base reaction allows us to prepare silicophosphates with controlled inorganic networks (–(O–P–O–Si)n) at atomic level because phosphorous and silicon-based precursors can react directly, resulting in an alternating copolymer network. Organic functionalization in those materials has been realized so far by using organic-modified phosphorous acid and/or organo-chlorosilane as precursors. In the present study, silicophosphate oligomers exhibiting inorganic-organic hybrid chains of (–(O–P–O–Si–R–Si)n) (R: bridging organic functional groups), are prepared from phosphoric acid and organo-bridged bis(chlorosilane). The 1, 2-bis(chlorodimethylsilyl)ethane ((C2H4)(Me2SiCl)2) and 1, 4-bis(chlorodimethylsilyl)benzene ((C6H4)(Me2SiCl)2) were used as organo-bridged bis(chlorosilane). Different types of silicophosphate oligomers with different network structures and terminal groups (P-OH and/or Si-Cl) were prepared by changing the reaction temperature and molar ratio of precursors. The formation of low molecular weight oligomers of ring and cage morphologies (ring tetramer, cage pentamer, and ring hexamer) is suggested in the product prepared from phosphoric acid and (C6H4)(Me2SiCl)2 molecule at 150 °C. Those silicophosphate hybrid oligomers are expected to be used as building blocks of hybrid materials with well-defined network structures for desired functionalities.
APA, Harvard, Vancouver, ISO, and other styles
4

Hanawa, Masafumi, Tomoyuki Kobayashi, and Hideo Imoto. "Silicophosphates of Rhodium and Indium." Zeitschrift für anorganische und allgemeine Chemie 626, no. 1 (January 2000): 216–22. http://dx.doi.org/10.1002/(sici)1521-3749(200001)626:1<216::aid-zaac216>3.0.co;2-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Styskalik, Ales, David Skoda, Zdenek Moravec, Craig E. Barnes, and Jiri Pinkas. "Surface reactivity of non-hydrolytic silicophosphate xerogels: a simple method to create Brønsted or Lewis acid sites on porous supports." New Journal of Chemistry 40, no. 4 (2016): 3705–15. http://dx.doi.org/10.1039/c5nj02928g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yong, Y., and P. Wenqing. "Hydrothermal synthesis of sodium zirconium silicophosphates." Journal of Materials Science Letters 9, no. 10 (October 1990): 1143–44. http://dx.doi.org/10.1007/bf00721869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hanawa, Masafumi, Tomoyuki Kobayashi, and Hideo Imoto. "ChemInform Abstract: Silicophosphates of Rhodium and Indium." ChemInform 31, no. 15 (June 9, 2010): no. http://dx.doi.org/10.1002/chin.200015005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

BENMOUSSA, A., and C. MICHEL. "Propriétés magnétiques de phosphates et silicophosphates de titane." Annales de Chimie Science des Matériaux 24, no. 3 (March 1999): 233–40. http://dx.doi.org/10.1016/s0151-9107(99)80049-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

GUNAWARDANE, RP. "SOLID SOLUBILITY OF APATITES IN SILICOPHOSPHATES AND SILICOSULPHATES." Journal of the National Science Foundation of Sri Lanka 21, no. 2 (December 29, 1993): 243. http://dx.doi.org/10.4038/jnsfsr.v21i2.8108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jähnigen, Sandra, Erica Brendler, Uwe Böhme, Gerhard Heide, and Edwin Kroke. "Silicophosphates containing SiO6octahedra – anhydrous synthesis under ambient conditions." New J. Chem. 38, no. 2 (2014): 744–51. http://dx.doi.org/10.1039/c3nj00721a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Huang, Zhupo, and Guoling Ma. "Luminescence of Cerium (3+) activated rare earth silicophosphates." Journal of Luminescence 40-41 (February 1988): 163–64. http://dx.doi.org/10.1016/0022-2313(88)90138-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Okura, Toshinori, Hideki Monma, and Kimihiro Yamashita. "Na+-fast ionic conducting glass-ceramics of silicophosphates." Journal of Electroceramics 24, no. 2 (March 6, 2008): 83–90. http://dx.doi.org/10.1007/s10832-008-9456-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Benmoussa, A., M. M. Borel, A. Grandin, A. Leclaire, and B. Raveau. "Structure of mixed-valent titanium silicophosphates, KTi3P6Si2O25 and CsTi3P6Si2O25." Acta Crystallographica Section C Crystal Structure Communications 47, no. 5 (May 15, 1991): 936–38. http://dx.doi.org/10.1107/s0108270190011908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Wang, E., F. Rinaldi, and M. Greenblatt. "Lithium insertion reactions of KM3P6Si2O25 potassium transition metal silicophosphates." Materials Research Bulletin 23, no. 1 (January 1988): 113–18. http://dx.doi.org/10.1016/0025-5408(88)90232-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Yong, Yue, and Pang Wenqin. "Hydrothermal synthesis and structural investigation of sodium zirconium silicophosphates." Journal of Materials Science 28, no. 7 (January 1, 1993): 1839–42. http://dx.doi.org/10.1007/bf00595755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Leclaire, A., M. M. Borel, A. Grandin, and B. Raveau. "Silicophosphates with an intersecting tunnel structure: AM3P6Si2O25 and AMo3P5.8Si2O25." Materials Chemistry and Physics 12, no. 6 (June 1985): 537–43. http://dx.doi.org/10.1016/0254-0584(85)90039-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Sarafian, Adam R., Erik H. Hauri, Francis M. McCubbin, Thomas J. Lapen, Eve L. Berger, Sune G. Nielsen, Horst R. Marschall, Glenn A. Gaetani, Kevin Righter, and Emily Sarafian. "Early accretion of water and volatile elements to the inner Solar System: evidence from angrites." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2094 (April 17, 2017): 20160209. http://dx.doi.org/10.1098/rsta.2016.0209.

