Academic literature on the topic 'Simulation SCAPS-1D'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Simulation SCAPS-1D.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Simulation SCAPS-1D"

1

Sawicka-Chudy, P., Z. Starowicz, G. Wisz, et al. "Simulation of TiO2/CuO solar cells with SCAPS-1D software." Materials Research Express 6, no. 8 (2019): 085918. http://dx.doi.org/10.1088/2053-1591/ab22aa.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mostefaoui, M., H. Mazari, S. Khelifi, A. Bouraiou, and R. Dabou. "Simulation of High Efficiency CIGS Solar Cells with SCAPS-1D Software." Energy Procedia 74 (August 2015): 736–44. http://dx.doi.org/10.1016/j.egypro.2015.07.809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhou, Xiangyu, and Junfeng Han. "Design and simulation of C2N based solar cell by SCAPS-1D software." Materials Research Express 7, no. 12 (2020): 126303. http://dx.doi.org/10.1088/2053-1591/abcdd6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mandadapu, Usha. "Simulation and Analysis of Lead based Perovskite Solar Cell using SCAPS-1D." Indian Journal of Science and Technology 10, no. 1 (2017): 1–8. http://dx.doi.org/10.17485/ijst/2017/v11i10/110721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mandadapu, Usha, K. Thyagarajan, and S. Victor Vedanayakam. "Simulation and Analysis of Lead based Perovskite Solar Cell using SCAPS-1D." Indian Journal of Science and Technology 10, no. 11 (2017): 1–8. http://dx.doi.org/10.17485/ijst/2017/v10i11/110721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sadanand and D. K. Dwivedi. "Numerical Simulation for Enhancement of the Output Performance of CZTS Based Thin Film Photovoltaic Cell." Advanced Science, Engineering and Medicine 12, no. 1 (2020): 88–94. http://dx.doi.org/10.1166/asem.2020.2526.

Full text
Abstract:
The performance of CZTS thin film photovoltaic cell has been simulated using SCAPS-1D (Solar cell capacitance simulator). The thickness of CZTS absorber layer, ZnO buffer layer and ZnO doped with Al window layer have been varied to optimize the overall output performance of CZTS based thin film photovoltaic cell. Simulation show the favorable result which can help to prove the feasibility of highly efficient CZTS thin film photovoltaic cell.
APA, Harvard, Vancouver, ISO, and other styles
7

T, Joseph Mebelson, and Elampari K. "Numerical Simulation for Optimal Thickness Combination of CdS/ZnS Dual Buffer Layer CuInGaSe2 Solar Cell Using SCAPS 1D." Indian Journal of Science and Technology 12, no. 45 (2019): 01–06. http://dx.doi.org/10.17485/ijst/2019/v12i45/148395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mouhammed, Adnan Alwan, and Ayed N. Saleh. "Simulation Effect of Ga2O3 layer thickness on CdTe solar cell by SCAPS-1D." Tikrit Journal of Pure Science 24, no. 6 (2019): 110. http://dx.doi.org/10.25130/j.v24i6.895.

Full text
Abstract:
The effect of Ga2O3 thickness on CdTe cells was studied using the SCAPS-1D simulator. The best solar cell efficiency (14.65%) was found at the thickness of the gallium oxide layer (1-10nm) and the cell efficiency (η) decrease with an increase in the thickness of the oxide layer and the decrease of the fill factor, thus decreasing the voltage current (I-V) and decreasing the current of the short circuit (Isc). The value of the open circuit voltage (VOC) is approximately constant and at 0.76V. The optical properties of the cell of quantitative efficiency are 86% and decrease within 18nm
 
 http://dx.doi.org/10.25130/tjps.24.2019.116
APA, Harvard, Vancouver, ISO, and other styles
9

Anwar, Farhana, Rafee Mahbub, Sakin Sarwar Satter, and Saeed Mahmud Ullah. "Effect of Different HTM Layers and Electrical Parameters on ZnO Nanorod-Based Lead-Free Perovskite Solar Cell for High-Efficiency Performance." International Journal of Photoenergy 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/9846310.

