Journal articles on the topic 'Simulated HAZ'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Simulated HAZ.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Liu, Yu, Ai Qing Ma, and Bin Feng. "Simulated HAZ Continuous Cooling Transformation of X90 Pipeline Steel." Materials Science Forum 850 (March 2016): 905–9. http://dx.doi.org/10.4028/www.scientific.net/msf.850.905.
Full textHA, JI-WOONG, JUNG-HAN SONG, HOON HUH, JI-HO LIM, and SUNG-HO PARK. "DYNAMIC MATERIAL PROPERTIES OF THE HEAT-AFFECTED ZONE (HAZ) IN RESISTANCE SPOT WELDING." International Journal of Modern Physics B 22, no. 31n32 (2008): 5800–5806. http://dx.doi.org/10.1142/s0217979208051194.
Full textDevaney, Ronan J., Heiner Oesterlin, Padraic E. O’Donoghue, and Sean B. Leen. "Cyclic plasticity and low cycle fatigue damage characterisation of thermally simulated X100Q heat affected zone." MATEC Web of Conferences 165 (2018): 03002. http://dx.doi.org/10.1051/matecconf/201816503002.
Full textLundin, C. D., and C. Y. P. Qiao. "Microstructural Investigation of the Weld HAZ in a Modified 800H Alloy." Journal of Engineering for Gas Turbines and Power 116, no. 3 (1994): 629–34. http://dx.doi.org/10.1115/1.2906866.
Full textChen, Zhong Bing, Qiu Hua Zhu, Jian Xing Song, and Yan Liu. "High Temperature Plasticity of TP347H Stainless Steel Welded Joint Heat Affected Zone." Key Engineering Materials 881 (April 2021): 19–24. http://dx.doi.org/10.4028/www.scientific.net/kem.881.19.
Full textGáspár, Marcell. "Effect of Welding Heat Input on Simulated HAZ Areas in S960QL High Strength Steel." Metals 9, no. 11 (2019): 1226. http://dx.doi.org/10.3390/met9111226.
Full textWang, Qing Feng, Cheng Jia Shang, R. D. Fu, Ya Nan Wang, and Wayne Chen. "Physical Simulation and Metallurgical Evaluation of Heat-Affected Zone during Laser Welding of Ultrafine Grain Steel." Materials Science Forum 475-479 (January 2005): 2717–20. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.2717.
Full textPratap, Singh, and Judit Kovácsb. "Comparative HAZ softening analysis of three different automotive aluminium alloys by physical simulation." Zavarivanje i zavarene konstrukcije 66, no. 1 (2021): 23–38. http://dx.doi.org/10.5937/zzk2101023p.
Full textMohammadi, Farzad, Faysal Fayez Eliyan, and Akram Alfantazi. "Corrosion of simulated weld HAZ of API X-80 pipeline steel." Corrosion Science 63 (October 2012): 323–33. http://dx.doi.org/10.1016/j.corsci.2012.06.014.
Full textWu, Rui, Rolf Sandstro¨m, and Facredin Seitisleam. "Influence of Extra Coarse Grains on the Creep Properties of 9 Percent CrMoV (P91) Steel Weldment." Journal of Engineering Materials and Technology 126, no. 1 (2004): 87–94. http://dx.doi.org/10.1115/1.1631025.
Full textNiu, Ji Tai, Wei Feng Huang, Jing Jun Xu, and Yong Liang Guo. "Study on Property and Microstructure in HAZ of High-Strength Abrasion-Resistant Steel." Key Engineering Materials 306-308 (March 2006): 947–52. http://dx.doi.org/10.4028/www.scientific.net/kem.306-308.947.
Full textLojen, Gorazd, and Tomaž Vuherer. "Optimization of PWHT of Simulated HAZ Subzones in P91 Steel with Respect to Hardness and Impact Toughness." Metals 10, no. 9 (2020): 1215. http://dx.doi.org/10.3390/met10091215.
Full textCelin, Roman, Jaka Burja, and Gorazd Kosec. "A comparison of as-welded and simulated heat affected zone (HAZ) microstructures." Materiali in tehnologije 50, no. 3 (2016): 455–60. http://dx.doi.org/10.17222/mit.2016.006.
Full textKoseki, Toshihiko, Hiroki Kato, Masanori Tsutsumi, Keiichiro Kasai, and Junya Inoue. "Ferrite transformation from oxide–steel interface in HAZ-simulated C–Mn steel." International Journal of Materials Research 99, no. 4 (2008): 347–51. http://dx.doi.org/10.3139/146.101643.
Full textWang, Qing Feng, Cheng Jia Shang, Ya Nan Wang, and Wayne Chen. "Microstructure and Mechanical Properties of Simulated Heat Affected Zone of an Ultrafine Grain Steel Laser Weld." Key Engineering Materials 353-358 (September 2007): 2021–24. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.2021.
Full textSisodia, Raghawendra, Marcell Gáspár, and Noureddine Guellouh. "HAZ Characterization of Automotive DP Steels by Physical Simulation." International Journal of Engineering and Management Sciences 4, no. 1 (2019): 478–87. http://dx.doi.org/10.21791/ijems.2019.1.59.
Full textWei, Yan Hong, Yan Li Xu, Zhi Bo Dong, and Ji Lin Xiao. "Three Dimensional Monte Carlo Simulation of Grain Growth in HAZ of Stainless Steel SUS316." Key Engineering Materials 353-358 (September 2007): 1923–26. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.1923.
Full textSisodia, Raghawendra Pratap Singh, Marcell Gáspár, Béla Fodor, and László Draskóczi. "Simulation and Experimental Based Analysis of the Laser Beam Welding of DP Steels." Advanced Materials Research 1157 (February 2020): 73–82. http://dx.doi.org/10.4028/www.scientific.net/amr.1157.73.
Full textStadler, Manfred, Ronald Schnitzer, Martin Gruber, Katharina Steineder, and Christina Hofer. "Microstructure and Local Mechanical Properties of the Heat-Affected Zone of a Resistance Spot Welded Medium-Mn Steel." Materials 14, no. 12 (2021): 3362. http://dx.doi.org/10.3390/ma14123362.
Full textWojnowski, D., Y. K. Oh, and J. E. Indacochea. "Metallurgical Assessment of the Softened HAZ Region During Multipass Welding." Journal of Manufacturing Science and Engineering 122, no. 2 (1997): 310–15. http://dx.doi.org/10.1115/1.538920.
Full textZhang, Shi Xing, and Gang Yi Cai. "Simulation of Microstructure and Grain Size in Welding Heat Affected Zone Using Monte Carlo Method." Advanced Materials Research 194-196 (February 2011): 121–26. http://dx.doi.org/10.4028/www.scientific.net/amr.194-196.121.
Full textChung, Yong-Keun, Cheol-Hong Joo, Jong-Jin Park, Ik-Man Park, and Hyo-Jin Kim. "Quantification of Creep Cavitation in Welded Joint and Evaluation of Material Characteristics of Simulated Heat-Affected Zone in X 20 CrMoV 12 1 Steel." Journal of Pressure Vessel Technology 123, no. 1 (2000): 112–17. http://dx.doi.org/10.1115/1.1333094.
Full textGUI, Chibin, Qi CHEN, and Kun CUI. "Formulation of grain growth diagram in simulated weld HAZ of Ti-microalloyed steel." Acta Metallurgica Sinica (English Letters) 22, no. 4 (2009): 308–12. http://dx.doi.org/10.1016/s1006-7191(08)60103-9.
Full textFalkenreck, Thora, Arne Kromm, and Thomas Böllinghaus. "Investigation of physically simulated weld HAZ and CCT diagram of HSLA armour steel." Welding in the World 62, no. 1 (2017): 47–54. http://dx.doi.org/10.1007/s40194-017-0511-4.
Full textZhang, Ming Yue, Yuan Nie, Qing Ying Wang, and Hui Chen. "Effect of Welding Heat Cycle Peak Temperature and Heat Input on HAZ Grain Size of SMA490BW Corrosion Resistance Steel." Advanced Materials Research 602-604 (December 2012): 415–20. http://dx.doi.org/10.4028/www.scientific.net/amr.602-604.415.
Full textHATANO, Hitoshi. "Effect of Boron on Microstructure and Toughness of Simulated HAZ of Low Carbon Bainitic Steel." Tetsu-to-Hagane 89, no. 3 (2003): 362–68. http://dx.doi.org/10.2355/tetsutohagane1955.89.3_362.
Full textNie, Yuan, Li Jun Wang, Chuan Ping Ma, et al. "Effect of Heat Input on HAZ Properties and Microstructure of SMA490BW Corrosion Resistance Steel." Advanced Materials Research 337 (September 2011): 517–21. http://dx.doi.org/10.4028/www.scientific.net/amr.337.517.
Full textZhang, Shi Xing, and Gang Yi Cai. "A Study of the Microstructure and Grain Size at the Welding Heat Affected Zone of an Industrial Pure Aluminum." Advanced Materials Research 97-101 (March 2010): 3247–51. http://dx.doi.org/10.4028/www.scientific.net/amr.97-101.3247.
Full textLiu, Yue, Hui Chen, Yan Liu, and Zongqiu Hang. "Simulated HAZ continuous cooling transformation diagram of a bogie steel of high-speed railway." International Journal of Modern Physics B 31, no. 16-19 (2017): 1744038. http://dx.doi.org/10.1142/s0217979217440386.
Full textFerreira, Dario, Antonio Alves, Rubelmar Cruz Neto, Thiago Martins, and Sérgio Brandi. "A New Approach to Simulate HSLA Steel Multipass Welding through Distributed Point Heat Sources Model." Metals 8, no. 11 (2018): 951. http://dx.doi.org/10.3390/met8110951.
Full textLiao, J., K. Ikeuchi, and F. Matsuda. "Effect of cooling time on HAZ toughness and microstructure: Simulated HAZ toughness of low‐alloy SQV‐2A pressure vessel steel (1st report)." Welding International 10, no. 7 (1996): 552–58. http://dx.doi.org/10.1080/09507119609549046.
Full textFUJIYAMA, Kazunari, Takashi ISEKI, Atsushi KOMATSU, and Nagatoshi OKABE. "CREEP LIFE ASSESSMENT OF 2.25Cr-1Mo PIPING STEEL AND OF ITS SIMULATED HAZ MATERIAL." Journal of the Society of Materials Science, Japan 46, no. 12Appendix (1997): 237–43. http://dx.doi.org/10.2472/jsms.46.12appendix_237.
Full textKim, Sanghoon, Donghwan Kang, Tae-Won Kim, Jongkwan Lee, and Changhee Lee. "Fatigue crack growth behavior of the simulated HAZ of 800MPa grade high-performance steel." Materials Science and Engineering: A 528, no. 6 (2011): 2331–38. http://dx.doi.org/10.1016/j.msea.2010.11.089.
Full textLan, Liangyun, and Guoqing Shao. "Morphological evolution of HAZ microstructures in low carbon steel during simulated welding thermal cycle." Micron 131 (April 2020): 102828. http://dx.doi.org/10.1016/j.micron.2020.102828.
Full textHONDA, Takashi, Takuya FUKAHORI, Toshihide IGARI, Yasuharu CHUMAN, Takumi TOKIYOSHI, and Alan CF COCKS. "Creep damage analysis of simulated-HAZ notched bar specimens of modified 9Cr-1Mo steel." Mechanical Engineering Journal 4, no. 5 (2017): 16–00697. http://dx.doi.org/10.1299/mej.16-00697.
Full textMin, Ding. "Abnormal toughness characteristics and fracture model in simulated welding HAZ of 5%Ni Steel." Metallurgical Research & Technology 117, no. 4 (2020): 410. http://dx.doi.org/10.1051/metal/2020037.
Full textBarla, Nikki Archana, Prakriti Kumar Ghosh, Vinod Kumar, Nilesh Kumar Paraye, Ramkishor Anant, and Sourav Das. "Simulated stress induced sensitization of HAZ in multipass weld of 304LN austenitic stainless steel." Journal of Manufacturing Processes 62 (February 2021): 784–96. http://dx.doi.org/10.1016/j.jmapro.2020.12.061.
Full textWęglowski, M. St, M. Zeman, and A. Grocholewski. "Effect of Welding Thermal Cycles on Microstructure and Mechanical Properties of Simulated Heat Affected Zone for a Weldox 1300 Ultra-High Strength Alloy Steel." Archives of Metallurgy and Materials 61, no. 1 (2016): 127–32. http://dx.doi.org/10.1515/amm-2016-0024.
Full textMa, Hongchi, Jinbin Zhao, Yi Fan, et al. "Comparative study on corrosion fatigue behaviour of high strength low alloy steel and simulated HAZ microstructures in a simulated marine atmosphere." International Journal of Fatigue 137 (August 2020): 105666. http://dx.doi.org/10.1016/j.ijfatigue.2020.105666.
Full textGórka, Jacek. "Analysis of Simulated Welding Thermal Cycles S700MC Using Thermal Imaging Camera." Advanced Materials Research 837 (November 2013): 375–80. http://dx.doi.org/10.4028/www.scientific.net/amr.837.375.
Full textHongda, Deng, and Zeng Shunpeng. "Corrosion of welded joints of bimetallic composite tube in simulated offshore gas field environment." Anti-Corrosion Methods and Materials 61, no. 6 (2014): 380–86. http://dx.doi.org/10.1108/acmm-08-2013-1295.
Full textLiu, Yu, Liu Qing Yang, Bin Feng, Shi Wu Bai, and Chang Xue Xu. "Physical Simulation on Microstructure and Properties for Weld HAZ of X100 Pipeline Steel." Materials Science Forum 762 (July 2013): 556–61. http://dx.doi.org/10.4028/www.scientific.net/msf.762.556.
Full textKafexhiu, Fevzi, Bojan Podgornik, and Franc Vodopivec. "Ageing effect on the creep performance of simulated weld HAZ for the steels X20 and P91." MATEC Web of Conferences 188 (2018): 03004. http://dx.doi.org/10.1051/matecconf/201818803004.
Full textCho, Dong Min, Jin-seong Park, Jin Woo Lee, and Sung Jin Kim. "Study on Hydrogen Diffusion and Sulfide Stress Cracking Behaviors of Simulated Heat-Affected Zone of A516-65 Grade Pressure Vessel Carbon Steel." Korean Journal of Metals and Materials 58, no. 9 (2020): 599–609. http://dx.doi.org/10.3365/kjmm.2020.58.9.599.
Full textZhao, Zuopeng, Pengfei Xu, Hongxia Cheng, Jili Miao, and Furen Xiao. "Characterization of Microstructures and Fatigue Properties for Dual-Phase Pipeline Steels by Gleeble Simulation of Heat-Affected Zone." Materials 12, no. 12 (2019): 1989. http://dx.doi.org/10.3390/ma12121989.
Full textZhang, Suqiang, Hongyun Zhao, Fengyuan Shu, Wenxiong He, and Guodong Wang. "Microstructure and Corrosion Behavior of Simulated Welding HAZ of Q315NS Steel in Sulfuric Acid Solution." Metals 7, no. 6 (2017): 194. http://dx.doi.org/10.3390/met7060194.
Full textYang, Ke, Fei Wang, Dingshan Duan, et al. "Prediction of HAZ Microstructure and Hardness for Q960E Joints Welded by Triple-Wire GMAW Based on Thermal and Numerical Simulation." Materials 14, no. 17 (2021): 4898. http://dx.doi.org/10.3390/ma14174898.
Full textWu, Tai-Jung, Chien-Chun Liao, Tai-Cheng Chen, Ren-Kae Shiue, and Leu-Wen Tsay. "Microstructural Evolution and Short-Term Creep Rupture of the Simulated HAZ in T92 Steel Normalized at Different Temperatures." Metals 9, no. 12 (2019): 1310. http://dx.doi.org/10.3390/met9121310.
Full textHASEGAWA, Toshiei, and Yukio TOMITA. "Influence of Ti and N on Strength and Toughness of 780MPa Class Steels and Their Simulated HAZ Toughness." Tetsu-to-Hagane 83, no. 3 (1997): 221–26. http://dx.doi.org/10.2355/tetsutohagane1955.83.3_221.
Full textDuan, Dong Ming, Run Wu, Meng Xia Tang, Yong Bu, and Xiao Chen. "The Properties of Low Yield Ratio and High Heat Input Welding Construction Steel and the Microstructure of HAZ." Applied Mechanics and Materials 490-491 (January 2014): 69–72. http://dx.doi.org/10.4028/www.scientific.net/amm.490-491.69.
Full text