Full text
Abstract:
Inner Solar System bodies are depleted in volatile elements relative to chondrite meteorites, yet the source(s) and mechanism(s) of volatile-element depletion and/or enrichment are poorly constrained. The timing, mechanisms and quantities of volatile elements present in the early inner Solar System have vast implications for diverse processes, from planetary differentiation to the emergence of life. We report major, trace and volatile-element contents of a glass bead derived from the D'Orbigny angrite, the hydrogen isotopic composition of this glass bead and that of coexisting olivine and silicophosphates, and the 207 Pb– 206 Pb age of the silicophosphates, 4568 ± 20 Ma. We use volatile saturation models to demonstrate that the angrite parent body must have been a major body in the early inner Solar System. We further show via mixing calculations that all inner Solar System bodies accreted volatile elements with carbonaceous chondrite H and N isotope signatures extremely early in Solar System history. Only a small portion (if any) of comets and gaseous nebular H species contributed to the volatile content of the inner Solar System bodies. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.
APA, Harvard, Vancouver, ISO, and other styles
18

Krivoviazov, E. L., and A. A. Baikov. "The Phase Equilibriums and the Structure of Some Calcium Silicophosphates." Phosphorus, Sulfur, and Silicon and the Related Elements 51, no. 1-4 (September 1990): 445. http://dx.doi.org/10.1080/10426509008040969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

MOINI, AHMAD, and ABRAHAM CLEARFIELD. "Effect of Synthesis Procedure on the Structure of Sodium Zirconium Silicophosphates." Advanced Ceramic Materials 2, no. 2 (April 1987): 173–77. http://dx.doi.org/10.1111/j.1551-2916.1987.tb00075.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

BENMOUSSA, A., M. M. BOREL, A. GRANDIN, A. LECLAIRE, and B. RAVEAU. "ChemInform Abstract: Structure of Mixed-Valent Titanium Silicophosphates, KTi3P6Si2O25 and CsTi3P6Si2O25." ChemInform 22, no. 31 (August 22, 2010): no. http://dx.doi.org/10.1002/chin.199131013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

da Silva, José A. L., and Nils G. Holm. "Borophosphates and silicophosphates as plausible contributors to the emergence of life." Journal of Colloid and Interface Science 431 (October 2014): 250–54. http://dx.doi.org/10.1016/j.jcis.2014.02.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Okura, Toshinori, Miki Tanaka, Hiroshi Kanzawa, and Giichi Sudoh. "Synthesis and conduction properties of Na + superionic conductors of sodium samarium silicophosphates." Solid State Ionics 86-88 (July 1996): 511–16. http://dx.doi.org/10.1016/0167-2738(96)00335-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Okura, Toshinori, Hideki Monma, and Kimihiro Yamashita. "Na+ SUPERIONIC CONDUCTING GLASS-CERAMICS OF SILICOPHOSPHATES: CRYSTALLIZATION, MICROSTRUCTURE AND CONDUCTION PROPERTIES." Phosphorus Research Bulletin 20 (2006): 111–18. http://dx.doi.org/10.3363/prb.20.111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Massiot, Ph, M. A. Centeno, M. Gouriou, M. I. Domínguez, and J. A. Odriozola. "Sol–gel obtained silicophosphates as materials to retain caesium at high temperatures." J. Mater. Chem. 13, no. 1 (2003): 67–74. http://dx.doi.org/10.1039/b208698k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