Full text
Abstract:
Simulation has been done using SCAPS-1D to examine the efficiency of CH3NH3SnI3-based solar cells including various HTM layers such as spiro-OMeTAD, Cu2O, and CuSCN. ZnO nanorod array has been considered as an ETM layer. Device parameters such as thickness of the CH3NH3SnI3 layer, defect density of interfaces, density of states, and metal work function were studied. For optimum parameters of all three structures, efficiency of 20.21%, 20.23%, and 18.34% has been achieved for spiro-OMeTAD, Cu2O, and CuSCN, respectively. From the simulations, an alternative lead-free perovskite solar cell is introduced with the CH3NH3SnI3 absorber layer, ZnO nanorod ETM layer, and Cu2O HTM layer.
APA, Harvard, Vancouver, ISO, and other styles
10

Ouédraogo, S., F. Zougmoré, and J. M. Ndjaka. "Numerical Analysis of Copper-Indium-Gallium-Diselenide-Based Solar Cells by SCAPS-1D." International Journal of Photoenergy 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/421076.

Full text
Abstract:
We used a one-dimensional simulation program Solar Cell Capacitance Simulator in 1 Dimension (SCAPS-1D) to investigate Copper-Indium-Gallium-Diselenide- (CIGS-) based solar cells properties. Starting with a conventional ZnO-B/i-ZnO/CdS/CIGS structure, we simulated the parameters of current-voltage characteristics and showed how the absorber layer thickness, hole density, and band gap influence the short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF), and efficiency of solar cell. Our simulation results showed that all electrical parameters are greatly affected by the absorber thickness (w) below 1000 nm, due to the increase of back-contact recombination and very poor absorption. Increasing hole density (p) or absorber band gap (Eg) improvesVocand leads to high efficiency, which equals value of 16.1% whenp= 1016 cm−3andEg=1.2 eV. In order to reduce back-contact recombination, the effect of a very thin layer with high band gap inserted near the back contact and acting as electrons reflector, the so-called back-electron reflector (EBR), has been investigated. The performances of the solar cells are significantly improved, when ultrathin absorbers (w< 500 nm) are used; the corresponding gain ofJscdue to the EBR is 3 mA/cm2. Our results are in good agreement with those reported in the literature from experiments.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Simulation SCAPS-1D"

1

Toura, Hanae. "Elaboration and characterization by electrochemical technique CZTS thin layers for photovoltaic application." Doctoral thesis, Universitat Politècnica de València, 2020. http://hdl.handle.net/10251/154334.

