Academic literature on the topic 'Simulation de propagation de changement'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Simulation de propagation de changement.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Simulation de propagation de changement"
Vas, Alain. "Vitesse de propagation du changement dans les grandes organisations." Revue française de gestion 31, no. 155 (March 1, 2005): 135–51. http://dx.doi.org/10.3166/rfg.155.135-151.
Full textTOMIYAMA, Kengo, Toshitsugu HARA, Kazuyoshi SUZUKI, and Tsutomu SHODOJI. "Numerical Simulation of Soliton Propagation." Journal of the Visualization Society of Japan 15, Supplement1 (1995): 79–80. http://dx.doi.org/10.3154/jvs.15.supplement1_79.
Full textApithy, H., Y. Bouslimaniet, and H. Hamam. "Simulation methods in optical propagation." Canadian Journal of Electrical and Computer Engineering 30, no. 1 (2005): 39–48. http://dx.doi.org/10.1109/cjece.2005.1532605.
Full text[Rcirc]eháĉek, Jaroslav, Ladislav Miŝta, and Jan Pe[rcirc]ina. "Codirectional simulation of contradirectional propagation." Journal of Modern Optics 46, no. 5 (April 1999): 801–11. http://dx.doi.org/10.1080/09500349908231305.
Full textRehacek, Jaroslav, Ladislav Mista Jr, and Jan Perina. "Codirectional simulation of contradirectional propagation." Journal of Modern Optics 46, no. 5 (April 15, 1999): 801–11. http://dx.doi.org/10.1080/095003499149548.
Full textBalandraud, Xavier, André Chrysochoos, Sylvain Leclercq, and Robert Peyroux. "Effet du couplage thermomécanique sur la propagation d'un front de changement de phase." Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics 329, no. 8 (August 2001): 621–26. http://dx.doi.org/10.1016/s1620-7742(01)01376-9.
Full textM. Africa, Aaron Don. "Radio Wave Propagation: Simulation of Free Space Propagation Path Loss." International Journal of Emerging Trends in Engineering Research 8, no. 2 (February 15, 2020): 281–87. http://dx.doi.org/10.30534/ijeter/2020/07822020.
Full textWilson, Spencer, Abdullah Alabdulkarim, and David Goldsman. "Green Simulation of Pandemic Disease Propagation." Symmetry 11, no. 4 (April 22, 2019): 580. http://dx.doi.org/10.3390/sym11040580.
Full textGOTOH, Koji. "Numerical Simulation of Fatigue Crack Propagation." JOURNAL OF THE JAPAN WELDING SOCIETY 83, no. 7 (2014): 544–48. http://dx.doi.org/10.2207/jjws.83.544.
Full textTirado-Ramos, Alfredo, and Chris Kelley. "Simulation of HIV Infection Propagation Networks." International Journal of Agent Technologies and Systems 5, no. 1 (January 2013): 53–63. http://dx.doi.org/10.4018/jats.2013010104.
Full textDissertations / Theses on the topic "Simulation de propagation de changement"
Zhang, Xin. "Contribution à l’ingénierie du changement dans les projets de développement de produits : modèle de référence et simulation par système multi-agents." Thesis, Bordeaux 1, 2013. http://www.theses.fr/2013BOR14892/document.
Full textThe overall goal of this Ph.D. research is to provide reference models, support me- thods and tools that simulate change propagations in a Product Development (PD) project to assist decision-makings. We firstly establish a change analysis framework of modeling the context of change occurrence and propagation by taking into account the multiple knowledge areas of PD project simultaneously. Under the framework, we propose the conceptual models of change occurrence and change propagation that pro- vide a qualitative method to identify change and change propagation and imply some characteristics of change propagations. Relying on that, we suggest the procedures of building up the change propagation networks. Within the network, we propose the methodology of simulating change propagations and then present the process of im- plementing the methodologies and the models as a software prototype by using multi- agent based technology
Henneton, Nicolas. "Propagation d'une flamme de prémélange gazeux d'une enceinte vers un tube : étude des mécanismes de transmission et de coincement au changement de section." Poitiers, 2007. http://www.theses.fr/2007POIT2323.
Full textThe issue of gas explosions vented through relief pipes is a matter of importance for the security of industrial plants. In the course of transmission of a flame from a vessel to a duct, a secondary explosion occurs in the tube at the vicinity of the change of section, which results in a secondary pressure rise in the chamber up to non admissible values. Experiments with a premixed propane-air flame propagating from a vented vessel into a duct have been compared with CFD simulations. For tubes of small diameter, the tulip flame phenomenon occurs in the chamber and results in a slow down of the process of evacuation of gases from the vessel. For larger diameter tubes, the secondary explosion at tube entrance plays a dominant role. The additional pressure rise in the vessel is due to the delayed combustion of pockets of unburned gases which are trapped in corners of the vessel. A solution allowing quiet evacuation of gases consists in placing a wire-net insert at the duct entrance in order to delay flame penetration into the duct and prevent the occurrence of the secondary explosion. The effectiveness of the wire net in decreasing the temperature of the exhaust gases was analyzed by means of a nodal thermal network model. An empirical criterion was used to predict flame transmission to the subsequent part of the tube, comparing the auto-ignition temperature of the gaseous mixture with an average temperature of gases calculated at the end of the insert. Results of the simulations are quite consistent with experiments, and show that under adequate choice of its characteristics, the insert is able to diminish the temperature of the burning zone, thus provoking flame quenching
Zhang, Xin. "Contribution à l'ingénierie du changement dans les projets de développement de produits : modèle de référence et simulation par système multi-agents." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00920415.
Full textHenneton, Nicolas. "Propagation d'une flamme de prémélange gazeux d'une enceinte vers un tube : études des mécanismes de transmission et de coincement au changement de section." Phd thesis, Université de Poitiers, 2007. http://tel.archives-ouvertes.fr/tel-00259522.
Full textLes résultats expérimentaux obtenus pour un prémélange propane-air ont été confrontés à des simulations numériques. Pour des petits diamètres de tube, on observe l'apparition de l'effet de flamme tulipe dans la chambre, qui contribue à limiter le débit d'évacuation des gaz. Pour les grands tubes, l'explosion secondaire à l'entrée du tube conduit à l'intensification de la combustion retardée des poches de gaz frais situés dans les coins de la chambre, causant ainsi une remontée brutale de la pression.
Pour éviter la formation de l'explosion secondaire une solution consiste à placer un insert (réseau de fils métalliques) à l'entrée du tube afin d'obtenir une extinction totale ou partielle de la flamme. Les expériences montrent qu'une optimisation du dispositif est nécessaire pour obtenir l'atténuation maximale de la supression. Un modèle thermique d'absorption de la chaleur par l'insert a été conçu, s'appuyant sur une méthode nodale. Le critère de transmission de la flamme au delà de l'insert est basé sur la comparaison entre la température d'auto-inflammation du mélange avec une température moyenne des gaz calculée en sortie de l'insert. Les résultats numériques, en bon accord avec les résultats expérimentaux, confirment le rôle prépondérant des pertes thermiques provoquées par l'insert sur le coincement de la flamme.
Calle, Juan Carlos. "Indoor propagation simulation software." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2000. http://handle.dtic.mil/100.2/ADA383980.
Full textThesis advisors, Lebaric, Jovan ; Adler, Richard. "September 2000." Includes bibliographical references (p. 45-46). Also available online.
Uddholm, Per. "Numerical Simulation of Flame Propagation." Thesis, Uppsala University, Department of Information Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-98325.
Full textThe effects of the temperature and length, of the preheat zone, on the deflagration to detonation transition are investigated through numerical simulation. The Navier-Stokes equations, with a reaction term, are solved in one dimension. The time integration is a one-dimensional adaptation of an existing two-dimensional finite volume method code. An iterative scheme, based on an overlap integral, is developed for the determination of the deflagration to detonation transition. The code is tested in a number of cases, where the analytical solution (to the Euler equations) is known. The location of the deflagration to detonation transition is displayed graphically through the preheat zone temperature as a function of the fuel mixture temperature, for fixed exhaust gas temperature and with the preheat zone length as a parameter. The evolution of the deflagration to detonation transition is investigated for an initial state well within the regime where the deflagration to detonation transition occurs. Graphs displaying the temporal evolution of pressure, temperature, reaction rate, and fuel mass fraction are presented. Finally, a method for estimating the flame velocity during the deflagration and detonation phases, as well as the flame acceleration during the intermediate phase, is developed.
Li, Bishan. "Simulation of radiowave propagation using radiosity." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0015/MQ54720.pdf.
Full textHumbert, Cyril. "Simulation du canal de propagation indoor." Université de Marne-la-Vallée, 2003. http://www.theses.fr/2003MARN0209.
Full textA good knowledge of the propagation channel and its effects is a prerequisite before deploying indoor high bit-rate wireless communication systems. Two complementary approaches can be used : measurements and simulations. The present work proceeds from the second approach. It consists in developing a simulation software based on the high-frequency approximation derived from optics. In the first part, we show how to take into account the pertinent physical phenomena, with respect to the precision of the simulations and the computational task. The adopted implementation is then brieffly described. Measurement experiments (at 2. 4 GHz) have been carried out in September 2002. Following a description of the experimental setup, we present in the last chapter a detailed comparison between measurements and simulations for a few experimental configurations
Hannah, Bruce M. "Modelling and Simulation of GPS Multipath Propagation." Queensland University of Technology, 2001. http://eprints.qut.edu.au/15782/.
Full textSeljåsen, Håkon. "Simulation of nonlinear wave propagation in ultrasound." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-25589.
Full textBooks on the topic "Simulation de propagation de changement"
Calle, Juan Carlos. Indoor propagation simulation software. Monterey, Calif: Naval Postgraduate School, 2000.
Find full textKörner, Thomas O. Rigorous simulation of light propagation in semiconductor devices. Konstanz: Hartung-Gorre Verlag, 1999.
Find full textKörner, Thomas O. Rigorous simulation of light propagation in semiconductor devices. Konstanz: Hartung-Gorre, 1999.
Find full textVogler, Lewis E. A new approach to HF channel modeling and simulation. Boulder, Colo: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 1988.
Find full textVogler, Lewis E. A new approach to HF channel modeling and simulation. [Boulder, CO]: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 1988.
Find full textVogler, Lewis E. A new approach to HF channel modeling and simulation. Boulder, Colo: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 1988.
Find full textLewicki, David G. Gear crack propagation investigations. [Washington, DC]: National Aeronautics and Space Administration, 1996.
Find full textReid, William H. Microcomputer simulation of a Fourier approach to ultrasonic wave propagation. Monterey, Calif: Naval Postgraduate School, 1992.
Find full textUpton, John G. Microcomputers simulation of a Fourier approach to optical wave propagation. Monterey, Calif: Naval Postgraduate School, 1992.
Find full textP, Mariño-Espiñeira, ed. Modeling the wireless propagation channel: A simulation approach with Matlab. Chichester, West Sussex, England: Wiley, 2008.
Find full textBook chapters on the topic "Simulation de propagation de changement"
Saito, Tatsuhiko. "Propagation Simulation." In Springer Geophysics, 205–54. Tokyo: Springer Japan, 2019. http://dx.doi.org/10.1007/978-4-431-56850-6_6.
Full textCliffe, Matthew J. "Radiation Propagation Simulation." In Longitudinally Polarised Terahertz Radiation for Relativistic Particle Acceleration, 59–83. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48643-7_4.
Full textToyoda, Masahiro, Takuya Oshima, Takatoshi Yokota, Tomonao Okubo, Shinichi Sakamoto, Yosuke Yasuda, Takashi Ishizuka, Yasuhito Kawai, and Takumi Asakura. "Noise Propagation Simulation." In Computational Simulation in Architectural and Environmental Acoustics, 179–242. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54454-8_7.
Full textSumi, Yoichi. "Simulation of Crack Propagation." In Mathematical and Computational Analyses of Cracking Formation, 195–221. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54935-2_10.
Full textCarcangiu, Sara, Augusto Montisci, and Renato Forcinetti. "Numerical Simulation of Wave Propagation." In Ultrasonic Nondestructive Evaluation Systems, 17–45. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10566-6_2.
Full textKuna, Meinhard. "Numerical Simulation of Crack Propagation." In Solid Mechanics and Its Applications, 327–59. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6680-8_8.
Full textKovtunenko, Victor A. "Quasistatic Propagation of Cracks." In Analysis and Simulation of Multifield Problems, 227–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36527-3_26.
Full textFurumura, Takashi. "Parallel Simulation of Seismic Wave Propagation." In Lecture Notes in Computer Science, 231–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-47847-7_20.
Full textStetsenko, Inna V., and Vitalii Lytvynov. "Computer Virus Propagation Petri-Object Simulation." In Advances in Intelligent Systems and Computing, 103–12. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25741-5_11.
Full textPaćko, Paweł. "Numerical Simulation of Elastic Wave Propagation." In Advanced Structural Damage Detection, 17–56. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118536148.ch2.
Full textConference papers on the topic "Simulation de propagation de changement"
Huang, Jingjing, Kin-Fai Tong, and Chris Baker. "Frequency diverse array: Simulation and design." In Propagation Conference (LAPC). IEEE, 2009. http://dx.doi.org/10.1109/lapc.2009.5352422.
Full textGodlewski, Philippe. "The Mondrian Propagation Simulation Model." In 2011 IEEE Vehicular Technology Conference (VTC 2011-Spring). IEEE, 2011. http://dx.doi.org/10.1109/vetecs.2011.5956795.
Full textKe-xin, Yin, and Zhu Jian-qi. "Simulation on email worms propagation." In 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC). IEEE, 2011. http://dx.doi.org/10.1109/mec.2011.6025460.
Full textKose, Kivanc, Nikolaos Grammalidis, Erdal Yilmaz, and Enis Cetin. "3D Forest Fire Propagation Simulation." In 2008 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON). IEEE, 2008. http://dx.doi.org/10.1109/3dtv.2008.4547885.
Full textKoziel, Slawomir, and Stanislav Ogurtsov. "Antenna design through variable-fidelity simulation-driven optimization." In Propagation Conference (LAPC). IEEE, 2011. http://dx.doi.org/10.1109/lapc.2011.6114019.
Full textRocha, Ana M., M. Facao, Andre Martins, and P. S. Andre. "Simulation of fiber fuse effect propagation." In 2009 3rd ICTON Mediterranean Winter Conference (ICTON-MW 2009). IEEE, 2009. http://dx.doi.org/10.1109/ictonmw.2009.5385610.
Full textLevadnyi, Iurii, Victor Ivanov, and Vyacheslav Shalyapin. "Assessment of evaporation duct propagation simulation." In 2011 XXXth URSI General Assembly and Scientific Symposium. IEEE, 2011. http://dx.doi.org/10.1109/ursigass.2011.6050871.
Full textMouhoub, M., and S. Sadaoui. "Improving Lotos simulation using constraint propagation." In 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05). IEEE, 2005. http://dx.doi.org/10.1109/ictai.2005.77.
Full textLee, Jisun, Matt Perkins, Spyros Kyperountas, and Youngmin Ji. "RF Propagation Simulation in Sensor Networks." In 2008 Second International Conference on Sensor Technologies and Applications (sensorcomm 2008). IEEE, 2008. http://dx.doi.org/10.1109/sensorcomm.2008.57.
Full textLi Zhuo and Li Changping. "Computer virus propagation modeling and simulation." In 2011 3rd International Conference on Computer Research and Development (ICCRD). IEEE, 2011. http://dx.doi.org/10.1109/iccrd.2011.5763942.
Full textReports on the topic "Simulation de propagation de changement"
Burr, T., C. A. Coulter, and J. Prommel. VPSim: Variance propagation by simulation. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/569135.
Full textYoung, Jacey, Alexander Heifetz, and Xin Huang. Simulation of Wave Propagation for Nuclear Facility Acoustic Communications. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1480538.
Full textFreund, Robert, Jaime Peraire, and Cuong Nguyen. Design Optimization and Simulation of Wave Propagation in Metamaterials. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada610912.
Full textCampbell, M. M., R. M. Clark, and M. A. Mostrom. Simulation and theory of radial equilibrium of plasmoid propagation. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/6607601.
Full textBrandenburg, John, Gary Warren, and Richard Worl. The Theory and Simulation of Plasmoid Formation and Propagation. Fort Belvoir, VA: Defense Technical Information Center, January 1990. http://dx.doi.org/10.21236/ada222048.
Full textHaus, Joseph W., Walter Kaechele, and Gary Shaulov. Pulse Generation and Propagation in Optical Fibers: Experiments and Simulation. Fort Belvoir, VA: Defense Technical Information Center, July 1998. http://dx.doi.org/10.21236/ada351230.
Full textHarikumar, Jayashree, Patrick Honan, Jesse Jackman, Brad Morgan, and Lon Anderson. Verification and Validation of Rural Propagation in the Sage 2.0 Simulation. Fort Belvoir, VA: Defense Technical Information Center, August 2016. http://dx.doi.org/10.21236/ad1012943.
Full textHirsekorn, M., P. P. Delsanto, N. K. Batra, and P. Matic. Modelling and Simulation of Acoustic Wave Propagation in Locally Resonant Sonic Materials. Fort Belvoir, VA: Defense Technical Information Center, January 2002. http://dx.doi.org/10.21236/ada525809.
Full textWilson, D. K., and Lanbo Liu. Finite-Difference, Time-Domain Simulation of Sound Propagation in a Dynamic Atmosphere. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada423222.
Full textBorovsky, J. E. Numerics for the simulation of electromagnetic-field propagation in nonionized and plasma media. Office of Scientific and Technical Information (OSTI), March 1986. http://dx.doi.org/10.2172/5791774.
Full text