Academic literature on the topic 'Simple and multiple linear regression'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Simple and multiple linear regression.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Simple and multiple linear regression"
Lu, Qiqi, and Robert B. Lund. "Simple linear regression with multiple level shifts." Canadian Journal of Statistics 35, no. 3 (September 2007): 447–58. http://dx.doi.org/10.1002/cjs.5550350308.
Full textHanley, James A. "Simple and multiple linear regression: sample size considerations." Journal of Clinical Epidemiology 79 (November 2016): 112–19. http://dx.doi.org/10.1016/j.jclinepi.2016.05.014.
Full textNagy, Gábor. "Sector Based Linear Regression, a New Robust Method for the Multiple Linear Regression." Acta Cybernetica 23, no. 4 (2018): 1017–38. http://dx.doi.org/10.14232/actacyb.23.4.2018.3.
Full textZhou, Hua Ren, Yue Hong Qian, Xi Qiang Liu, and Ou Wu. "Multiple Regression Analysis Model on Power Dispatch." Advanced Materials Research 512-515 (May 2012): 953–56. http://dx.doi.org/10.4028/www.scientific.net/amr.512-515.953.
Full textWang, Xiao Ying, and Ying Ge Chen. "Mine Location Algorithm Based on Multiple Linear Regression." Applied Mechanics and Materials 58-60 (June 2011): 1830–35. http://dx.doi.org/10.4028/www.scientific.net/amm.58-60.1830.
Full textSun, Hui, Yang Yang Chen, and Zhi Qing Fan. "Study the Residential Land Demand by Ridge Regression and Multiple Linear Regression." Key Engineering Materials 467-469 (February 2011): 1250–55. http://dx.doi.org/10.4028/www.scientific.net/kem.467-469.1250.
Full textLiebscher, Stefan, and Walter Krämer. "Some simple LM tests against multiple changes of variance in linear regression." Allgemeines Statistisches Archiv 84, no. 1 (April 2000): 33–40. http://dx.doi.org/10.1007/s101820050004.
Full textKowal, Robert. "Characteristics and Properties of a Simple Linear Regression Model." Folia Oeconomica Stetinensia 16, no. 1 (December 1, 2016): 248–63. http://dx.doi.org/10.1515/foli-2016-0016.
Full textMokhort, Hennadii. "Multiple Linear Regression Model of Meningococcal Disease in Ukraine: 1992–2015." Computational and Mathematical Methods in Medicine 2020 (February 11, 2020): 1–7. http://dx.doi.org/10.1155/2020/5105120.
Full textBidabad, Bijan. "New Algorithms for L1 Norm Regression." Bangladesh Journal of Multidisciplinary Scientific Research 1, no. 1 (June 12, 2019): 1–18. http://dx.doi.org/10.46281/bjmsr.v1i1.311.
Full textDissertations / Theses on the topic "Simple and multiple linear regression"
Tong, Fan. "Capacity demand and climate in Ekerö : Development of tool to predict capacity demand underuncertainty of climate effects." Thesis, KTH, Elektroteknisk teori och konstruktion, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-152522.
Full textPeraça, Maria da Graça Teixeira. "Modelos para estimativa do grau de saturação do concreto mediante variáveis ambientais que influenciam na sua variação." reponame:Repositório Institucional da FURG, 2009. http://repositorio.furg.br/handle/1/3436.
Full textSubmitted by Lilian M. Silva (lilianmadeirasilva@hotmail.com) on 2013-04-22T19:51:54Z No. of bitstreams: 1 Modelos para estimativa do Grau de Saturação do concreto mediante Variáveis Ambientais que influenciam na sua variação.pdf: 2786682 bytes, checksum: df174dab02a19756db94fc47c6bb021d (MD5)
Approved for entry into archive by Bruna Vieira(bruninha_vieira@ibest.com.br) on 2013-06-03T19:20:55Z (GMT) No. of bitstreams: 1 Modelos para estimativa do Grau de Saturação do concreto mediante Variáveis Ambientais que influenciam na sua variação.pdf: 2786682 bytes, checksum: df174dab02a19756db94fc47c6bb021d (MD5)
Made available in DSpace on 2013-06-03T19:20:55Z (GMT). No. of bitstreams: 1 Modelos para estimativa do Grau de Saturação do concreto mediante Variáveis Ambientais que influenciam na sua variação.pdf: 2786682 bytes, checksum: df174dab02a19756db94fc47c6bb021d (MD5) Previous issue date: 2009
Nas engenharias, é fundamental estimar o tempo de vida útil das estruturas construídas, o que neste trabalho significa o tempo que os íons cloretos levam para atingirem a armadura do concreto. Um dos coeficientes que influenciam na vida útil do concreto é o de difusão, sendo este diretamente influenciado pelo grau de saturação (GS) do concreto. Recentes estudos levaram ao desenvolvimento de um método de medição do GS. Embora esse método seja eficiente, ainda assim há um grande desperdício de tempo e dinheiro em utilizá-lo. O objetivo deste trabalho é reduzir estes custos calculando uma boa aproximação para o valor do GS com modelos matemáticos que estimem o seu valor através de variáveis ambientais que influenciam na sua variação. As variáveis analisadas nesta pesquisa, são: pressão atmosférica,temperatura do ar seco, temperatura máxima, temperatura mínima, taxa de evaporação interna (Pichê), taxa de precipitação, umidade relativa, insolação, visibilidade, nebulosidade e taxa de evaporação externa. Todas foram analisadas e comparadas estatisticamente com medidas do GS obtidas durante quatro anos de medições semanais, para diferentes famílias de concreto. Com essas análises, pode-se medir a relação entre estes dados verificando que os fatores mais influentes no GS são, temperatura máxima e umidade relativa. Após a verificação desse resultado, foram elaborados modelos estatísticos, para que, através dos dados ambientais, cedidos pelo banco de dados meteorológicos, se possam calcular, sem desperdício de tempo e dinheiro, as médias aproximadas do GS para cada estação sazonal da região sul do Brasil, garantindo assim uma melhor estimativa do tempo de vida útil em estruturas de concreto.
In engineering, it is fundamental to estimate the life-cycle of built structures, which in this study means the period of time required for chlorides to reach the concrete reinforcement. One of the coefficients that affect the life-cycle of concrete is the diffusion, which is directly influenced by the saturation degree (SD) of concrete. Recent studies have led to the development of a measurement method for the SD. Although this method is efficient, there is still waste of time and money when it is used. The objective of this study is to reduce costs by calculating a good approximation for the SD value with mathematical models that predict its value through environmental variables that affect its variation. The variables analysed in the study are: atmospheric pressure, temperature of the dry air, maximum temperature, minimum temperature, internal evaporation rate (Pichê), precipitation rate, relative humidity, insolation, visibility, cloudiness and external evaporation rate. All of them were statistically analysed and compared with measurements of SD obtained during four years of weekly assessments for different families of concrete. By considering these analyses, the relationship among these data can be measured and it can be verified that the most influent variables affecting the SD are the maximum temperature and the relative humidity. After verifying this result, statistical models were developed aiming to calculate, based on the environmental data provided by the meteorological database and without waste of time and money, the approximate averages of SD for each seasonal station of the south region of Brazil, thus providing a better estimative of life-cycle for concrete structures.
Silva, Mariellen Vital da [UNESP]. "Um modelo matemático para estudo de otimização do consumo de energia elétrica." Universidade Estadual Paulista (UNESP), 2007. http://hdl.handle.net/11449/87261.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Neste trabalho, otimiza-se o funcionamento de uma fábrica desidratadora de forragens localizada na Espanha. Esta possui processos seqüenciados, secagem, produção de fardos de feno e produção de grãos, que para serem realizados consomem quantidades distintas de energia. Estabelecem-se então, os períodos de produção para cada processo, juntamente com a quantidade em toneladas a serem produzidas, sabendo que na Espanha a energia elétrica possui vinte e quatro preços, um para cada hora do dia. É proposto um modelo para a função objetivo, utilizando dados históricos de produção (Ton), consumo (kWh) e tempo (h), que retratará o funcionamento da empresa. Este modelo é obtido por meio de regressão linear múltipla e é implementado utilizando o software Lingo. Os resultados dessa implementação fornecerão as horas totais diárias que cada processo deverá ser realizado, juntamente com a quantidade de toneladas de pacotes de feno e grãos, e o custo diário da energia elétrica para realizar a produção.
In this work, optimize of the functioning of a plant that dehydrates fodder plants located in Spain. This possess sequenced processes, drying, production of hay packs and production of grains, which to be carried through consumes distinct amounts of energy. Then, the periods of production for each process are established, together with the amount in tons to be produced, knowing that in Spain the electric energy possess twenty and four prices, one for each hour of the day. It is considered a model for the objective function, by using given historical data of production (Ton), consumption (kWh) and time (h), that the functioning of the company will portray. This model is gotten by means of multiple linear regression and is implemented using software Lingo. The results of this implementation will supply the daily total hours that each process will have to be carried through, with the amount of tons of packages of hay and grains , and the daily cost of the electric energy to carry through the production.
Huschens, Stefan. "Einführung in die Ökonometrie." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-222629.
Full textSilva, Mariellen Vital da. "Um modelo matemático para estudo de otimização do consumo de energia elétrica /." Ilha Solteira : [s.n.], 2007. http://hdl.handle.net/11449/87261.
Full textAbstract: In this work, optimize of the functioning of a plant that dehydrates fodder plants located in Spain. This possess sequenced processes, drying, production of hay packs and production of grains, which to be carried through consumes distinct amounts of energy. Then, the periods of production for each process are established, together with the amount in tons to be produced, knowing that in Spain the electric energy possess twenty and four prices, one for each hour of the day. It is considered a model for the objective function, by using given historical data of production (Ton), consumption (kWh) and time (h), that the functioning of the company will portray. This model is gotten by means of multiple linear regression and is implemented using software Lingo. The results of this implementation will supply the daily total hours that each process will have to be carried through, with the amount of tons of packages of hay and grains , and the daily cost of the electric energy to carry through the production.
Orientador: Francisco Villarreal Alvarado
Coorientador: Antonio Padilha Feltrin
Banca: Evaristo Bianchini Sobrinho
Banca: José Carlos de Melo Vieira Júnior
Mestre
Karsburg, Roberta Machado, and Roberta Machado Karsburg. "Precipitação e velocidade do vento na oscilação dos níveis d’água do canal São Gonçalo-RS." Universidade Federal de Pelotas, 2016. http://repositorio.ufpel.edu.br:8080/handle/prefix/3693.
Full textMade available in DSpace on 2017-08-16T14:52:32Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Roberta_Machado_Karsburg_Precipitação_e_velocidade_do_vento_na_oscilação_dos_níveis_dagua.pdf: 1951339 bytes, checksum: 21d939a36d26dac261dcd69cef73e42c (MD5) Previous issue date: 2016-10-26
Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul - FAPERGS
O canal São Gonçalo se configura como um importante curso d’água, pertencente a bacia hidrográfica Mirim-São Gonçalo, que tem área de 25.000 km² e situa-se na região costeira no estado do Rio Grande do Sul. Aliado a isso, ele une a laguna dos Patos, a qual mantém conexão direta com o oceano Atlântico, à lagoa Mirim, considerada como um grande reservatório de água doce no sul do Brasil. Está situado em uma região de planície, de baixas declividades e apresenta grande complexidade e sensibilidade às oscilações dos níveis d’água, tanto em função do regime e direção de ventos como do regime de chuvas. Com isso, este trabalho teve como objetivo avaliar a influência do vento e da precipitação na oscilação do nível d`água à jusante da barragem eclusa do canal São Gonçalo-RS. A hipótese foi que a velocidade e direção do vento, juntamente com a precipitação, influenciam à oscilação dos níveis do canal São Gonçalo. Para alcançar os objetivos, foram empregados métodos de regressão linear múltipla e simples entre o nível d’água, precipitação e velocidades do vento à 2 e 7 m de altura e velocidade máxima. Para determinar a significância dos modelos de regressões lineares, foi utilizado o teste t de Student, para a verificação quais variáveis que são influenciadoras da oscilação do nível. Por fim, para indicar o grau de precisão dos modelos de regressões lineares avaliados, aplicou-se a metodologia do erro relativo médio quadrático. As direções de ventos que mostraram-se mais influenciadoras no processo de oscilação dos níveis d’água à jusante do canal São Gonçalo, foram as de sudeste (SE), sul (S) e oeste (O). A variável com maior influência no processo de oscilação dos níveis d’água à jusante da barragem eclusa do canal São Gonçalo, foi a velocidade máxima do vento (VMáx).
São Gonçalo is an important watercourse, belonging to the Mirim-São Gonçalo hydrographic basin, which has an area of 25,000 km² and is located in the coastal region of the state of Rio Grande do Sul. The Patos lagoon, which maintains a direct connection with the Atlantic Ocean, to Mirim lagoon, considered as a large reservoir of fresh water in southern Brazil. It’s situated in a lowland lowland region and presents great complexity and sensitivity to the fluctuations of water levels, both due to the regime and direction of the winds and the rainfall regime. The objective of this work was to evaluate the influence of wind and precipitation on the oscillation of the water level downstream of the São Gonçalo channel dam. The hypothesis was that the velocity and direction of the wind, along with the precipitation, influence the oscillation of the levels of the São Gonçalo channel. To achieve the objectives, multiple linear simple regression methods were used between water level, precipitation and wind velocities at 2 and 7 m in height and at maximum velocity. To determine the significance of the linear regression models, the Student's t test was used to verify which variables are influencing the level oscillation. Finally, to indicate the degree of precision of the linear regression models evaluated, the methodology of the relative mean square error was applied. The directions of the winds that were most influential in the process of oscillation of the water levels downstream of the São Gonçalo channel were those of the southeast (SE), south (S) and west (O). The variable with the greatest influence on the oscillation process of the water levels downstream of the São Gonçalo channel dam was the maximum wind speed.
Brodbeck, William Joseph. "The Effect of Readability on Simple Linear Regression." Bowling Green State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1591867761661656.
Full textGuan, Tianyuan. "Sample Size Calculations in Simple Linear Regression: A New Approach." University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1627667392849137.
Full textForslund, Gustaf, and David Åkesson. "Predicting share price by using Multiple Linear Regression." Thesis, KTH, Farkost och flyg, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-140645.
Full textSaleem, Aban, and Jacob Blomgren. "Modelling Pupils’ Grades with Multiple Linear Regression Model." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275672.
Full textDetta examensarbete, inom ämnet för matematisk statistik och industriell ekonomi, genomfördes med syftet att analysera avgångsbetygen för år 9 i den svenska skolan. Syftet var att förstå vilka variabler som hade en statistisk signifikant påverkan på elevers avgångsbetyg, så kommuner kan förstå vilka variabler som är viktiga för att förbättra de genomsnittliga skolresultaten. En regressionsanalys utfördes, på data från Skolverket, för att se vilka variabler som var statistiskt signifikanta. Den slutgiltiga regressionsmodellen, erhållen genom iterativ reducering av variabler, visade att främst strukturella kovariat, som akademisk bakgrund hos elever, andel kvinnliga studenter och andel studenter med svensk bakgrund hade en signifikant betydelse på studenters akademiska resultat. Justerad R2 var 0.5289 för den slutgiltiga modellen. I diskussionen utvärderades modellen utifrån tidigare forskning. Vidare användes teorin om balanserat styrkort, utvecklat av Robert S. Kaplan och David P. Norton, för att diskutera relevanta nyckeltal för att uppnå strategiska mål för skolan.
Books on the topic "Simple and multiple linear regression"
Shelton, Katherine Lesley. An illustration of heteroscedasticity in the multiple linear regression model. [s.l: The author], 1985.
Find full textKarim, Samsul Ariffin Abdul, and Nur Fatonah Kamsani. Water Quality Index Prediction Using Multiple Linear Fuzzy Regression Model. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3485-0.
Full textZorn, Troy G. Utility of species-specific, multiple linear regression models for prediction of fish assemblages in rivers of Michigan's lower peninsula. Lansing, MI: Michigan Dept. of Natural Resources, Fisheries Division, 2004.
Find full textGelman, Andrew, and Deborah Nolan. Multiple regression and nonlinear models. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198785699.003.0010.
Full textMiksza, Peter, and Kenneth Elpus. Regression. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199391905.003.0010.
Full textRoback, Paul, and Julie Legler. Beyond Multiple Linear Regression. Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9780429066665.
Full textQuantitative methods in business: Unit 8 : Simple linear regression. Milton Keynes: Open University, 2003.
Find full textJ, Niccolucci Michael, Schuster Ervin G, and Intermountain Research Station (Ogden, Utah), eds. Identifying proxy sets in multiple linear regression: An aid to better coefficient interpretation. Ogden, UT (324 25th St., Ogden 84401): U.S. Dept. of Agriculture, Forest Service, Intermountain Research Station, 1993.
Find full textHigham, Ronald P. A multiple linear regression model for predicting zone A retention by military occupational specialty. 1986.
Find full textKarim, Samsul Ariffin Abdul, and Nur Fatonah Kamsani. Water Quality Index Prediction Using Multiple Linear Fuzzy Regression Model: Case Study in Perak River, Malaysia. Springer, 2020.
Find full textBook chapters on the topic "Simple and multiple linear regression"
de Micheaux, Pierre Lafaye, Rémy Drouilhet, and Benoit Liquet. "Simple and Multiple Linear Regression." In Statistics and Computing, 455–501. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9020-3_14.
Full textBaltagi, Badi H. "Simple Linear Regression." In Springer Texts in Business and Economics, 29–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54548-1_3.
Full textHolmes, William H., and William C. Rinaman. "Simple Linear Regression." In Statistical Literacy for Clinical Practitioners, 341–66. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12550-3_13.
Full textSheather, Simon J. "Simple Linear Regression." In Springer Texts in Statistics, 15–43. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-09608-7_2.
Full textPark, Sung H. "Simple Linear Regression." In International Encyclopedia of Statistical Science, 1327–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-04898-2_517.
Full textBaltagi, Badi H. "Simple Linear Regression." In Econometrics, 51–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04693-7_3.
Full textGooch, Jan W. "Simple Linear Regression." In Encyclopedic Dictionary of Polymers, 996. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_15375.
Full textBaltagi, Badi H. "Simple Linear Regression." In Econometrics, 41–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-00516-3_3.
Full textHodeghatta, Umesh R., and Umesh Nayak. "Simple Linear Regression." In Business Analytics Using R - A Practical Approach, 187–205. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2514-1_8.
Full textHeiberger, Richard M., and Erich Neuwirth. "Simple Linear Regression." In R Through Excel, 193–212. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0052-4_8.
Full textConference papers on the topic "Simple and multiple linear regression"
Ouarda, T. B. M. J., and O. Seidou. "Simple and Multiple Change Point Detection in Multiple Linear Regression and Application to Hydroclimatic Variables." In World Environmental and Water Resources Congress 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40976(316)409.
Full textHidayat, Wahyu, Mursyid Ardiansyah, and Kusrini Kusrini. "Decision Support System for Selection of Staples Food and Food Commodity Price Prediction Post-COVID-19 Using Simple Additive Weighting and Multiple Linear Regression Methods." In 2020 3rd International Conference on Information and Communications Technology (ICOIACT). IEEE, 2020. http://dx.doi.org/10.1109/icoiact50329.2020.9332095.
Full textHage, Ilige S., Charbel Y. Seif, Ré-Mi Hage, and Ramsey F. Hamade. "A Verified Non-Linear Regression Model for Elastic Stiffness Estimates of Finite Composite Domains Considering Combined Effects of Volume Fractions, Shapes, Orientations, Locations, and Number of Multiple Inclusions." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86231.
Full textLi, Y. G., M. F. Abdul Ghafir, L. Wang, R. Singh, K. Huang, X. Feng, and W. Zhang. "Improved Multiple Point Non-Linear Genetic Algorithm Based Performance Adaptation Using Least Square Method." In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45289.
Full textDowner, Lee M., and D. Geoff Rideout. "A Design of Experiments Approach to Identifying Damage in Structures Using Modal Frequency." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63965.
Full textKim, Taehyun, Gu¨l E. Okudan, and Gu¨rdal Ertek. "Innovation in Product Form and Function: Customer Perception of Their Value." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87701.
Full textLi, Bingcheng. "Simple linear regression model based data clustering." In Automatic Target Recognition XXIX, edited by Timothy L. Overman and Riad I. Hammoud. SPIE, 2019. http://dx.doi.org/10.1117/12.2518037.
Full textWu, Chien-Ho, Jung-Bin Li, and Tsair-Yuan Chang. "SLinRA2S: A Simple Linear Regression Analysis Assisting System." In 2013 IEEE 10th International Conference on e-Business Engineering (ICEBE). IEEE, 2013. http://dx.doi.org/10.1109/icebe.2013.33.
Full textSusanti, Nadya, Eti Poncorini Pamungkasari, and Rita Benya Adriani. "Association between Receptive Language Skill and Social Communication Skill among Preschool Children: Evidence from Surakarta, Central Java." In The 7th International Conference on Public Health 2020. Masters Program in Public Health, Universitas Sebelas Maret, 2020. http://dx.doi.org/10.26911/the7thicph.03.101.
Full textCastillo-Garit, Juan, Yudith Cañizares-Carmenate, Karel Mena-Ulecia, Yunier Perera-Sardiña, and Francisco Torrens. "Multiple Linear Regression Model of Thermolysin Inhibitors." In MOL2NET 2016, International Conference on Multidisciplinary Sciences, 2nd edition. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/mol2net-02-03872.
Full textReports on the topic "Simple and multiple linear regression"
Kubik, Harold. MLRP, Multiple Linear Regression Program. Fort Belvoir, VA: Defense Technical Information Center, July 1986. http://dx.doi.org/10.21236/ada204565.
Full textDouglas, Thomas, Merritt Turetsky, and Charles Koven. Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/41050.
Full text