Full text
Abstract:
[EN] The increase in energy needs, particularly in terms of environmental protection, has greatly stimulated research in the field of photovoltaic conversion in recent years. Solar radiation provides an excellent resource for producing clean and sustainable electricity without toxic pollution or global warming, but in terms of high demand for energy for electricity production as well as the toxicity or scarcity of components constitute the solar cells, this solar transformation technology is still somewhat limited. Because these parameters constitute the main environmental concerns surrounding the photovoltaic industry. The compound Cu2ZnSnS4 (CZTS) can be considered as one of the most promising absorbent layer materials for low cost thin film solar cells. The abundance and non-toxicity of the constituent elements this promising material is the subject of this work. Obviously, this leads us to think about optimizing the other parameters influencing the formation of thin layers by the electrodeposition method. An electrochemical deposition technique which offers an advantageous alternative from an economic point of view and especially from the possibility of using large surface substrates. The initial focus was on determining the optimal parameters for the CZTS quaternary thin film development process. The electrodeposition is implemented by the technique of polarization of a potentiostatic electrode. Because this technique is based on the deposition potential of each substance constituting the electrolytic bath, a study has been conducted on the effect of the factors of complexity in order to assimilate these reduction potentials. Then, the annealing process which is a necessary step in the formation of absorbent layers in CZTS was mastered, under the influence of the complexity factor so as to reduce the annealing temperature while preserving the properties of the material. High quality kesterite films with a compact morphology and a well-defined crystal structure at low temperatures were synthesized using Na2SO4 as the complexing agent. Subsequently, the CZTS kesterite films were prepared on different conductive substrates (ITO, FTO and Mo / glass) due to specifying the effect of back contact. The best behavior is a specific combination of the parameters studied. This work made it possible in particular to master the composition of the films deposited, the annealing process as well as the necessary characterization techniques. Finally, our strategy implements a digital simulation of the CZTS solar cell using the SCAPS-1D software. After the experimental visualization of the thin layers of CZTS on different conductive substrates, modeling by the SCAPS-1D software of the CZTS solar cell device showed that the back-contact Mo mounts the best performances.<br>[ES] El aumento de las necesidades energéticas, particularmente en términos de protección del medio ambiente, ha estimulado en gran medida la investigación en el campo de la conversión fotovoltaica en los últimos años. La radiación solar proporciona un recurso excelente para producir electricidad limpia y sostenible sin contaminación tóxica o calentamiento global, pero en términos de alta demanda de energía eléctrica, así como la toxicidad o escasez de componentes que constituyen las células solares, esta tecnología de transformación solar todavía es algo limitada. En consecuencia estos parámetros constituyen las principales preocupaciones ambientales que rodean a la industria fotovoltaica. El compuesto Cu2ZnSnS4 (CZTS) puede considerarse como uno de los materiales absorbentes más prometedores para las células solares de película delgada de bajo costo. La abundancia y la no toxicidad de los elementos constitutivos de este prometedor material es el tema de este trabajo. Este objetivo nos ha llevado a pensar en optimizar los parámetros que influyen en la formación de capas delgadas por métodos electroquímicos. La técnica de deposición electroquímica o electrodeposición catódica ofrece una alternativa ventajosa desde un punto de vista económico y especialmente ofrece la posibilidad de utilizar sustratos de gran superficie. El enfoque inicial fue determinar los parámetros óptimos para el proceso de desarrollo de película delgada cuaternaria de CZTS. La electrodeposición se implementó mediante la técnica de polarización de un electrodo por el método potenciostático, o sea a potencial constante. Debido a que esta técnica se basa en el potencial de deposición de cada sustancia que constituye el baño electrolítico, se ha llevado a cabo un estudio sobre el efecto de los factores de complejidad para acercar estos potenciales de reducción. Una vez fueron depositadas las capas, se continuó con el estudio del proceso de recocido, que es un paso necesario en la formación de capas absorbentes de CZTS bajo la influencia del factor de complejidad, debido a que conviene reducir la temperatura de recocido mientras se intenta conservan las propiedades del material. Se sintetizaron películas de kesterita de alta calidad con una morfología compacta y una estructura cristalina bien definida a bajas temperaturas usando Na2SO4 como agente acomplejante. Posteriormente, las películas de kesterita CZTS se prepararon en diferentes sustratos conductores (ITO, FTO y Mo / vidrio) para estudiar el efecto del contacto posterior. Comprobamos que el mejor comportamiento se produce para una combinación específica de los parámetros estudiados. En particular este trabajo nos ha permitido controlar la composición de las películas depositadas, dominar el proceso de recocido y usar las técnicas de caracterización necesarias para evaluar la composicion, calidad y propiedades optoelectrónicas de las capas de CZTS sintetizadas. Finalmente, nuestra estrategia implementa una simulación digital de la célula solar CZTS utilizando el software SCAPS-1D. Después de la visualización experimental de las capas delgadas de CZTS en diferentes sustratos conductores, el modelado por el software SCAPS1D del dispositivo de células solares CZTS demostró que el contacto trasero Mo ofrece los mejores rendimientos.<br>[FR] L'augmentation des besoins énergétiques, notamment en matière de protection de l'environnement, a fortement stimulé la recherche dans le domaine de la conversion photovoltaïque ces dernières années. Le rayonnement solaire fournit une excellente ressource pour produire de l'électricité propre et durable sans pollution toxique ni réchauffement climatique, mais en termes de forte demande d'énergie pour la production de l’électricité ainsi que la toxicité ou la rareté des composants constituent les cellules solaires, cette technologie de transformation solaire est encore un peu limitée. En raison que ces paramètres constituent les principales préoccupations environnementales entourant l'industrie photovoltaïque. Le composé C2ZnSnS4 (CZTS) peut être considéré comme l'un des matériaux de couche absorbante les plus prometteurs pour les cellules solaires en couches minces à faible coût. L’abondance et la non-toxicité des éléments constitutifs ce matériau prometteur fait l'objet de ce travail. De toute évidence, cela nous amène à réfléchir pour optimiser les autres paramètres influençant la formation de couches minces par la méthode d'électrodéposition. Une technique de dépôt par voie électrochimique qui offre une alternative avantageuse du point de vue économique et surtout de la possibilité d’utiliser des substrats de grande surface. Initialement, l'accent était mis sur la détermination des paramètres optimaux pour le processus d’élaboration de couches minces du quaternaire CZTS. L'électrodéposition est mise en œuvre par la technique de polarisation d'une électrode potentiostatique. En raison, que cette technique reposant sur le potentiel de dépôt de chaque substance constituant le bain électrolytique, une étude a été menée sur l'effet des facteurs de complexité afin de rapprocher ces potentiels de réduction. Ensuite, Le processus de recuit qui est une étape nécessaire dans la formation de couches absorbantes en CZTS a été maîtriser, sous l'influence du facteur de complexité en raison de réduire la température de recuit tout en conservant les propriétés du matériau. Des films de kësterite de haute qualité avec une morphologie compacte et une structure cristalline bien définie à basse température ont été synthétisés en utilisant Na2SO4 comme agent complexant. Par la suite, les films de kestérite CZTS ont été préparés sur différents substrats conducteurs (ITO, FTO et Mo / verre) en raison de spécifier l'effet du contact arrière. Le meilleur comportement est une combinaison spécifique des paramètres étudiés. Ces travaux ont permis notamment de maîtriser la composition des films déposés, le processus de recuit ainsi que les techniques de caractérisation nécessaire. Finalement, notre stratégie met en œuvre une simulation numérique de la cellule solaire CZTS à l'aide du logiciel SCAPS − 1D. Après la visualisation expérimentale des couches minces de Czts sur différent substrats conducteur, une modélisation par le logiciel SCAPS-1D du dispositif CZTS cellules solaires a montré que le Mo contact arrière monte les meilleures performances.<br>[CA] L'augment de les necessitats energètiques, particularment en termes de protecció de l'entorn, ha estimulat en gran mesura la investigació en el camp de la conversió fotovoltaica en els últims anys. La radiació solar proporciona un recurs excel·lent per produir electricitat neta i sostenible sense contaminació tòxica ni escalfament global, però en termes de l'alta demanda d'energia elèctrica, així com la toxicitat o escassetat de components que constitueixen les cèl·lules solars, aquesta tecnologia de transformació solar encara trova barreres limitadores. En conseqüència aquests paràmetres constitueixen les principals preocupacions ambientals que envolten a la indústria fotovoltaica. El compost Cu2ZnSnS4 (CZTS) pot considerar-se com un dels materials absorbents més prometedors per a les cèl·lules solars de pel·lícula prima i de baix cost. L'abundància i la no toxicitat dels elements constitutius d'aquest prometedor material és el tema d'aquest treball. Aquest objectiu ens ha portat a treballar en l’optimització dels paràmetres que influeixen en la formació de capes primes de CZTS per mètodes electroquímics. La tècnica de deposició electroquímica o electrodeposició catòdica ofereix una alternativa avantatjosa des d'un punt de vista econòmic i especialment ofereix la possibilitat d'utilitzar substrats de gran superfície. L'enfocament inicial va ser determinar els paràmetres òptims per al procés de desenvolupament d’una pel·lícula prima quaternària de CZTS. La electrodeposició es va implementar mitjançant la tècnica de polarització d'un elèctrode pel mètode potenciostàtic, o siga a potencial constant. Aquesta tècnica es basa en el potencial de deposició de cada substància que constitueix el bany electrolític es diferent i per tant s'ha dut a terme un estudi sobre l'efecte dels factors de complexitat per tal apropar aquests potencials de reducció de tots els components involucrats. Un cop van ser dipositades les capes, es va continuar amb l’estudi del procés de recuit, que és un pas necessari en la formació de capes absorbents de CZTS sota la influència del factor de complexitat, a causa de la reducció de la temperatura de recuit mentre es conserven les propietats de l'material. Es van sintetitzar pel·lícules de kesterita d'alta qualitat amb una morfologia compacta i una estructura cristal·lina ben definida a baixes temperatures usant Na2SO4 com a agent acomplexant. Posteriorment, les pel·lícules de kesterita CZTS es van preparar en diferents substrats conductors (ITO, FTO i Mo / vidre) per estudiar l'efecte del contacte posterior sobre les capes fines. Obtinguerem que el millor comportament és una combinació específica dels paràmetres estudiats. En particular aquest treball ens ha permès controlar la composició de les pel·lícules dipositades, controlar el procés de recuit i usar les tècniques de caracterització necessàries per avaluar la composició, qualitat i propietats optoelectròniques de les capes de CZTS depositades. Finalment, en la nostra estratègia es va implementar una simulació numérica d’una cèl·lula solar de CZTS utilitzant el programari SCAPS-1D. Després de la visualització experimental de les capes primes de CZTS en diferents substrats conductors, el modelatge pel programari SCAPS-1D del dispositiu fotovoltaic de CZTS va demostrar que el contacte posterior de Mo és el que ofereix el millor rendiment.<br>I would like to thank the Moroccan Center for Scientific and Technical Research and the Doctoral school of the Polytechnic University of Valencia for the financial assistance they have allocated. I also extend my sincere thanks to the UPV Electron Microscopy Service and to Mr Ángel Sans Tresserras for their help to learn how to work with characterization techniques.<br>Toura, H. (2020). Elaboration and characterization by electrochemical technique CZTS thin layers for photovoltaic application [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/154334<br>TESIS
APA, Harvard, Vancouver, ISO, and other styles
2

Ganvir, Rasika. "MODELLING OF THE NANOWIRE CdS-CdTe DEVICE DESIGN FOR ENHANCED QUANTUM EFFICIENCY IN WINDOW-ABSORBER TYPE SOLAR CELLS." UKnowledge, 2016. http://uknowledge.uky.edu/ece_etds/83.

Full text
Abstract:
Numerical simulations of current-voltage characteristics of nanowire CdS/CdTe solar cells are performed as a function of temperature using SCAPS-1D. This research compares the experimental current-voltage (I-V) characteristics with the numerical (I-V) simulations obtained from SCAPS-1D at various temperatures. Various device parameters were studied which can affect the efficiency of the nanowire-CdS/CdTe solar cell. It was observed that the present simulated model explains the important effects of these solar cell devices, such as the crossover and the rollover effect. It was shown that the removal of defect in i-SnO2 is responsible for producing the crossover effect. In the past, the rollover effect has been explained by using back to back diode model in the literature. In this work, simulations were performed in order to validate this theory. At the back electrode, the majority carrier barrier height was varied from 0.4 to 0.5 eV, the curve corresponding to the 0.5 eV barrier showed a strong rollover effect, while this effect disappeared when the barrier was reduced to 0.4 eV. Thus, it was shown that the change of barrier height at the contact is a critical parameter in the rollover effect.
APA, Harvard, Vancouver, ISO, and other styles
3

Violas, André Filipe Ferreira. "Novel Rear Contact Architectures in CIGS Solar Cells: Modelling and Experimental Fabrication." Master's thesis, 2020. http://hdl.handle.net/10362/113515.

Full text
Abstract:
Cu(In,Ga)Se2 (CIGS) solar cells are amongst the best performing thin-film technologies mainly due to post-deposition treatment (PDT) improvement of the last years. However, the electrical simulation baseline models did not quite follow the experimental results. Moreover, there is no baseline model for recent CIGS solar cells until the time of writing of this thesis, whereas a scientific paper is already being written to be submitted, to provide with an updated model. This study provided with an updated experimentally-based baseline model for electrical simulations in SCAPS-1D with the incorporation of the PDT effects and high-efficient device characteristics. This baseline model produces comparable results with high-efficient 22.6 % record cell from ZSW. In order to be even more cost and environmental competitive with the widely used silicon photovoltaic technology, it is important the implementation of ultra-thin devices. However, electrical and optical limitations prevent the widespread of these devices, such as rear recombination and insufficient light absorption. The baseline model is applied to ultra-thin absorbers, whereas an increased bulk CIGS defect density is necessary to model the experimental data. Furthermore, simulations results reveal that by addressing these limitations would be possible to achieve an ultra-thin solar cell with at least 19.0 % power conversion efficiency, with open circuit voltage values even higher compared to the ZSW record cell. On the other hand, it is shown the feasibility of the fabrication of a metal/dielectric structure at the rear contact with industrial-friendly processes. The innovative rear contact has the potential to tackle the rear recombination with the passivating dielectric and improving light absorption with the high reflecting metal layer in ultra-thin devices. Such structure effectively with both benefits has not been reported yet.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Simulation SCAPS-1D"

1

Laidouci, A., A. Aissat, and J. P. Vilcot. "Simulation and Optimization of Cds/ZnSnN2 Structure for Solar Cell Applications with SCAPS-1D Software." In Lecture Notes in Electrical Engineering. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6259-4_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Srivastava, Ashutosh, Trupti Ranjan Lenka, and Susanta Kumar Tripathy. "SCAPS-1D Simulations for Comparative Study of Alternative Absorber Materials Cu2XSnS4 (X = Fe, Mg, Mn, Ni, Sr) in CZTS-Based Solar Cells." In Lecture Notes in Electrical Engineering. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3767-4_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Simulation SCAPS-1D"

1

Khoshsirat, Nima, and Nurul Amziah Md Yunus. "Numerical simulation of CIGS thin film solar cells using SCAPS-1D." In 2013 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (CSUDET). IEEE, 2013. http://dx.doi.org/10.1109/csudet.2013.6670987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rihana, Sumair Faisal Ahmed, and Muhammad Khalid. "Simulation of CIGS based solar cells with SnO2 window layer using SCAPS-1D." In 2019 International Conference on Power Electronics, Control and Automation (ICPECA). IEEE, 2019. http://dx.doi.org/10.1109/icpeca47973.2019.8975461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sayeed, Md Abu, and Hasan Khaled Rouf. "Numerical Simulation of Thin Film Solar Cell Using SCAPS-1D: ZnSe as Window Layer." In 2019 22nd International Conference on Computer and Information Technology (ICCIT). IEEE, 2019. http://dx.doi.org/10.1109/iccit48885.2019.9038584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hossain, Asif, Asif Hossain, Muhammad Mahmudul Hasan, et al. "Fully Lead-Free All Perovskite Tandem Solar Cell with Improved Efficiency: Device Simulation Using SCAPS-1D." In 2020 IEEE Region 10 Symposium (TENSYMP). IEEE, 2020. http://dx.doi.org/10.1109/tensymp50017.2020.9230927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ratnasinghe, Dinuka R., Nipuna L. Adihetty, Muthuthanthrige L. C. Attygalle, and Hasitha Mahabaduge. "Performance Investigation and Optimization of Perovskite/CIGS Tandem Solar Cell by Using SCAPS-1D Modeling and Simulation." In 2021 Moratuwa Engineering Research Conference (MERCon). IEEE, 2021. http://dx.doi.org/10.1109/mercon52712.2021.9525755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zulkarnain, Meah Imtiaz, and Nazmul Islam. "Optimization of Cu(In,Ga)Se2 Solar Cell and its Comparative Performance Analysis for Employing Different Buffer and Window Layers Through Numerical Simulation and Analysis Using SCAPS-1D." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24192.

Full text
Abstract:
Abstract In this research, a numerical simulation and analysis of the second generation thin film solar cell Copper Indium Gallium diselenide, Cu(In,Ga)Se2 or, CIGS, is conducted in order to optimize its performance and compare among the cells using different materials for buffer and window layers. The one-dimensional solar cell simulation program SCAPS-1D (Solar Cell Capacitance Simulator) is used for the simulation and analysis purpose. The effects of variation of bandgap, concentration and thickness of the p-type CIGS absorber layer on the efficiency of CIGS solar cell are investigated. The change in CIGS solar cell efficiency with change in temperature is studied, too. Two different buffer layers namely CdS and In2S3 are considered for the simulation of the CIGS solar cell. The thickness of the buffer layer, its bandgap and concentration are taken into consideration for optimization. As for the window layer, ZnO and SnO2 are employed for the numerical simulation. The thickness of the window layer is varied and its effect on the efficiency of the solar cell is investigated. The open-circuit voltage, short-circuit current density, fill factor and quantum efficiency of the CIGS solar cell are observed from the SCAPS simulation besides the solar cell efficiency. A comparison among the different CIGS cell structures employing different buffer layers and window layers is performed in terms of efficiency and other essential parameters as mentioned above. The solar cell performances of the structures explored in this work were also put in comparison against some laboratory research cell output. The simulation result shows a possible better performance for all the simulated CIGS cell structures compared to the experimental results. In2S3 appears to increase efficiency and thus poses a great potential for non-toxic CIGS solar cell. Though CIGS absorber layer requires more thickness for desired output, successful application of much thinner SnO2 replacing ZnO buffer layer paves the way to less thicker CIGS thin film solar cell.
APA, Harvard, Vancouver, ISO, and other styles
7

Shamardin, Artem, Denys Kurbatov, and Vladislav Volobuev. "Analysis of Spray Deposited Cu2ZnSnXGe1-xS4 Thin Film Solar Cells: Model Creation in SCAPS-1D and Numerical Simulation of Their Performance." In 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2020. http://dx.doi.org/10.1109/nap51477.2020.9309699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Khanna, Arrik, Rahul Pandey, Jaya Madan, and Arvind Dhingra. "Thickness Optimisation and Defect Analysis of Wide Bandgap PbS-CQD Solar Cell by SCAPS-1D Simulations." In 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC). IEEE, 2021. http://dx.doi.org/10.1109/pvsc43889.2021.9518721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bansal, Shubhra, and Puruswottam Aryal. "Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations." In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). IEEE, 2016. http://dx.doi.org/10.1109/pvsc.2016.7749702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography