Academic literature on the topic 'Simulation of Stirling cycle'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Simulation of Stirling cycle.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Simulation of Stirling cycle"
Červenka, Libor. "Idealization of The Real Stirling Cycle." Journal of Middle European Construction and Design of Cars 14, no. 3 (December 1, 2016): 19–27. http://dx.doi.org/10.1515/mecdc-2016-0011.
Full textOrgan, A. J. "Anatomy of the Stirling Engine Cycle." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 207, no. 3 (May 1993): 161–73. http://dx.doi.org/10.1243/pime_proc_1993_207_114_02.
Full textLin, Chen, Xian Zhou Wang, Xi Chen, and Zhi Guo Zhang. "Improve the Free-Piston Stirling Engine Design with High Order Analysis Method." Applied Mechanics and Materials 44-47 (December 2010): 1991–95. http://dx.doi.org/10.4028/www.scientific.net/amm.44-47.1991.
Full textStrauss, Johannes M., and Robert T. Dobson. "Evaluation of a second order simulation for Sterling engine design and optimisation." Journal of Energy in Southern Africa 21, no. 2 (May 1, 2010): 17–29. http://dx.doi.org/10.17159/2413-3051/2010/v21i2a3252.
Full textITO, Yu, and Kazuhiro HAMAGUCHI. "A03 Cycle Simulation of Single Piston Type Stirling Engine." Proceedings of the Symposium on Stirlling Cycle 2010.13 (2010): 13–14. http://dx.doi.org/10.1299/jsmessc.2010.13.13.
Full textHan, Xu Dong, and Wei Zheng Xu. "Analysis on the Cycle Characteristics of Dual Swash Plate Stirling Engine." Advanced Materials Research 724-725 (August 2013): 946–50. http://dx.doi.org/10.4028/www.scientific.net/amr.724-725.946.
Full textSchulz, S., and F. Schwendig. "A General Simulation Model for Stirling Cycles." Journal of Engineering for Gas Turbines and Power 118, no. 1 (January 1, 1996): 1–7. http://dx.doi.org/10.1115/1.2816540.
Full textSEKIYA, Hiroshi, and Iwao YAMASITA. "A Multi Simulation Model for Stirling and Vuilleumier Cycle Machines." Transactions of the Japan Society of Mechanical Engineers Series B 57, no. 542 (1991): 3590–97. http://dx.doi.org/10.1299/kikaib.57.3590.
Full textCullen, Barry, and Jim McGovern. "Development of a theoretical decoupled Stirling cycle engine." Simulation Modelling Practice and Theory 19, no. 4 (April 2011): 1227–34. http://dx.doi.org/10.1016/j.simpat.2010.06.011.
Full textSEKIYA, Hiroshi, and Fusao TERADA. "Numerical analysis of Stirling engine(1st Report, A cycle simulation code)." Transactions of the Japan Society of Mechanical Engineers Series B 56, no. 527 (1990): 2121–29. http://dx.doi.org/10.1299/kikaib.56.2121.
Full textDissertations / Theses on the topic "Simulation of Stirling cycle"
Blaha, Josef. "Stirlingův motor." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2008. http://www.nusl.cz/ntk/nusl-228037.
Full textOzbay, Sercan. "Thermal Analysis Of Stirling Cycle Regenerators." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613541/index.pdf.
Full textWills, James Alexander. "Exergy analysis of a Stirling cycle." Master's thesis, University of Cape Town, 2017. http://hdl.handle.net/11427/26865.
Full textLiang, Hua. "Viability of stirling-based combined cycle distributed power generation." Ohio : Ohio University, 1998. http://www.ohiolink.edu/etd/view.cgi?ohiou1176484842.