YAMASHITA, Kimihiro, Sadakatsu OHKURA, Takao UMEGAKI, and Takafumi KANAZAWA. "Synthesis, Polymorphs and Sodium Ionic Conductivity of Sodium Yttrium Silicophosphates with the Composition." Journal of the Ceramic Society of Japan 96, no. 1118 (1988): 967–72. http://dx.doi.org/10.2109/jcersj.96.967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Leclaire, A., M. Lamire, and B. Raveau. "Mo4P6Si2O25, an MoIII phosphosilicate closely related to V3P5SiO19: oxygen non-stoichiometry in silicophosphates." Acta Crystallographica Section C Crystal Structure Communications 44, no. 7 (July 15, 1988): 1181–84. http://dx.doi.org/10.1107/s0108270188003580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sukhyy, Кostyantyn M., Yuri P. Gomza, Elena A. Belyanovskaya, Valeriy V. Klepko, Olga A. Shilova, and Mikhaylo P. Sukhyy. "Resistive humidity sensors based on proton-conducting organic–inorganic silicophosphates doped by polyionenes." Journal of Sol-Gel Science and Technology 74, no. 2 (January 23, 2015): 472–81. http://dx.doi.org/10.1007/s10971-015-3622-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

OHASHI, M. "Preparation and ionic conductivity of alkali metal titanium silicophosphates AxTi3P6Si2O25 (A=Li, Na, K)." Solid State Ionics 53-56 (July 1992): 534–38. http://dx.doi.org/10.1016/0167-2738(92)90425-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Suda, Seiichi, Manabu Iwaida, Kimihiro Yamashita, and Takao Umegaki. "Synthesis of Na+ superionic conductors of sodium yttrium silicophosphates by a sol-gel method." Solid State Ionics 69, no. 2 (July 1994): 101–5. http://dx.doi.org/10.1016/0167-2738(94)90397-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Teterskii, A. V., S. Yu Stefanovich, and N. Ya Turova. "Sol-gel synthesis of oxygen-ion conductors based on apatite-structure silicates and silicophosphates." Inorganic Materials 42, no. 3 (March 2006): 294–302. http://dx.doi.org/10.1134/s0020168506030150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Yamashita, K. "New fast sodium-ion conducting glass-ceramics of silicophosphates: Crystallization, microstructure and conduction properties." Solid State Ionics 35, no. 3-4 (September 1989): 299–306. http://dx.doi.org/10.1016/0167-2738(89)90312-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jähnigen, Sandra, Erica Brendler, Uwe Böhme, and Edwin Kroke. "Synthesis of silicophosphates containing SiO6-octahedra under ambient conditions – reactions of anhydrous H3PO4 with alkoxysilanes." Chemical Communications 48, no. 62 (2012): 7675. http://dx.doi.org/10.1039/c2cc31600e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Mel'nik, M. T., and Nguyen Ding Ngi. "Silicophosphate-containing quartz ceramics." Glass and Ceramics 47, no. 2 (February 1990): 69–71. http://dx.doi.org/10.1007/bf00682609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ben Slimen, F., Z. Zaaboub, M. Haouari, N. Bel Haj Mohamed, H. Ben Ouada, S. Chaussedent, and N. Gaumer. "Effect of CdS nanocrystals on the photoluminescence of Eu3+-doped silicophosphate sol gel glass." RSC Advances 7, no. 24 (2017): 14552–61. http://dx.doi.org/10.1039/c7ra01313b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kuznetsova, T. F., A. I. Rat’ko, and S. I. Eremenko. "Adsorption properties of porous silicophosphate." Russian Journal of Applied Chemistry 85, no. 3 (March 2012): 344–47. http://dx.doi.org/10.1134/s1070427212030032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kuznetsova, T. F., S. I. Eremenko, and G. S. Lemeshonok. "Adsorption properties of tin silicophosphate." Inorganic Materials 36, no. 9 (September 2000): 932–34. http://dx.doi.org/10.1007/bf02758707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Mizuno, Megumi, Masahide Takahashi, and Toshinobu Yoko. "Structure and water durability of tin(II) organosilicophosphate glasses prepared by nonaqueous acid–base reactions." Journal of Materials Research 21, no. 7 (July 1, 2006): 1798–806. http://dx.doi.org/10.1557/jmr.2006.0223.

Full text
Abstract:
Tin(II) organosilicophosphate glasses were prepared by nonaqueous acid–base reactions using orthophosphoric acid, dimethyldichlorosilane, and tin(II)chloride as the starting materials. The structure of the methylsiloxane-phosphate copolymer (methylsilicophosphate) and tin(II) methylsilicophosphate glasses was mainly investigated by the 31P nuclear magnetic resonance technique. A chain structure composed of the –(P–O–Si–O)m– silicophosphate bonds was found as the main structural unit in the methylsilicophosphate prepared by mixing orthophosphoric acid and dimethyldichlorosilane at room temperature. Tin(II) methylsilicophosphate glasses could be prepared by introducing SnCl2 as a cross-linking agent of silicophosphate chains. By increasing the reaction temperature, it was possible to promote the reaction and then to increase the network dimensions of the resultant tin(II) methylsilicophosphate glasses. It was found that the glasses with a high degree of condensation tend to have a better water durability in a humid atmosphere.
APA, Harvard, Vancouver, ISO, and other styles
38

Peters, J. "Chemical structure of lithium silicophosphate glasses." Journal of Non-Crystalline Solids 222, no. 1-2 (December 11, 1997): 113–19. http://dx.doi.org/10.1016/s0022-3093(97)00355-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Peters, J., H. Jain, O. Kanert, R. Küchler, and V. Blache. "Chemical structure of lithium silicophosphate glasses." Journal of Non-Crystalline Solids 222 (December 1997): 113–19. http://dx.doi.org/10.1016/s0022-3093(97)90102-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Leclaire, A., and B. Raveau. "MoP3SiO11: A silicophosphate of molybdenum(III)." Journal of Solid State Chemistry 71, no. 2 (December 1987): 283–90. http://dx.doi.org/10.1016/0022-4596(87)90235-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Świeboda, Maria, and Zofia Brunarska. "Tussilago farfara L. - a plant relatively resistant to industrial air pollution." Acta Societatis Botanicorum Poloniae 44, no. 2 (2015): 189–202. http://dx.doi.org/10.5586/asbp.1975.017.

Full text
Abstract:
<i>Tussilago farfara</i> L. is a species highly resistant to the fumes emitted by the factory of silicophosphate fertilizers and to other kinds of industrial air pollution. The resistance of this species results from the wide ecological amplitude and characteristic anatomical structure of the leaves of this plant.
APA, Harvard, Vancouver, ISO, and other styles
42

Gambuzzi, Elisa, and Alfonso Pedone. "On the structure of Ce-containing silicophosphate glasses: a core–shell molecular dynamics investigation." Phys. Chem. Chem. Phys. 16, no. 39 (2014): 21645–56. http://dx.doi.org/10.1039/c4cp02577f.

Full text
Abstract:
New Ce3+–O and Ce4+–O parameters for a force-field based on the core–shell model were developed and applied to get insights into the structure of five silicophosphate glasses with increasing Ce2O3 and P2O5 content.
APA, Harvard, Vancouver, ISO, and other styles
43

Okura, Toshinori, Naoya Yoshida, and Kimihiro Yamashita. "Na+ superionic conducting silicophosphate glass-ceramics – Review." Solid State Ionics 285 (February 2016): 143–54. http://dx.doi.org/10.1016/j.ssi.2015.08.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zanfir, Andrei-Vlad, Nicusor Nenu, Georgeta Voicu, Alina-Ioana Badanoiu, Cristina-Daniela Ghitulica, and Florin Iordache. "Modified calcium silicophosphate cements with improved properties." Materials Chemistry and Physics 238 (December 2019): 121965. http://dx.doi.org/10.1016/j.matchemphys.2019.121965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kuznetsova, T. F., A. I. Rat’ko, and S. I. Eremenko. "Textural and adsorption properties of mesoporous silicophosphate." Colloid Journal 74, no. 1 (February 2012): 78–84. http://dx.doi.org/10.1134/s1061933x11060111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Paraschiv, Georgiana Laura, Francisco Muñoz, Gregory Tricot, Nerea Mascaraque, Lars R. Jensen, Yuanzheng Yue, and Morten M. Smedskjaer. "Mixed alkali silicophosphate oxynitride glasses: Structure-property relations." Journal of Non-Crystalline Solids 462 (April 2017): 51–64. http://dx.doi.org/10.1016/j.jnoncrysol.2017.02.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Galliano, P. G., and J. M. Porto L�pez. "Thermal behaviour of bioactive alkaline-earth silicophosphate glasses." Journal of Materials Science: Materials in Medicine 6, no. 6 (June 1995): 353–59. http://dx.doi.org/10.1007/bf00120304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Lugo, Gerardo J., Patricia Mazón, and Piedad N. De Aza. "Material processing of a new calcium silicophosphate ceramic." Ceramics International 42, no. 1 (January 2016): 673–80. http://dx.doi.org/10.1016/j.ceramint.2015.08.164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Feraru, I., I. C. Vasiliu, R. Iordanescu, M. Elisa, and C. Bartha. "Structural characterization of CdSe-doped Sol-Gel silicophosphate films." Surface Engineering and Applied Electrochemistry 49, no. 6 (November 2013): 493–99. http://dx.doi.org/10.3103/s1068375513060069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kanert, O. "Structural basis of low-frequency excitations in silicophosphate glasses." Journal of Non-Crystalline Solids 222, no. 1-2 (December 11, 1997): 321–28. http://dx.doi.org/10.1016/s0022-3093(97)00377-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography