Dissertations / Theses on the topic 'Simple and multiple linear regression'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Simple and multiple linear regression.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Tong, Fan. "Capacity demand and climate in Ekerö : Development of tool to predict capacity demand underuncertainty of climate effects." Thesis, KTH, Elektroteknisk teori och konstruktion, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-152522.
Full textPeraça, Maria da Graça Teixeira. "Modelos para estimativa do grau de saturação do concreto mediante variáveis ambientais que influenciam na sua variação." reponame:Repositório Institucional da FURG, 2009. http://repositorio.furg.br/handle/1/3436.
Full textSubmitted by Lilian M. Silva (lilianmadeirasilva@hotmail.com) on 2013-04-22T19:51:54Z No. of bitstreams: 1 Modelos para estimativa do Grau de Saturação do concreto mediante Variáveis Ambientais que influenciam na sua variação.pdf: 2786682 bytes, checksum: df174dab02a19756db94fc47c6bb021d (MD5)
Approved for entry into archive by Bruna Vieira(bruninha_vieira@ibest.com.br) on 2013-06-03T19:20:55Z (GMT) No. of bitstreams: 1 Modelos para estimativa do Grau de Saturação do concreto mediante Variáveis Ambientais que influenciam na sua variação.pdf: 2786682 bytes, checksum: df174dab02a19756db94fc47c6bb021d (MD5)
Made available in DSpace on 2013-06-03T19:20:55Z (GMT). No. of bitstreams: 1 Modelos para estimativa do Grau de Saturação do concreto mediante Variáveis Ambientais que influenciam na sua variação.pdf: 2786682 bytes, checksum: df174dab02a19756db94fc47c6bb021d (MD5) Previous issue date: 2009
Nas engenharias, é fundamental estimar o tempo de vida útil das estruturas construídas, o que neste trabalho significa o tempo que os íons cloretos levam para atingirem a armadura do concreto. Um dos coeficientes que influenciam na vida útil do concreto é o de difusão, sendo este diretamente influenciado pelo grau de saturação (GS) do concreto. Recentes estudos levaram ao desenvolvimento de um método de medição do GS. Embora esse método seja eficiente, ainda assim há um grande desperdício de tempo e dinheiro em utilizá-lo. O objetivo deste trabalho é reduzir estes custos calculando uma boa aproximação para o valor do GS com modelos matemáticos que estimem o seu valor através de variáveis ambientais que influenciam na sua variação. As variáveis analisadas nesta pesquisa, são: pressão atmosférica,temperatura do ar seco, temperatura máxima, temperatura mínima, taxa de evaporação interna (Pichê), taxa de precipitação, umidade relativa, insolação, visibilidade, nebulosidade e taxa de evaporação externa. Todas foram analisadas e comparadas estatisticamente com medidas do GS obtidas durante quatro anos de medições semanais, para diferentes famílias de concreto. Com essas análises, pode-se medir a relação entre estes dados verificando que os fatores mais influentes no GS são, temperatura máxima e umidade relativa. Após a verificação desse resultado, foram elaborados modelos estatísticos, para que, através dos dados ambientais, cedidos pelo banco de dados meteorológicos, se possam calcular, sem desperdício de tempo e dinheiro, as médias aproximadas do GS para cada estação sazonal da região sul do Brasil, garantindo assim uma melhor estimativa do tempo de vida útil em estruturas de concreto.
In engineering, it is fundamental to estimate the life-cycle of built structures, which in this study means the period of time required for chlorides to reach the concrete reinforcement. One of the coefficients that affect the life-cycle of concrete is the diffusion, which is directly influenced by the saturation degree (SD) of concrete. Recent studies have led to the development of a measurement method for the SD. Although this method is efficient, there is still waste of time and money when it is used. The objective of this study is to reduce costs by calculating a good approximation for the SD value with mathematical models that predict its value through environmental variables that affect its variation. The variables analysed in the study are: atmospheric pressure, temperature of the dry air, maximum temperature, minimum temperature, internal evaporation rate (Pichê), precipitation rate, relative humidity, insolation, visibility, cloudiness and external evaporation rate. All of them were statistically analysed and compared with measurements of SD obtained during four years of weekly assessments for different families of concrete. By considering these analyses, the relationship among these data can be measured and it can be verified that the most influent variables affecting the SD are the maximum temperature and the relative humidity. After verifying this result, statistical models were developed aiming to calculate, based on the environmental data provided by the meteorological database and without waste of time and money, the approximate averages of SD for each seasonal station of the south region of Brazil, thus providing a better estimative of life-cycle for concrete structures.
Silva, Mariellen Vital da [UNESP]. "Um modelo matemático para estudo de otimização do consumo de energia elétrica." Universidade Estadual Paulista (UNESP), 2007. http://hdl.handle.net/11449/87261.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Neste trabalho, otimiza-se o funcionamento de uma fábrica desidratadora de forragens localizada na Espanha. Esta possui processos seqüenciados, secagem, produção de fardos de feno e produção de grãos, que para serem realizados consomem quantidades distintas de energia. Estabelecem-se então, os períodos de produção para cada processo, juntamente com a quantidade em toneladas a serem produzidas, sabendo que na Espanha a energia elétrica possui vinte e quatro preços, um para cada hora do dia. É proposto um modelo para a função objetivo, utilizando dados históricos de produção (Ton), consumo (kWh) e tempo (h), que retratará o funcionamento da empresa. Este modelo é obtido por meio de regressão linear múltipla e é implementado utilizando o software Lingo. Os resultados dessa implementação fornecerão as horas totais diárias que cada processo deverá ser realizado, juntamente com a quantidade de toneladas de pacotes de feno e grãos, e o custo diário da energia elétrica para realizar a produção.
In this work, optimize of the functioning of a plant that dehydrates fodder plants located in Spain. This possess sequenced processes, drying, production of hay packs and production of grains, which to be carried through consumes distinct amounts of energy. Then, the periods of production for each process are established, together with the amount in tons to be produced, knowing that in Spain the electric energy possess twenty and four prices, one for each hour of the day. It is considered a model for the objective function, by using given historical data of production (Ton), consumption (kWh) and time (h), that the functioning of the company will portray. This model is gotten by means of multiple linear regression and is implemented using software Lingo. The results of this implementation will supply the daily total hours that each process will have to be carried through, with the amount of tons of packages of hay and grains , and the daily cost of the electric energy to carry through the production.
Huschens, Stefan. "Einführung in die Ökonometrie." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-222629.
Full textSilva, Mariellen Vital da. "Um modelo matemático para estudo de otimização do consumo de energia elétrica /." Ilha Solteira : [s.n.], 2007. http://hdl.handle.net/11449/87261.
Full textAbstract: In this work, optimize of the functioning of a plant that dehydrates fodder plants located in Spain. This possess sequenced processes, drying, production of hay packs and production of grains, which to be carried through consumes distinct amounts of energy. Then, the periods of production for each process are established, together with the amount in tons to be produced, knowing that in Spain the electric energy possess twenty and four prices, one for each hour of the day. It is considered a model for the objective function, by using given historical data of production (Ton), consumption (kWh) and time (h), that the functioning of the company will portray. This model is gotten by means of multiple linear regression and is implemented using software Lingo. The results of this implementation will supply the daily total hours that each process will have to be carried through, with the amount of tons of packages of hay and grains , and the daily cost of the electric energy to carry through the production.
Orientador: Francisco Villarreal Alvarado
Coorientador: Antonio Padilha Feltrin
Banca: Evaristo Bianchini Sobrinho
Banca: José Carlos de Melo Vieira Júnior
Mestre
Karsburg, Roberta Machado, and Roberta Machado Karsburg. "Precipitação e velocidade do vento na oscilação dos níveis d’água do canal São Gonçalo-RS." Universidade Federal de Pelotas, 2016. http://repositorio.ufpel.edu.br:8080/handle/prefix/3693.
Full textMade available in DSpace on 2017-08-16T14:52:32Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Roberta_Machado_Karsburg_Precipitação_e_velocidade_do_vento_na_oscilação_dos_níveis_dagua.pdf: 1951339 bytes, checksum: 21d939a36d26dac261dcd69cef73e42c (MD5) Previous issue date: 2016-10-26
Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul - FAPERGS
O canal São Gonçalo se configura como um importante curso d’água, pertencente a bacia hidrográfica Mirim-São Gonçalo, que tem área de 25.000 km² e situa-se na região costeira no estado do Rio Grande do Sul. Aliado a isso, ele une a laguna dos Patos, a qual mantém conexão direta com o oceano Atlântico, à lagoa Mirim, considerada como um grande reservatório de água doce no sul do Brasil. Está situado em uma região de planície, de baixas declividades e apresenta grande complexidade e sensibilidade às oscilações dos níveis d’água, tanto em função do regime e direção de ventos como do regime de chuvas. Com isso, este trabalho teve como objetivo avaliar a influência do vento e da precipitação na oscilação do nível d`água à jusante da barragem eclusa do canal São Gonçalo-RS. A hipótese foi que a velocidade e direção do vento, juntamente com a precipitação, influenciam à oscilação dos níveis do canal São Gonçalo. Para alcançar os objetivos, foram empregados métodos de regressão linear múltipla e simples entre o nível d’água, precipitação e velocidades do vento à 2 e 7 m de altura e velocidade máxima. Para determinar a significância dos modelos de regressões lineares, foi utilizado o teste t de Student, para a verificação quais variáveis que são influenciadoras da oscilação do nível. Por fim, para indicar o grau de precisão dos modelos de regressões lineares avaliados, aplicou-se a metodologia do erro relativo médio quadrático. As direções de ventos que mostraram-se mais influenciadoras no processo de oscilação dos níveis d’água à jusante do canal São Gonçalo, foram as de sudeste (SE), sul (S) e oeste (O). A variável com maior influência no processo de oscilação dos níveis d’água à jusante da barragem eclusa do canal São Gonçalo, foi a velocidade máxima do vento (VMáx).
São Gonçalo is an important watercourse, belonging to the Mirim-São Gonçalo hydrographic basin, which has an area of 25,000 km² and is located in the coastal region of the state of Rio Grande do Sul. The Patos lagoon, which maintains a direct connection with the Atlantic Ocean, to Mirim lagoon, considered as a large reservoir of fresh water in southern Brazil. It’s situated in a lowland lowland region and presents great complexity and sensitivity to the fluctuations of water levels, both due to the regime and direction of the winds and the rainfall regime. The objective of this work was to evaluate the influence of wind and precipitation on the oscillation of the water level downstream of the São Gonçalo channel dam. The hypothesis was that the velocity and direction of the wind, along with the precipitation, influence the oscillation of the levels of the São Gonçalo channel. To achieve the objectives, multiple linear simple regression methods were used between water level, precipitation and wind velocities at 2 and 7 m in height and at maximum velocity. To determine the significance of the linear regression models, the Student's t test was used to verify which variables are influencing the level oscillation. Finally, to indicate the degree of precision of the linear regression models evaluated, the methodology of the relative mean square error was applied. The directions of the winds that were most influential in the process of oscillation of the water levels downstream of the São Gonçalo channel were those of the southeast (SE), south (S) and west (O). The variable with the greatest influence on the oscillation process of the water levels downstream of the São Gonçalo channel dam was the maximum wind speed.
Brodbeck, William Joseph. "The Effect of Readability on Simple Linear Regression." Bowling Green State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1591867761661656.
Full textGuan, Tianyuan. "Sample Size Calculations in Simple Linear Regression: A New Approach." University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1627667392849137.
Full textForslund, Gustaf, and David Åkesson. "Predicting share price by using Multiple Linear Regression." Thesis, KTH, Farkost och flyg, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-140645.
Full textSaleem, Aban, and Jacob Blomgren. "Modelling Pupils’ Grades with Multiple Linear Regression Model." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275672.
Full textDetta examensarbete, inom ämnet för matematisk statistik och industriell ekonomi, genomfördes med syftet att analysera avgångsbetygen för år 9 i den svenska skolan. Syftet var att förstå vilka variabler som hade en statistisk signifikant påverkan på elevers avgångsbetyg, så kommuner kan förstå vilka variabler som är viktiga för att förbättra de genomsnittliga skolresultaten. En regressionsanalys utfördes, på data från Skolverket, för att se vilka variabler som var statistiskt signifikanta. Den slutgiltiga regressionsmodellen, erhållen genom iterativ reducering av variabler, visade att främst strukturella kovariat, som akademisk bakgrund hos elever, andel kvinnliga studenter och andel studenter med svensk bakgrund hade en signifikant betydelse på studenters akademiska resultat. Justerad R2 var 0.5289 för den slutgiltiga modellen. I diskussionen utvärderades modellen utifrån tidigare forskning. Vidare användes teorin om balanserat styrkort, utvecklat av Robert S. Kaplan och David P. Norton, för att diskutera relevanta nyckeltal för att uppnå strategiska mål för skolan.
Ollikainen, Kati. "PARAMETER ESTIMATION IN LINEAR REGRESSION." Doctoral diss., University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4138.
Full textPh.D.
Department of Industrial Engineering and Management Systems
Engineering and Computer Science
Industrial Engineering and Management Systems
Gustafsson, Alexander, and Sebastian Wogenius. "Modelling Apartment Prices with the Multiple Linear Regression Model." Thesis, KTH, Matematisk statistik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-146735.
Full textDenna uppsats undersöker faktorer som är av störst statistisk signifikans för priset vid försäljning av lägenheter i Stockholms innerstad. Faktorer som undersöks är adress, yta, balkong, byggår, hiss, kakelugn, våningsnummer, etage, månadsavgift, vindsvåning och antal rum. Utifrån denna undersökning konstrueras en modell för att predicera priset på lägenheter. För att avgöra vilka faktorer som påverkar priset på lägenheter analyseras försäljningsstatistik. Den matematiska metoden som används är multipel linjär regressionsanalys. I en mindre litteratur- och fallstudie, inkluderad i denna uppsats, undersöks sambandet mellan närhet till kollektivtrafik och priset på läagenheter i Stockholm. Resultatet av denna uppsats visar att det är möjligt att konstruera en modell, utifrån de faktorer som undersöks, som kan predicera priset på läagenheter i Stockholms innerstad med en förklaringsgrad på 91 % och ett två miljoner SEK konfidensintervall på 95 %. Vidare dras en slutsats att modellen preciderar lägenheter med ett lägre pris noggrannare. I litteratur- och fallstudien indikerar resultatet stöd för hypotesen att närhet till kollektivtrafik är positivt för priset på en lägenhet. Detta skall dock betraktas med försiktighet med anledning av syftet med modelleringen vilket skiljer sig mellan en individuell tillämpning och en samhällsekonomisk tillämpning.
Ulgen, Burcin Emre. "Estimation In The Simple Linear Regression Model With One-fold Nested Error." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606171/index.pdf.
Full textKinns, David Jonathan. "Multiple case influence analysis with particular reference to the linear model." Thesis, University of Birmingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368427.
Full textGalijasevic, Amar, and Josef Tegbaru. "Can IPO first day returns be predicted? A multiple linear regression analysis." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254293.
Full textUnder de senaste tre åren har den svenska aktiemarknaden visat en kraftigt uppåtgående rörelse från de låga nivåerna 2016. Samtidigt har det varit hög IPO-aktivitet, där många noteringar har haft en positiv avkastning under den första handelsdagen. Målet med denna studie är att analysera om det finns särskilda IPO-specifika faktorer som påvisar samband med avkastningen från första handelsdagen och om det kan användas för att förutsäga utvecklingen under första handelsdagen för framtida noteringar. Om regressorerna visade korrelation är målet sedan att ta fram de bästa av dessa för att se om det ökar modellens säkerhet. Vidare var det av intresse att visa vilka regressorer som korrelerar med en positiv avkastning. Metoden som användes var en multipel linjär regression med historisk data från perioden 2017-2018. Studiens resultat visar att ingen av de valda regressorerna har någon signifikant korrelation med avkastningen under första handelsdagen. Börsintroduktioner är komplicerade processer som kan vara svåra att förenkla och kvantifiera i en regressionsmodell, men ytterligare studier behövs för att dra en slutsats om det finns andra kvalitativa faktorer som kan förklara utvecklingen under första handelsdagen.
Basha, Elizabeth (Elizabeth Ann). "In-situ prediction on sensor networks using distributed multiple linear regression models." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/60096.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 199-208).
Within sensor networks for environmental monitoring, a class of problems exists that requires in-situ control and modeling. In this thesis, we provide a solution to these problems, enabling model-driven computation where complex models are replaced by in-situ sensing and communication. These prediction models utilize low-computation, low-communication, and distributed algorithms suited to autonomous operation and multiple applications. We achieve this through development of new algorithms that enable distributed computation of the pseudo inverse of a matrix on a sensor network, thereby enabling a wide range of prediction methods. We apply these models to three different application areas: (1) river flooding for early warning, (2) solar recharging current for power management, and (3) job congestion prediction on multi-function device networks for achieving quality of service. Additionally, we use these applications to explore other aspects of sensor networks: river flooding to design a predictive environmental monitoring sensor network, solar current to develop a dynamic version of the model for better fault tolerance, and job congestion to explore modeling multi-function device networks. For each, we comprehensively tested the full solutions. We implemented the river flood prediction and solar current prediction solutions on two different sensor network platforms with full field deployments; we had a final test of over 5 weeks operation for both. Overall, we achieve the following contributions: (1) distributed algorithms for computing a matrix pseudoinverse and multiple linear regression model on a sensor network, (2) three applications of these algorithms with associated field experiments demonstrating their versatility, (3) a sensor network architecture and implementation for river flood prediction as well as other applications requiring real-time data and a low node count to geographic area ratio, and (4) a MFD simulator predicting and resolving congestion.
by Elizabeth Ann Basha.
Ph.D.
Murff, Elizabeth J. Tipton. "On the efficiency of ranked set sampling relative to simple random sampling for estimating the ordinary least squares parameters of the simple linear regression model /." Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3008403.
Full textTao, Jinxin. "Comparison Between Confidence Intervals of Multiple Linear Regression Model with or without Constraints." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-theses/404.
Full textLin, Xiaojun. "Multiple Random Slope and Fixed Intercept Linear Regression Models for Pavement Condition Forecasting." University of Toledo / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1430364217.
Full textDenés, August, and Martin Lindblom. "Determining Important Factors for Profiability in Dietary Supplement Retailing by Multiple Linear Regression." Thesis, KTH, Matematisk statistik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188995.
Full textDet här kandidatexamensarbetet i tillämpad statistik och industriell ekonomi undersökte vilka faktorer och strategier som hade en statistiskt signifikant påverkan på lönsamhet, inom kosttillskottsåterförsäljning på den svenska konsumentmarknaden. Data som rapporten är baserad på kom ifrån flertalet årsredovisningar mellan åren 2011 och 2015 samt annan strategisk information. Studien inkluderade 19 olika företag på den svenska kosttillskottsåterförsäljningsmarknaden. För att identifiera de påverkande faktorerna tillämpades linjär regression. Resultat visade att det finns ett linjärt samband mellan Rörelsemarginal och kovariaten Soliditet, Snittlön, Endast Eget Märke, Fria Returer, Studentrabatt och Chatt. Sedan utfördes en marknadsanalys med hjälp av Porters's femkraftsmodell samt PEST-analys. Anslysen fastslog att marknaden är attraktiv, men det finns några osäkerheter rörande den framtida utvecklingen på kosttillskottsåterförsäljningsmarknaden.
Rudin, Pierre. "Football result prediction using simple classification algorithms, a comparison between k-Nearest Neighbor and Linear Regression." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-187659.
Full textÄnda sedan vi människor började tävla mot varandra, har folk försökt förutspå vinnaren i tävlingarna. Fotboll är inget undantag till detta och är extra intressant för den här studien då den tillgängliga mängden data från fotbollsmatcher ständigt ökar. Tidigare har egna kunskaper och små mängder data använts för att förutspå resultaten. Den här rapporten kommer dra nytta av den växande mängden data för att ta reda på om det är möjligt att med hjälp av k-Nearest Neighbor algoritmen och Linjär regression förutspå resultat i fotbollsmatcher. Algoritmerna kommer jämföras utifrån hur exakt de förutspår vinnaren i matcher, hur många mål de båda lagen gör samt hur precist algoritmerna förutspår målskilnaden i matcherna. Resultaten presenteras både i grafer och i tabeller. En diskusion förs för att analysera resultaten och kommer fram till att båda algoritmerna kan vara användbara om modelen är välkonstruerad, och att Linjär regression är bättre lämpad än k-NN.
Alt, Raimund. "Multiple hypotheses testing in the linear regression model with applications to economics and finance /." Göttingen : Cuvillier, 2005. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=013081924&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textKareflod, Michaela, and Jennifer Ljungquist. "A Study of Hot el Occupancy : Using Multiple Linear Regression and Market Strategy Analysis." Thesis, KTH, Matematisk statistik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189017.
Full textDen här uppsatsen baseras på ett samarbete mellan företaget StayAt HotelApart AB och två KTH- studenter. Den utvärderar vilka faktorer som påverkar hotellets beläggning och hur denna kan öka genom en förbättrad marknadsstrategi. Syftet är att leverera en grund för strategiutveckling till företaget. Studien är genomförd genom att sammankoppla tillämpad matematik med industriell ekonomi. Den matematiska delen baseras på en regressionsanalys av hotellets beläggning med historisk data från 2011 till 2016 som främst är försedd av StayAt. Analysen av marknadsstrategin är genomförd med hjälp av de matematiska resultaten samt genom att applicera två modeller inom marknadsföring, SWOT analys och 4P. Resultaten visar att relativt pris, väder, hög- och lågsäsong för hotellet, månader på marknaden, beläggning för konkurrenter, läge och marknadsandelar är signifikanta faktorer som påverkar hotellets beläggning. De primära rekommendationerna som tagits fram utifrån analysen av marknadsstrategin är att lägga resurser på digitalisering, publikationer och CSR initiativ, att visualisera varumärket, utnyttja existerande resurser samt att grundligt överlägga timing av marknadsföring
Yeasmin, Mahbuba 1965. "Multiple maxima of likelihood functions and their implications for inference in the general linear regression model." Monash University, Dept. of Econometrics and Business Statistics, 2003. http://arrow.monash.edu.au/hdl/1959.1/5821.
Full textPalmgren, Elin, and Natasha Nanakorn. "The Impact of Macroeconomic Variables on Stock Return in Different Industries - A Multiple Linear Regression." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254204.
Full textMakroekonomi utgör en central del av fundamental analys av aktiemarknaden och följaktligen är förhållandet mellan makroekonomiska variabler och aktiemarknaden snarare väl etablerat än ifrågasatt. Emellertid saknas rådande konsensus om såväl omfattningen av detta förhållande som huruvida förhållandet skiljer sig mellan olika branscher. Syftet med detta kandidatexamensarbete är därför att fastställa de makroekonomiska variabler som är mest avgörande för variationen i aktieavkastning inom två skilda branscher samt andelen av dessa variationer som kan hänföras till just makroekonomiska variabler. I detta syfte tillämpas en multipel linjär regression och två Nasdaqindex - OMX Stockholm Industrial Goods & Services samt OMX Stockholm Banks - tillåts approximera de två utvalda branscherna. Det slutgiltiga resultatet av denna analys är att variablerna reporänta, växelkurs SEK/EUR, konsumentförväntningar, oljepris, BNP, penningmängd och inflation är statistiskt signifikanta för aktieavkastning inom industrin, medan växelkurs SEK/EUR samt SEK/USD, oljepris, BNP, penningmängd och inflation är statistiskt signifikanta för aktieavkastning inom bankbranschen. Analysen av omfattningen av dessa makroekonomiska variablers påverkan på aktieavkastning når emellertid ingen slutsats, vilket anses kunna hänföras till tidsberoende hos variablerna.
Fridgeirsdottir, Gudrun A. "The development of a multiple linear regression model for aiding formulation development of solid dispersions." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/52176/.
Full textBuzatoiu, Roxana. "Long Term Forecasting of Industrial Electricity Consumption Data With GRU, LSTM and Multiple Linear Regression." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289632.
Full textNoggranna långsiktiga energiprognosprognoser för industriella enheter är av intresse för distributionsföretag eftersom det potentiellt kan bidra till att minska deras churn och erbjuda stöd i beslutsfattandet vid säkring. Detta avhandlingsarbete presenterar olika metoder för att prognostisera energiförbrukningen för industriella enheter under en lång tids förutsägelsehorisont på 1 år. I synnerhet inkluderar det experiment med två varianter av de återkommande neurala nätverken, nämligen GRU och LSTM. Deras prestanda jämförs med traditionella metoder, nämligen MLR och SARIMA. Vidare fokuserar undersökningen på att skräddarsy modellen för återkommande neurala nätverk för att förbättra prestanda. Experimenten fokuserar på effekterna av olika modellarkitekturer. För det andra fokuserar den på att testa effekten av tidsrelaterat funktionsval som en extra ingång till RNN -nätverk. Specifikt undersökte den hur traditionella metoder som Exploratory Data Analysis, Autocorrelation och Partial Autocorrelation Funtions Plots kan bidra till prestanda för RNN -modellen. Det aktuella arbetet visar genom en empirisk studie av tre industriella datamängder att GRU -arkitektur är en kraftfull metod för den långsiktiga prognosuppgiften som överträffar ac LSTM på vissa scenarier. Jämfört med MLR -modellen uppnådde RNN en minskning av RMSE mellan 5 % upp till 10 %. De viktigaste resultaten inkluderar: (i) GRU -arkitekturen överträffar LSTM på datauppsättningar för industriell energiförbrukning jämfört med ett lägre antal dolda enheter. GRU överträffar också LSTM på vissa datauppsättningar, oavsett antalet valenheter; (ii) RNN -varianter ger bättre noggrannhet än statistiska modeller eller regressionsmodeller; (iii) att använda ACF och PACF som verktyg för upptäckt i funktionsvalsprocessen är otydligt och ineffektivt när man siktar på en allmän modell; (iv) att använda deterministiska funktioner (t.ex. årets dag, månadsdagen) har begränsade effekter på att förbättra djupinlärningsmodellens prestanda.
Habgood, Helen Leslie. "Estimation of browse biomass production of Salix SPP. and Betula blandulosa using multiple linear regression." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/24676.
Full textForestry, Faculty of
Graduate
Rowe, Daniel Taylor. "Using Graphics, Animations, and Data-Driven Animations to Teach the Principles of Simple Linear Regression to Graduate Students." BYU ScholarsArchive, 2004. https://scholarsarchive.byu.edu/etd/6.
Full textGoicoechea, Saioa, and Patricia López. "Modeling the air change rate in a naturally ventilated historical church : MultipleLinear Regression analysis." Thesis, Högskolan i Gävle, Akademin för teknik och miljö, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-13640.
Full textChurch project
Patikorn, Thanaporn. "Improvements on Trained Across Multiple Experiments (TAME), a New Method for Treatment Effect Detection." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-theses/792.
Full textHögbom, Johannes, and August Regnell. "Analysis of Performance Measures affecting the economic success on the PGA Tour using multiple linear regression." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275678.
Full textDetta kandidatexamensarbete undersökte relationen mellan prestationsmått och prispengar på PGA Touren. Genom regressionsanalys och data från säsongerna 2004 till och med 2019 hämtat från PGA Tourens hemsida undersökte detta arbete om prispengar kunde predikteras. Startandes med 102 kovariat, täckandes alla aspekter av spelet, reducerades sedan modellen till 13 med Utslags Distans mest framträdande, i förmån för simplicitet och resulterande i ett R2Adj på 0.6918. Den slutliga modellen diskuterades sedan gällande relevans, reliabilitet och användbarhet. Vidare analyserar detta arbete hur ShotLinks entré, tekniken ansvarig för den omfattande statistikdatabasen som omger PGA Touren, har påverkat golf generellt och PGA Touren specifikt. Analyser gällande hur ShotLink har påverkat golf på olika nivåer, både för spelare och andra intressenter, genomfördes. Dessa visar utvecklingar på flera fronter; hur statistik används, golfrelaterade teknologier, mediasändningar, bettingmarknad samt både för amatörspelare och spelare på PGA Touren. Den senare analysen, genom användande av statistik från PGA Tourens hemsida, visade på en signifikant förbättring i genomsnittsscore sedan ShotLink infördes.
Wijkström, Oscar, and Sofia Öhman. "Macroeconomic factors that correlate with the performance of IndustrialTransportation Companies : A study using multiple linear regression." Thesis, KTH, Matematisk statistik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209792.
Full textDet här kandidatexamensarbetet i Tillämpad Matematik och Industriell Ekonomi undersöker vilka konjunkturcykelsrelaterade makroekonomiska faktorer som korrelerar med utvecklingen av Industriella Transportmedelsföretag. Datan för arbetet är sammanställd med hjälp av Nordea och från olika rapporter av vardera variabel. Observationerna sträcker sig från Januari 2007 till December 2016, en tioårsperiod. Datan är månatlig, vilket betyder att 120 datapunkter är observerade för vardera variabel. En linjär regressionsanalys tillämpades med resultatet att det finns ett linjärt samband mellan utvecklingen av industriella transportmedelsföretag och kovariaterna Pris per MWh, Bensinpris, Valutakurs USD-SEK, Valutakurs EUR-SEK, Manpower Arbetsmarknadsbarometer, Reporänta, OECD Index Sweden och Inköpschefsindex. Vidare analys av den svenska och internationella ekonomiska historian för det senaste årtiondet genomfördes vilken drog slutsatsen kring varför de nämnda variablerna var signifikanta.
Brandner, Hanna. "Idenitfying the Influential Factors of the Temporal Variation of Water Consumption : A Case Study using Multiple Linear Regression Analysis." Thesis, KTH, Vattendragsteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192650.
Full textPrudencio, Gerald, Diego Pino, Luis Arauzo, and Carlos Raymundo. "Productivity analysis of LHD equipment using the multiple linear regression method in an underground mine in Peru." International Institute of Informatics and Systemics, IIIS, 2019. http://hdl.handle.net/10757/656294.
Full textThe current study is based on a multiple linear regression analysis with an objective to formulate an equation related to the productivity analysis of LHD equipment using independent variables such as the effective utilization of the equipment. To identify the independent variables, main productive factors, such as the actual capacity of the buckets, the transport cycles in the cleaning process, and the performance by means of curves, were analyzed. Comparisons of a Peruvian underground mine case study exhibited that the battery-powered equipment denoted similar production efficiencies to that exhibited by its diesel counterparts; however, the three-tier approach observed that the battery-powered equipment could achieve production efficiencies that are up to 13.8% more as compared to that achieved using its diesel counterparts because of increased effective utilization that can be attributed to long MTBF. The results of this study exhibit that LHDs under battery-powered storage are feasible for underground mining not only because of the fact that they do not emit any polluting gases, which helps to mitigate pollution, but also because of their good production performance that can be considered to be an important pillar in deep mining. Copyright 2019.
Uys, Daniel Wilhelm. "Influential data cases when the C-p criterion is used for variable selection in multiple linear regression." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53464.
Full textENGLISH ABSTRACT: In this dissertation we study the influence of data cases when the Cp criterion of Mallows (1973) is used for variable selection in multiple linear regression. The influence is investigated in terms of the predictive power and the predictor variables included in the resulting model when variable selection is applied. In particular, we focus on the importance of identifying and dealing with these so called selection influential data cases before model selection and fitting are performed. For this purpose we develop two new selection influence measures, both based on the Cp criterion. The first measure is specifically developed to identify individual selection influential data cases, whereas the second identifies subsets of selection influential data cases. The success with which these influence measures identify selection influential data cases, is evaluated in example data sets and in simulation. All results are derived in the coordinate free context, with special application in multiple linear regression.
AFRIKAANSE OPSOMMING: Invloedryke waarnemings as die C-p kriterium vir veranderlike seleksie in meervoudigelineêre regressie gebruik word: In hierdie proefskrif ondersoek ons die invloed van waarnemings as die Cp kriterium van Mallows (1973) vir veranderlike seleksie in meervoudige lineêre regressie gebruik word. Die invloed van waarnemings op die voorspellingskrag en die onafhanklike veranderlikes wat ingesluit word in die finale geselekteerde model, word ondersoek. In besonder fokus ons op die belangrikheid van identifisering van en handeling met sogenaamde seleksie invloedryke waarnemings voordat model seleksie en passing gedoen word. Vir hierdie doel word twee nuwe invloedsmaatstawwe, albei gebaseer op die Cp kriterium, ontwikkel. Die eerste maatstaf is spesifiek ontwikkelom die invloed van individuele waarnemings te meet, terwyl die tweede die invloed van deelversamelings van waarnemings op die seleksie proses meet. Die sukses waarmee hierdie invloedsmaatstawwe seleksie invloedryke waarnemings identifiseer word beoordeel in voorbeeld datastelle en in simulasie. Alle resultate word afgelei binne die koërdinaatvrye konteks, met spesiale toepassing in meervoudige lineêre regressie.
Olaya, Bucaro Orlando. "Predicting risk of cyberbullying victimization using lasso regression." Thesis, Uppsala universitet, Statistiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-338767.
Full textLeda, Victor Costa [UNESP]. "Modelagem da produtividade de cana-de-açúcar utilizando índices de vegetação." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/143945.
Full textApproved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-09-22T19:30:58Z (GMT) No. of bitstreams: 1 leda_vc_me_bot.pdf: 3518003 bytes, checksum: 6c1cfb1843e622175cfceb9c905d91f0 (MD5)
Made available in DSpace on 2016-09-22T19:30:58Z (GMT). No. of bitstreams: 1 leda_vc_me_bot.pdf: 3518003 bytes, checksum: 6c1cfb1843e622175cfceb9c905d91f0 (MD5) Previous issue date: 2016-07-28
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A produção da cana-de-açúcar é destaque no cenário econômico do estado São Paulo, dessa forma confirma-se a necessidade do monitoramento dessa cultura, de maneira a contribuir com melhorias em decisões e planejamentos operacionais. A produção total e a produtividade da cana-de-açúcar são fatores de grande interesse para os agricultores, pois é a partir dessa informação que a programação das operações são realizadas, porém, essas estimativas não possuem métodos de alta precisão e confiança em amostragens não destrutivas. O homem possui excelente capacidade de analisar e interpretar resultados, mas também está sujeito a subjetividades em suas avaliações. A análise empreendida no trabalho teve como objetivo a elaboração de modelos matemáticos que expliquem a produtividade da cana-de-açúcar por meio das técnicas de geoprocessamento e sensoriamento remoto. O experimento foi realizado na área de produção comercial da Agrícola Rio Claro, parceira do grupo Zilor, que está localizada nos municípios de Lençóis Paulista e Pratânia, possui aproximadamente 6000 hectares, com altimetrias variando entre 600 e 700 metros. Para a coleta das informações espectrais, utilizou-se as imagens do satélite Landsat 8, com órbita/ponto em 221/076. Nos resultados do trabalho realizado, constatou-se que as modelagens foram satisfatórias, variando o coeficiente de determinação entre 0,15 a 0,97. Sendo que em períodos com elevados coeficientes de determinação, podem geralmente ser encontradas áreas de forma aglomerada, o que sugere uma menor incidência de variáveis. Enquanto que em períodos com coeficientes de determinação baixos, muito provavelmente foram obtidos devido a outros fatores listados terem ocorrido como dispersão dos talhões na área, classes de solo, precipitação e variedades da cultura, provavelmente distintos.
The production of sugarcane is a highlight in the economic scenario in the state of São Paulo, thus it confirms the need of monitoring this culture, in order to contribute to improvements in making decisions and operational planning.The production and productivity of sugarcane are factors of great interest to farmers, because, from this information the planning of operations is performed out, however, these estimates do not have high precision and reliable methods for non-destructive sampling.The human has an excellent ability to analyze and interpret results, but may also be affected by the subjectivity of their evaluations.The analysis undertaken in this work aimed at the development of mathematical models to explain the productivity of sugarcane through geoprocessing and remote sensing.The experiment was conducted in commercial area of Agrícola Rio Claro, partner of Zilor group, which is located in Lençóis Paulista and Pratânia, of approximately 6000 hectares, with altimetry ranging between 600 and 700 meters. For the collection of the spectral information, it was used the images of the satellite Landsat 8, with orbit/point 221/076. The results of the work, it was found that all the modeling were satisfactory, varying the coefficient of determination between 0.15 to 0.97. Given that, in periods with high coefficients of determination areas may be generally found in clusters, suggesting a lower incidence of variables. While in periods of low coefficient of determination, it was most likely obtained due to other factors listed of having occurred such as a dispersion of the plots in the area, soil types, rainfall and varieties, probably distinctly.
Flynn, Myles M. 1966. "A method of assessing near-view scenic beauty models: A comparison of neural networks and multiple linear regression." Thesis, The University of Arizona, 1997. http://hdl.handle.net/10150/292054.
Full textBook, Emil, and Linus Ekelöf. "A Multiple Linear Regression Model To Assess The Effects of Macroeconomic Factors On Small and Medium-Sized Enterprises." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254298.
Full textSmå- och medelstora företag (SMEs) har länge varit ansedda som en av de viktigaste komponenterna i ett lands ekonomi, främst för deras bidrag till tillväxt och framgång. Det är därför mycket viktigt att regeringar och lagstiftare för en politik som främjar SMEs optimala tillväxt. Flera år av högkonjunktur och oro över kommande lågkonjunktur har gjort detta ämne ytterst relevant då små företag är de som kommer att drabbas värst av en svårare ekonomisk tillvaro. Denna rapport använder multipel linjär regression för att utvärdera effekterna av olika makroekonomiska faktorer på SMEs i Sverige. Data har insamlats månadsvis för en 10 årsperiod mellan 2009 till 2010. Resultatet blev en modell med fem variabler och en förklaringsgrad på 98%.
Löwe, Rakel, and Ida Schneider. "Automatic Differential Diagnosis Model of Patients with Parkinsonian Syndrome : A model using multiple linear regression and classification tree learning." Thesis, Uppsala universitet, Tillämpad kärnfysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-413638.
Full textJanuario, Ana Paula Ferrari. "Análise estatística da produção de vitelão Mertolengo." Master's thesis, Universidade de Évora, 2021. http://hdl.handle.net/10174/29316.
Full textVeloso, Ricardo Campos. "Modelagem de curvas de degradação de correias transportadoras com base em covariáveis inerentes ao processo de mineração." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2014. http://hdl.handle.net/10183/127780.
Full textThis thesis aims at modelling of the conveyor’s belt degradation used in mining as a function of time and other independent covariate that are part of the mining process and have influence in their wearing. To carry out the research we implemented a method divided in two stages: (i) a qualitative approach (theoretical study of conveyor belts degradation and data collection through Focused Groups – FG) for definition of factors that are influential in the wearing of belts, and (ii) a quantitative approach for obtaining a belts’ degradation model through multiple linear regression. It was possible to identify in the literature and through FG that variables such as belt cycle, belt length and width, material fall, belt cleaner, feed rate, particle size, compound and belt speed could potentially impact on the degradation of belts. Using multiple regression such variables were found to be statistically significant, corroborating the data obtained from FG. With the degradation models obtained for each conveyor belt it was possible to propose a method for the maintenance management of conveyor belts. The method was based on the comparison of real wear versus predicted wear in order to detect possible deviations and to allow the development of correction actions that aim at minimizing accelerated degradation and maximizing the belt’s lifetime. A potential financial gain of approximately R$ 1.132.000,00 per year was estimated comparing the lifetime obtained using the degradation models and the life estimated by the maintenance area of the complex.
Addo, Evans Dapaa. "Performance Comparison of Imputation Algorithms on Missing at Random Data." Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/etd/3422.
Full textZhai, Jing. "Efficient Exact Tests in Linear Mixed Models for Longitudinal Microbiome Studies." Thesis, The University of Arizona, 2016. http://hdl.handle.net/10150/612412.
Full textGuterstam, Rasmus, and Vidar Trojenborg. "Exploring a personal property pricing method in insurance context using multiple regression analysis." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254300.
Full textI dagsläget står försäkringsbolag och deras kunder allt för ofta inför långa och komplicerade försäkringsärenden, där utbetalningar i regel aldrig sker samma dag. En del i denna långsamma och utdragna utbetalningsprocess är det faktum att försäkringsbolaget på egen hand måste uppskatta egendomens värde, vilket kan vara en mycket komplicerad process. I samarbete med försäkringsbolaget Hedvig undersöker denna rapport en värderingsmodell för ett av de vanligaste försäkringsärendena gällande personlig egendom, nämligen smartphones. Genom att använda multipel linjär regression med data försedd av PriceRunner har 10 av 91 nyckelfaktorer identifierats ha signifikant förklaringsgrad vid modellering av marknadsvärdet av en smartphone. Den framtagna modellen simulerar framgångsrikt marknadsvärdet med en 90-procentig förklaringsgrad av variansen. Vidare illustrerar denna rapport intuitiva riktlinjer för värderingsmodellering till andra typer av personlig egendom, samtidigt som den identifierar begränsande nyckelaspekter som exempelvis tillgången på data och egendomens inneboende komplexitet.
Carvalho, Tânia Maria de [UNESP]. "Modelagem digital de atributos de solo da Fazenda Edgárdia - Botucatu-SP." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/148704.
Full textApproved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-02-06T16:42:11Z (GMT) No. of bitstreams: 1 carvalho_tm_dr_bot.pdf: 4743361 bytes, checksum: 0c094f892ee8b02e1690df7e4438651f (MD5)
Made available in DSpace on 2017-02-06T16:42:11Z (GMT). No. of bitstreams: 1 carvalho_tm_dr_bot.pdf: 4743361 bytes, checksum: 0c094f892ee8b02e1690df7e4438651f (MD5) Previous issue date: 2016-12-19
O mapa de solos é uma ferramenta essencial para o planejamento de uso da terra e estudos que envolvem aspectos ambientais relativos a esse importante recurso natural. Técnicas quantitativas e ferramentas de geoprocessamento têm sido aliadas à interpretação dos processos pedogenéticos para possibilitar a elaboração de mapas mais precisos, obtidos por processo mais rápido e menos oneroso. Dentre os modelos aplicados, os denominados modelos híbridos empregam variáveis auxiliares preditoras e autocorrelação espacial, para viabilizar a predição de atributos de solo em locais não amostrados. A iniciativa para mapeamento digital do solo em escala mundial – GlobalSoilMap.net atua no sentido de disponibilizar representações globais de atributos de solo, elaboradas por meio da aplicação de modelo híbrido em dados legados de solos, realizando a prática do Mapeamento Digital de Solos (MDS). Com base nesse princípio, esse trabalho baseou-se na hipótese de que a aplicação da técnica híbrida regressão-krigagem, utilizando dados legados de levantamento de solo e covariáveis de relevo e sensoriamento remoto proveem mapa de atributos de solo representativos de uma área da Cuesta de Botucatu. O modelo foi aplicado localmente, a duas profundidades, para representação contínua do Índice de Avermelhamento (IAV), saturação de bases (V%), teor de areia, teor de argila, CTC e pH dos solos da Fazenda Experimental Edgárdia, para a qual são disponíveis dados de levantamento de solo. As covariáveis preditoras derivadas de um MDE e de imagem orbital foram uniformizadas a uma resolução espacial de 10 m, e os métodos foram selecionados de acordo com a verificação de correlação linear significativa entre atributos e covariáveis e autocorrelação espacial dos atributos ou dos resíduos de regressões lineares múltiplas (RLM). Os dados foram separados em subconjuntos de treinamento e validação. Os coeficientes de correlação entre atributos de solo e covariáveis foram significativos e variaram de -0,40 a 0,51. Os preditores mais correlacionados aos atributos foram Índice Topográfico de Umidade (ITU), Declividade (Decl), Aspecto (Aspc), Elevação (Elev) e índice de vegetação NDVI, sendo os quatro últimos os principais na estimação das frações texturais. Os valores de R² ajustado das RLM, entre 0,10 e 0,36, foram considerados baixos. De modo geral, os mapas de predição expuseram padrões característicos da variação espacial observada nos mapas das covariáveis preditoras, usadas na calibração dos modelos. Foi observado um incremento na acurácia entre as duas etapas do processo de RK, indicando que o mapa final é superior em relação à RLM. No entanto, os modelos apresentaram, de modo geral, um baixo desempenho quando avaliados por meio de validação externa, mesmo com a estratificação em duas áreas mais uniformes em termos de relevo. Os resultados indicaram a limitação do uso de amostragem para fins de levantamento em modelos de predição. Houve ainda dificuldade de aplicação dos modelos em função do contexto litológico complexo e da dinâmica local de formação de solos, que não puderam ser detectadas pelas covariáveis selecionadas. Apesar das limitações, os mapas de predição apresentaram coerência com o conhecimento relativo aos atributos, nas condições locais.
The soil map is an essential tool for land use planning and studies related to environmental aspects of this important natural resource. Quantitative techniques and geoprocessing tools are currently combined with the interpretation of pedogenic processes to enable the development of more accurate maps obtained by faster and less costly process. Among the models applied to it, the hybrid models employ predictive auxiliary variables and spatial autocorrelation, to enable the prediction of soil attributes in unsampled locations. The digital soil mapping worldwide project – GlobalSoilMap.net acts in order to provide global representations of soil attributes developed through the application of hybrid model in legacy soil data, performing the practice of Digital Soil Mapping (MDS). This work was based on the assumption that the application of the hybrid technique of regression-kriging (RK), using legacy data of soil survey and covariates of relief and remote sensing provide representative map of soil attributes of an area in Cuesta of Botucatu. The goal was to apply locally, in two depths, prediction models and continuous representation of Soil Redness Index (IAV), base saturation index (V%), sand content and clay content, cation-exchange capacity (CTC) and pH of the soils in Edgardia Experimental Farm, for which are available soil survey data. The predictor covariates were derived from an Digital Elevation Model (MDE) and an orbital image. They were all standardized at spatial resolution of 10 m, the methods were selected by checking significant linear correlation between attributes and covariates and spatial autocorrelation of attributes or residues of multiple linear regressions (RLM). The data were separated into training and validation subsets. The correlation coefficients (r) between soil attributes and covariates were significant and ranged from -0.40 to 0.51. The predictors more correlated to attributes were topographic wetness index (ITU), slope (Decl), aspect (Aspc), elevation (Elev) and vegetation index (NDVI), and the last four are key definers of granulometric fractions. The values of adjusted R² of RLM were between 0.10 and 0.36, which is considered low. In general, the prediction maps exhibited characteristic patterns of spatial variation observed in the covariates maps, used in the calibration of the models. An increase in accuracy was observed between the two steps of the modeling process by RK, indicating that the final map is better than the RLM. However, the models showed generally low performance, and did not provide good results when evaluated by external validation and even if the area was stratified in two smaller plots, with more homogeneous relief. The results indicated the restricted use of soil survey sampling in prediction models, and the difficulty of applying MDS in areas with complex lithology, especially where the correlation between local dynamics of soil genesis and selected covariates are not strong. Despite the limitations, the prediction maps were consistent with knowledge about soil properties in local conditions.
com, emmayuen@hotmail, and Emma Yuen. "Water Consumption Patterns in Australian Aboriginal Communities." Murdoch University, 2005. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20051119.134422.
Full textMabilana, Hugo Adriano. "Desenvolvimento de modelo agrometeorológico espectral para estimativa de rendimento do milho na província de Manica-Moçambique." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2011. http://hdl.handle.net/10183/30188.
Full textMozambique is a country located along the east coast of southern Africa, with an economy based primarily on agriculture. The Maize crop (Zea mays L.) is the most important crop, growing in rainfed conditions, with its yield dependent only on weather conditions. Agrometeorological models to forecast yields of food crops are viable alternatives for decision making on food safety measures and supply. The agricultural calendar and the production system make use of geotechnologies an important tool for crop monitoring and yield forecasting. Products from remote sensing data, combined with spectral indices and agrometeorological parameters can improve the spatial representations of maize yields in Mozambique. Setting an agrometeorological model to estimate the spectral yield of corn by multiple linear regression in Manica province, Mozambique was the objective of the study. Were conducted a mapping of agricultural areas by analyzing multitemporal NDVI / MODIS and also evaluated the effectiveness of spectral and meteorological variables in the estimated maize yield in an area of Manica province involving the districts of Gondola, Manica, Mossurize and Sussundenga responsible for more than 80% of corn production in the province in the years 2000 to 2009. A model was developed to estimate the beginnig of the corn cycle, using as a criteria the rainfall, and setting a fixed cycle of corn in 130 days. The methodology for mapping agricultural areas consisted of sums of binary images generated by the difference of maximum and minimum NDVI throughout the cycle and establishing levels of restriction based on comparisons with official statistics by district. Were tested the meteorological variables: the relative evapotranspiration (ETr / ETm) and the index of satisfaction of water needs (ISNA) calculated from data from meteorological model of ECMWF. The set of spectral variable were comprised of 16 days composition of vegetation indices NDVI and EVI from the MODIS product MOD13Q1 and LSWI generated from normalized difference of surface reflectance bands of near-infrared and medium infrared contained the same product. The meteorological and spectral variables was the set of independent variables and the average and relative yield were the set of dependent variables used to adjusted a multiple regression model, called agrometeorological-spectral model. To all districts, except for Mossurize were generated models with good performance in estimating the corn yield and with physical meaning. The regional model, including Gondola, Manica and Sussundenga and involving the relative yield was the most suitable for estimating corn yield in the region with r2 = 0.762 and RMSE of 9.46%.
Jastram, John Dietrich. "Improving Turbidity-Based Estimates of Suspended Sediment Concentrations and Loads." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/32514.
Full textMaster of Science