Full textDRUMOND, CARLO CESAR. "NUMERICAL SIMULATION OF A ROTARY STIRLING ENGINE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=30089@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
O presente trabalho estuda um motor de deslocamento positivo Stirling rotativo. Dois modelos de simulação para este motor Stirling rotativo são desenvolvidos. O primeiro modelo utiliza o método isotérmico, mediante o qual a câmara de expansão/compressão do motor está à mesma temperatura do reservatório térmico com que troca calor. O segundo modelo utiliza o método de volumes de controle, no qual o motor é dividido em cinco volumes de controle: as câmaras de expansão e compressão, o aquecedor, o resfriador e o compartimento rotativo. Para cada volume de controle aplicam-se as equações de conservação de massa e energia e de equações de estado do gás. O sistema de equações diferenciais ordinárias resultantes do segundo modelo, é integrado, permitindo obter-se a variação no ângulo do eixo para todas as variáveis termodinâmicas do motor (pressão, temperatura, etc.). Dadas as condições de operação e a geometria do motor rotativo em estudo, os modelos preveem resultados globais e transientes ângulo a ângulo. Os resultados dos modelos são confrontados com resultados teóricos disponíveis na literatura.
The present work studies a positive displacement rotary Stirling engine. Two simulation models for this rotary Stirling engine are developed. The first model applies the isothermal method, in which the gas at the engine expansion / compression chamber has the same temperatures of the thermal reservoir. The second model uses the control volume method, in which the engine is divided into five control volumes: the expansion and compression chambers, the heater, the chiller and the rotary chamber. For each control volume the equations of conservation of mass and energy and the equation of state, are applied. The system of ordinary differential equations resulting from the second model is integrated allowing to obtain the variation in the axis angle for all thermodynamic variables of the motor (pressure, temperature, etc.). Given the operating conditions and geometry of the rotating motor under study, the models provide global and transient results from angle to angle. Results from two models are confronted with theoretical results available in the literature.
Chen, Mingfei. "Computer simulation of Ringbom stirling engine with solar pond." Ohio University / OhioLINK, 1989. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1182285925.
Full textHering, Klaus. "Parallel Cycle Simulation." Universität Leipzig, 1996. https://ul.qucosa.de/id/qucosa%3A34504.
Full textHugh, Mark A. "The effects of regenerator porosity on the performance of a high capacity stirling cycle cryocooler." Ohio : Ohio University, 1993. http://www.ohiolink.edu/etd/view.cgi?ohiou1175707790.
Full textPfeiffer, Jens [Verfasser]. "Unsteady Analytical Model for Appendix Gap Losses in Stirling Cycle Machines / Jens Pfeiffer." München : Verlag Dr. Hut, 2016. http://d-nb.info/109781811X/34.
Full textDeetlefs, Ivan Niell. "Design, simulation, manufacture and testing of a free-piston Stirling engine." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95922.
Full textENGLISH ABSTRACT: The aim of this study was to design and manufacture an experimentally testable free-piston Stirling engine (FPSE), including a linear electric generator; to develop and validate a theoretical simulation model; to identify problem areas pertaining to its manufacture; and finally to assess the work undertaken, to lay out the groundwork for the future development of a 3 kWe FPSE suitable for incorporation in a solar Stirling dish power generator. A redesigned version of the Beale B- 10B demonstrator engine was manufactured to overcome design diffculties and to simplify testing. The design made use of an electric generator designed at the Department of Electrical and Electronic Engineering at Stellenbosch University. Experimental measurements included piston and displacer motions, hot side and cold side temperatures, working space pressure, electric generator output, as well as heat rejection via a water jacket. Experimental measurements were taken prior to and subsequent to the addition of the electric generator. Indicated power was calculated as 0,659 W at a frequency of 10,99 Hz prior to the addition of the electric generator. The addition of the electric generator was unsuccessful since it was not well matched with the engine. The indicated power calculated was between 0,138 W and 0,144 W for different loads on the electric generator, while the electrical output power ranged from 1,23 mWe to 1,79 mWe. The addition of the electric generator produced non-continuous motion caused by magnetic forces instead of engine pressure variations. The major manufacturing diffculty was the attachment of magnets for the electric generator, but this was overcome with the manufacture of a special assembly jig. The theoretical simulation model was a combination of a third-order and dynamic analysis. Working space values were solved by the application of the conservation of mass, momentum and energy equations for a one-dimensional discretised model of the engine, while the motion of the piston and displacer was determined by applying the equations of motion. The majority of experimental measurements were predicted more accurately when higher heat transfer coeficients were used between the working space and wall temperatures. The theoretical simulation model was used to gain insight into the effect of input parameters on engine operation. The displacer rod diameter was shown to have implications on output power and stability, while it was shown that there is a natural tendency to deliver constant output power at a near-constant frequency over a range of piston loads for an FPSE. It was also shown that the design of an FPSE is complex and that the design of all components should be done in parallel. The control of an FPSE was seen to be both a necessity and can be used to exploit the advantages of the uncoupled nature of an FPSE.
AFRIKKANSE OPSOMMING: Die doel van hierdie studie was om 'n eksperimentele toetsbare vrye-werksuier Stirling enjin te vervaardiging, wat 'n lineêre elektriese kragopwekker insluit; om 'n teoretiese simulasie model te ontwikkel en te yk; om vervaardiging probleme te identi seer; en om die ondernemende werk te assesseer om 'n fondasie te lê vir die toekomstige ontwikkeling van 'n 3 kWe vrye-werksuier Stirling enjin wat by 'n Stirling sonskottel ingelyf kan word. 'n Herontwerpte weergawe van die Beale B-10B demonstrasie enjin was vervaardig om ontwerp probleme te bowe te kom en om die toets daarvan te vereenvoudig. Die ontwerp het gebruik gemaak van 'n elektriese kragopwekker wat by die Departement Elektriese en Elektroniese Ingenieurswese aan die Universiteit van Stellenbosch ontwerp is. Eksperimentele metings het die werksuier en verplaser bewegings ingesluit, sowel as die warm kant en koue kant temperature, die werkruimte druk, die elektriese uitset van die kragopwekker, sowel as die hitteuitruiling wat met 'n water verkoelingskringloop gepaard gaan. Eksperimentele metings was geneem voor en na die byvoeging van die elektriese kragopwekker. Kraglewering was bereken op 0,659 W teen 'n frekwensie van 10,99 Hz voordat die elektriese kragopwekker bygevoeg is. Die byvoeging van die elektriese kragopwekker was onsuksesvol omdat die nie gepas was vir die enjin nie. Die kraglewering is bereken op vlakke wat gewissel het tussen 0,138 W en 0,144 W vir die verskillende belastings op die elektriese kragopwekker, terwyl die elektriese uitset gewissel het tussen 1,23 mWe en 1,79 mWe. Die byvoeging van die elektriese kragopwekker het 'n nie-aaneenlopende beweging veroorsaak weens die magnetiese kragte wat dit beinvloed het in plaas van enjindruk variasies. Die belangrikste ontwerpuitdagings was die ontwerp van 'n werksuier en verplaser wat 'n klein toleransie passing kon handhaaf om sodoende 'n seël te verseker terwyl dit aan temperatuur variasies blootgestel was. Die grootste vervaardigingsprobleem was die aanheg van magnete vir die elektriese kragopwekker, maar dit is te bowe gekom deur 'n spesiale voeg te vervaardig. Die teoretiese simulasie model was 'n kombinasie van 'n derde-orde en 'n dinamiese analise. Werkruimte waardes was opgelos deur die toepassing van die behoud van massa, momentum en energie vergelykings vir 'n een-dimensionele gediskretiseerde model van die enjin, terwyl die beweging van die werksuier en verplaser bepaal was deur die toepassing van die bewegingvergelykings. Die meerderheid van die eksperimentele metings was meer akkuraat voorspel wanneer hoër warmteoordrag koë siënte tussen die werkruimte en muurtemperature gebruik was. Die teoretiese simulasie model was gebruik om insig in terme van die e ek van invoer veranderlikes op die enjin gedrag te toon. Daar was getoon dat die verplaserstaaf diameter implikasies het op kragoplewering en stabiliteit, terwyl die natuurlike tendens van 'n vrye-werksuier Stirling enjin gewys was om 'n konstante kraguitvoer te lewer op 'n naby-konstante frekwensie oor 'n reeks werksuier laste. Daar was ook gewys dat die ontwerp van 'n vryewerksuier Stirling enjin kompleks is en dat die ontwerp van alle komponente in parallel gedoen moet word. Die beheer van 'n vrye-werksuier Stirling enjin was gewys om beide noodsaaklik te wees, sowel as gebruik kan word om die unieke voordele van 'n vrye-werksuier Stirling enjin se ongekoppelde natuur te ontgin.
Books on the topic "Simulation of Stirling cycle"
Hall, C. Multidimensional computer simulation of Stirling cycle engines. Pittsburgh, PA: Institute for Computational Mathematics and Applications, Dept. of Mathematics and Statistics, University of Pittsburgh, 1992.
Find full textSullivan, Timothy J. Evaluation of a Stirling engine heater bypass with the NASA Lewis nodal-analysis performance code. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center ; [Springfield, Va., 1986.
Find full textOrgan, Allan J. Stirling Cycle Engines. Chichester, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118818428.
Full textGingery, David J. Build a two cylinder Stirling cycle engine. [Springfield, MO: D.J. Gingery, 1990.
Find full textTew, Roy C. Progress of Stirling cycle analysis and loss mechanism characterization. [Washington, D.C: National Aeronautics and Space Administration, 1986.
Find full textOrgan, Allan J. Thermodynamics and gas dynamics of the stirling cycle machine. Birmingham: University ofBirmingham, 1994.
Find full textThermodynamics and gas dynamics of the Stirling cycle machine. Cambridge [England]: Cambridge University Press, 1992.
Find full textSier, Robert. Rev. Robert Stirling D.D.: A biography of the inventor of the heat economiser & Stirling cycle engine. Chelmsford, Essex: L. A. Mair, 1995.
Find full textHughes, William O. Vibration testing of an operating Stirling convertor. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2000.
Find full textMartini, William R. Development of free-piston Stirling engine performance and optimization codes based on Martini simulation technique. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Find full textBook chapters on the topic "Simulation of Stirling cycle"
Sun, Z. F., and C. G. Carrington. "Simulation and Second Law Analysis of a Miniature Stirling Cycle Cryocooler." In A Cryogenic Engineering Conference Publication, 1551–60. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0373-2_195.
Full textColgate, Stirling A., and Albert G. Petschek. "Regenerator Optimization for Stirling Cycle Refrigeration." In Advances in Cryogenic Engineering, 1351–58. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2522-6_166.
Full textNarayankhedkar, K. G. "Exergy Analysis of Stirling Cycle Cryogenerator." In Advances in Cryogenic Engineering, 1863–70. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-9047-4_235.
Full textMedina, Alejandro, Pedro Luis Curto-Risso, Antonio Calvo Hernández, Lev Guzmán-Vargas, Fernando Angulo-Brown, and Asok K. Sen. "Cycle-to-Cycle Variability." In Quasi-Dimensional Simulation of Spark Ignition Engines, 107–45. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5289-7_5.
Full textCook, E. L., J. Hackett, James R. Drummond, G. S. Mand, and L. Burriesci. "MOPITT Stirling Cycle Cooler Vibration Performance Results." In Cryocoolers 9, 711–18. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5869-9_82.
Full textClappier, Robert R., and Robert J. Kline-Schoder. "Precision Temperature Control of Stirling-Cycle Cryocoolers." In Advances in Cryogenic Engineering, 1177–84. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2522-6_144.
Full textMand, G. S., J. R. Drummond, D. Henry, and J. Hackett. "MOPITT On-Orbit Stirling Cycle Cooler Performance." In Cryocoolers 11, 759–68. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47112-4_92.
Full textColgate, S. A. "Regenerator Optimization for Stirling Cycle Refrigeration, II." In Cryocoolers 8, 247–58. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-9888-3_25.
Full textCollins, S. A., A. H. Flotow, and J. D. Paduano. "Adaptive Vibration Cancellation for Split-Cycle Stirling Cryocoolers." In Advances in Cryogenic Engineering, 1375–84. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2522-6_169.
Full textBradshaw, T. W., J. Delderfield, S. T. Werrett, and G. Davey. "Performance of the Oxford Miniature Stirling Cycle Refrigerator." In Advances in Cryogenic Engineering, 801–9. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2213-9_90.
Full textConference papers on the topic "Simulation of Stirling cycle"
DONG, Quan-Run, and Yong-Qiang SHI. "Stirling Cycle Solar Power System Design and Simulation." In 2018 International Conference on Energy Development and Environmental Protection (EDEP 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/edep-18.2018.20.
Full textRix, D. H. "The Further Development and Application of an Advanced Stirling Cycle Simulation." In 22nd Intersociety Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-9279.
Full textMcGovern, Jim, Barry Cullen, Michel Feidt, and Stoian Petrescu. "Validation of a Simulation Model for a Combined Otto and Stirling Cycle Power Plant." In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90220.
Full textSekiya, Hiroshi, Fusao Terada, and Iwao Yamashita. "Summary of Simulation Models for Stirling and Vuilleumier Cycle Machines and Characteristic Analyses." In 27th Intersociety Energy Conversion Engineering Conference (1992). 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/929031.
Full textMahkamov, Khamid, Irina Makhkamova, and Fadi Kahwash. "Novel Twin-Screw Stirling Cycle Machine for Cryogenic and Refrigeration Applications." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86853.
Full textRogdakis, E., P. Bitsikas, and G. Dogkas. "Three-Dimensional CFD Simulation of Prime Mover Stirling Engine." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70155.
Full textYu, Yingxiao, Zhaocheng Yuan, Jiayi Ma, and Shiyu Li. "Design and simulation of exhaust gas waste heat recovery system of gasoline engine based on Stirling cycle." In 2013 International Conference on Materials for Renewable Energy and Environment (ICMREE). IEEE, 2013. http://dx.doi.org/10.1109/icmree.2013.6893807.
Full textNascimento, Marco A. R., Osvaldo J. Venturini, Electo S. Lora, Guido A. Sierra, Lucilene O. Rodrigues, Hila´rio M. Carvalho, and Newton R. Moura. "Cycle Selection and Compressor Design of 600kW Simple Cycle Gas Turbine Engine." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-51523.
Full textToropov, Vassili V., and Henrik Carlsen. "Optimization of Stirling Engine Performance Based on Multipoint Approximation Technique." In ASME 1994 Design Technical Conferences collocated with the ASME 1994 International Computers in Engineering Conference and Exhibition and the ASME 1994 8th Annual Database Symposium. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/detc1994-0166.
Full textRogdakis, E., P. Bitsikas, and G. Dogkas. "Study of Gas Flow Through a Stirling Engine Regenerator." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70157.
Full textReports on the topic "Simulation of Stirling cycle"
Bloomfield, H. S. A reliability and mass perspective of SP-100 Stirling cycle lunar-base powerplant designs. Office of Scientific and Technical Information (OSTI), June 1991. http://dx.doi.org/10.2172/5289985.
Full textGoldberg, L. F. One- and two-dimensional Stirling machine simulation using experimentally generated reversing flow turbuulence models. Office of Scientific and Technical Information (OSTI), August 1990. http://dx.doi.org/10.2172/10181050.
Full textDaniel S. Wendt and Gregory L. Mines. Simulation of Air-Cooled Organic Rankine Cycle Geo. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1104501.
Full textFasham, M. J. R. Simulation of the carbon cycle in the ocean. Office of Scientific and Technical Information (OSTI), September 1991. http://dx.doi.org/10.2172/5082398.
Full textZhang S. Y. BOOSTER MAIN MAGNET CYCLE MODELING AND REPEATABILITY SIMULATION. Office of Scientific and Technical Information (OSTI), October 1989. http://dx.doi.org/10.2172/1150529.
Full textD. E. Shropshire and W. H. West. Software Requirements Specification Verifiable Fuel Cycle Simulation (VISION) Model. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/910990.
Full textJ. J. Jacobson, D. E. Shropshire, and W. B. West. Software Platform Evaluation - Verifiable Fuel Cycle Simulation (VISION) Model. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/911264.
Full textD. E. Shropshire and W. H. West. Software Requirements Specification Verifiable Fuel Cycle Simulation (VISION) Model. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/911281.
Full textJacob J. Jacobson, Robert F. Jeffers, Gretchen E. Matthern, Steven J. Piet, Benjamin A. Baker, and Joseph Grimm. VISION User Guide - VISION (Verifiable Fuel Cycle Simulation) Model. Office of Scientific and Technical Information (OSTI), August 2009. http://dx.doi.org/10.2172/968564.
Full textJacob J. Jacobson, Robert F. Jeffers, Gretchen E. Matthern, Steven J. Piet, and Wendell D. Hintze. User Guide for VISION 3.4.7 (Verifiable Fuel Cycle Simulation) Model. Office of Scientific and Technical Information (OSTI), July 2011. http://dx.doi.org/10.2172/1027943.
Full text