Academic literature on the topic 'Simulation spice'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Simulation spice.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Simulation spice"

1

Rashid, Muhammad H. "Control Systems Simulation by Spice." IFAC Proceedings Volumes 25, no. 8 (June 1992): 633–37. http://dx.doi.org/10.1016/s1474-6670(17)54119-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Neifeld, Mark A., and Wu-Chun Chou. "spice-based optoelectronic system simulation." Applied Optics 37, no. 26 (September 10, 1998): 6093. http://dx.doi.org/10.1364/ao.37.006093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vladimirescu, A., and J. J. Chariot. "MOS analogue circuit simulation with SPICE." IEE Proceedings - Circuits, Devices and Systems 141, no. 4 (1994): 265. http://dx.doi.org/10.1049/ip-cds:19941247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wedding, B. "Spice simulation of laser diode modules." Electronics Letters 23, no. 8 (1987): 383. http://dx.doi.org/10.1049/el:19870280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ahmer, Mohd, Abdul Sajid, and M. Yusuf Yasin. "SPICE Simulation of Memristor Series and Parallel." SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology 9, no. 02 (December 25, 2017): 89–92. http://dx.doi.org/10.18090/samriddhi.v9i02.10867.

Full text
Abstract:
Memory Resistors also known as Memristors, is a nonlinear resistor with memory. It is the fourth basic circuit element except resistor, capacitor and an inductor. The capability of memorizing its resistance makes its useful for designing of non volatile memory and in neural networks. This paper aims at study of Memristors characteristics. We first analyze and model the characteristics of Memristor with HSPICE and then study its behavior for series and parallel combination.
APA, Harvard, Vancouver, ISO, and other styles
6

Balaji, Uma. "Simulation Models of Energy Cables in SPICE." International Journal of Power Electronics and Drive Systems (IJPEDS) 9, no. 2 (June 1, 2018): 744. http://dx.doi.org/10.11591/ijpeds.v9.i2.pp744-749.

Full text
Abstract:
Accurate modeling of cables is important to study the behavior of high frequency disturbances in power converter systems. This paper reviews and compares two popular methodologies to model energy cables – an improved per unit length parameters based model and a Laplace SPICE element based model. The two models presented take into account the frequency dependence of the parameters of the cable. A ladder network is used for this purpose in the per unit length based model. The Laplace SPICE element model is generated from from a rational function approximation for the admittance parameters that are frequency dependant. The rational function approximation is obtained using a well known vector fitting algorithm. The time and frequency domain solutions of a two wire energy cable, obtained from the two models, agree well.
APA, Harvard, Vancouver, ISO, and other styles
7

CRUIZIAT, P., and Randy THOMAS. "SPICE - a circuit simulation program for physiologists." Agronomie 8, no. 7 (1988): 613–23. http://dx.doi.org/10.1051/agro:19880706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nichols, K. G., T. J. Kazmierski, M. Zwolinski, and A. D. Brown. "Overview of SPICE-like circuit simulation algorithms." IEE Proceedings - Circuits, Devices and Systems 141, no. 4 (1994): 242. http://dx.doi.org/10.1049/ip-cds:19941246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Veeraraghavan, S., J. G. Fossum, and W. R. Eisenstadt. "SPICE Simulation of SOI MOSFET Integrated Circuits." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 5, no. 4 (October 1986): 653–58. http://dx.doi.org/10.1109/tcad.1986.1270235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vasilescu, Gabriel, and Luonan Chen. "Spice simulation of intracellular transport: Free diffusion." Asian Journal of Control 13, no. 5 (May 23, 2011): 738–48. http://dx.doi.org/10.1002/asjc.384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Simulation spice"

1

Alali, Oussama. "Modélisation VHDL-AMS analogique et simulation SPICE /." Paris : École nationale supérieure des télécommunications, 1998. http://catalogue.bnf.fr/ark:/12148/cb367111244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mitter, Chang Su. "Insulated gate bipolar transistor (IGBT) simulation using IG-Spice." Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-03022010-020115/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Leung, Hong Man. "SPICE simulation and modeling of DC-DC flyback converter." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/36643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Badcock, Stephen G. "Viability study of SiGe/Si heterojunction MOSFET technology by computer simulation." Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bonhomme, Phillip. "Circuit modeling of spintronic devices: a SPICE implementation." Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51818.

Full text
Abstract:
Every engineer that has worked on designing an integrated circuit has to leverage an under- standing of device physics. Understanding device physics is essential when optimizing a design for speed, power, etc. These characteristics affect the bottom line when considering an integrated circuit used in a particular application. In order for there to be an under- standing of device physics, there must be a device model that is developed for a device of interest. The development of a device model often involves utilizing fundamental physical equations in a manner that is solvable by either analytical or numerical means. This typically begins by simplifying fundamental physical equations, possibly spanning multiple domains, and considering the physical quantities of interest. In order to make simplifications, assumptions about the underlying physics must be made. It is the process of transitioning from known physics laws to simplified mathematical models that a device modeler spans. This thesis will cover the device modeling aspects of a new classification of computing devices, spintronics. It will begin by stating the physical assumptions necessary for the operation of spintronic devices. Then it will go the process of deriving the underlying physical equations and stating them in a tractable form with the appropriate boundary conditions. Then these equations will be manipulated and mapped into an equivalent circuit. The equivalent circuits will them be validated against analytical solutions provided from other works. It will then finish by providing example devices that can be simulated with the develop device models, and some optimization results are proposed based off a simplified circuit model.
APA, Harvard, Vancouver, ISO, and other styles
6

Yen, Wen-Tsung. "Comparison of SPICE and Network C simulation models using the CAM system." PDXScholar, 1991. https://pdxscholar.library.pdx.edu/open_access_etds/4243.

Full text
Abstract:
The performance of SPICE and Network C (NC) circuit simulator when simulating MOS transistor circuits has been investigated and compared. SPICE analog model, NC analog model and NC MOS_PWL model are the three MOS transistor models being used. The comparison between SPICE and NC includes five areas. They are MOS transistor model, circuit analysis and computational methods, limitation on the ability to simulate circuits containing the MOS transistor diode configuration, run time and the ability to build new circuit component models using derived equations.
APA, Harvard, Vancouver, ISO, and other styles
7

Stein, Félix. "SPICE Modeling of TeraHertz Heterojunction bipolar transistors." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0281/document.

Full text
Abstract:
Les études qui seront présentées dans le cadre de cette thèse portent sur le développement et l’optimisation des techniques pour la modélisation compacte des transistors bipolaires à hétérojonction (TBH). Ce type de modélisation est à la base du développement des bibliothèques de composants qu’utilisent les concepteurs lors de la phase de simulation des circuits intégrés. Le but d’une technologie BiCMOS est de pouvoir combiner deux procédés technologiques différents sur une seule et même puce. En plus de limiter le nombre de composants externes, cela permet également une meilleure gestion de la consommation dans les différents blocs digitaux, analogiques et RF. Les applications dites rapides peuvent ainsi profiter du meilleur des composants bipolaires et des transistors CMOS. Le défi est d’autant plus critique dans le cas des applications analogiques/RF puisqu’il est nécessaire de diminuer la puissance consommée tout en maintenant des fréquences de fonctionnement des transistors très élevées. Disposer de modèles compacts précis des transistors utilisés est donc primordial lors de la conception des circuits utilisés pour les applications analogiques et mixtes. Cette précision implique une étude sur un large domaine de tensions d’utilisation et de températures de fonctionnement. De plus, en allant vers des nœuds technologiques de plus en plus avancés, des nouveaux effets physiques se manifestent et doivent être pris en compte dans les équations du modèle. Les règles d’échelle des technologies plus matures doivent ainsi être réexaminées en se basant sur la physique du dispositif. Cette thèse a pour but d’évaluer la faisabilité d’une offre de modèle compact dédiée à la technologie avancée SiGe TBH de chez ST Microelectronics. Le modèle du transistor bipolaire SiGe TBH est présenté en se basant sur le modèle compact récent HICUMversion L2.3x. Grâce aux lois d’échelle introduites et basées sur le dessin même des dimensions du transistor, une simulation précise du comportement électrique et thermique a pu être démontrée.Ceci a été rendu possible grâce à l’utilisation et à l’amélioration des routines et méthodes d’extraction des paramètres du modèle. C’est particulièrement le cas pour la détermination des éléments parasites extrinsèques (résistances et capacités) ainsi que celle du transistor intrinsèque. Finalement, les différentes étapes d’extraction et les méthodes sont présentées, et ont été vérifiées par l’extraction de bibliothèques SPICE sur le TBH NPN Haute-Vitesse de la technologie BiCMOS avancée du noeud 55nm, avec des fréquences de fonctionnement atteignant 320/370GHz de fT = fmax
The aim of BiCMOS technology is to combine two different process technologies intoa single chip, reducing the number of external components and optimizing power consumptionfor RF, analog and digital parts in one single package. Given the respectivestrengths of HBT and CMOS devices, especially high speed applications benefit fromadvanced BiCMOS processes, that integrate two different technologies.For analog mixed-signal RF and microwave circuitry, the push towards lower powerand higher speed imposes requirements and presents challenges not faced by digitalcircuit designs. Accurate compact device models, predicting device behaviour undera variety of bias as well as ambient temperatures, are crucial for the development oflarge scale circuits and create advanced designs with first-pass success.As technology advances, these models have to cover an increasing number of physicaleffects and model equations have to be continuously re-evaluated and adapted. Likewiseprocess scaling has to be verified and reflected by scaling laws, which are closelyrelated to device physics.This thesis examines the suitability of the model formulation for applicability to production-ready SiGe HBT processes. A derivation of the most recent model formulationimplemented in HICUM version L2.3x, is followed by simulation studies, whichconfirm their agreement with electrical characteristics of high-speed devices. Thefundamental geometry scaling laws, as implemented in the custom-developed modellibrary, are described in detail with a strong link to the specific device architecture.In order to correctly determine the respective model parameters, newly developed andexisting extraction routines have been exercised with recent HBT technology generationsand benchmarked by means of numerical device simulation, where applicable.Especially the extraction of extrinsic elements such as series resistances and parasiticcapacitances were improved along with the substrate network.The extraction steps and methods required to obtain a fully scalable model library wereexercised and presented using measured data from a recent industry-leading 55nmSiGe BiCMOS process, reaching switching speeds in excess of 300GHz. Finally theextracted model card was verified for the respective technology
APA, Harvard, Vancouver, ISO, and other styles
8

Angel, Nathan A. "EQUIVALENT CIRCUIT IMPLEMENTATION OF DEMYELINATED HUMAN NEURON IN SPICE." DigitalCommons@CalPoly, 2011. https://digitalcommons.calpoly.edu/theses/611.

Full text
Abstract:
This work focuses on modeling a demyelinated Hodgkin and Huxley (HH) neuron with Simulated Program with Integrated Circuit Emphasis (SPICE) platform. Demyelinating disorders affect over 350,000 people in the U.S and understanding the demyelination process at the cellular level is necessary to find safe ways to treat the diseases [9]. Utilizing a previous SPICE model of an electrically small cell neuron developed by Szlavik [32], an extended core conductor myelinated neuron was produced in this work. The myelinated neuron developed has seven active Nodes of Ranvier (nodes) separated by a myelin sheath. The myelin sheath can be successfully modeled with a resistive and capacitive network known as internodes. Both the Nodes of Ranvier and internode equivalent circuits were implemented in P-SPICE sub-circuit library files. Properties of the neuron can be changed in the library files to simulate neurons of different electrical or geometric properties. Using the P-SPICE code developed in this work, a myelinated neuron’s action potential was simulated and the action potential at each node was recorded. The action potential at each node was uniform in amplitude and pulse width. The conduction velocity of the action potential was calculated to be 57.15 m/s. Demyelination can be modeled by decreasing the capacitance and increasing the resistance of the myelin [34]. Two demyelinated neuron models were simulated in this work. The first model had one internode segment demyelinated, and the second model was of three consecutive internode segments. The resulting conduction velocity was calculated for both simulations. For one and three internode segment demyelinated the conduction velocity was slowed to 44.15 m/s, and 27.15 m/s respectively. This model successfully showed that an HH neuron implemented in SPICE could show the effects of demyelination on conduction velocity The goal of this work is to develop a demyelinated neuron so that treatments for Multiple Sclerosis (MS) and other demyelinated neurons could be simulated to test various treatments’ effectiveness. A current treatment for MS is ion channel blockers. Future work would be to use this model to test current ion channel blocker therapy and to validate if such therapies alleviate conduction slowing.
APA, Harvard, Vancouver, ISO, and other styles
9

Vu, Dinh Thanh, and Jean Chilo. "Simulation des effets de propagation couplée et dissipative sur simulateur électrique nodal (SPICE)." Grenoble INPG, 1993. http://www.theses.fr/1993INPG0101.

Full text
Abstract:
Dans les circuits logiques travaillant a grande vitesse, les interconnexions entre dispositifs ou entre puces doivent etre considerees comme des lignes de transmission. La haute densite d'integration entraine une miniaturisation de ces liaisons qui engendrent des effets dissipatifs et de couplage. Ces effets sont modelises et analyses a l'aide d'un circuit equivalent original analysable par n'importe quel simulateur electrique nodal (spice ici). Les parametres de propagation et les reponses temporelles en sont deduits; les distributions de densites de courants, de densites de charges et des champs electromagnetiques sont aussi calculees. L'effet dissipatif du plan de masse, pour une geometrie donnee, est simule et l'influence de la forme du plan de masse, de la position et du nombre des acces (entree/sortie) est analysee. En utilisant spice (simulateur electrique dans lequel seul un modele de ligne isolee non dissipative existe), l'analyse du circuit equivalent des interconnexions couplees et dissipatives construit par notre methode devient simple et directe car elle ne necessite aucune transformation frequence-temps. Ce concept peut etre etendu a la simulation de circuits complets comprenant des composants passifs et actifs, lineaires et non lineaires. Notre concept permet ainsi de reunir deux outils en un, un solveur electromagnetique et un simulateur electrique
APA, Harvard, Vancouver, ISO, and other styles
10

Frank, Florian. "Effiziente Methoden zur netzwerkbasierten Modellbeschreibung für die EMV-Simulation im Automobilbereich /." Tönning ; Lübeck Marburg : Der Andere Verl, 2008. http://d-nb.info/990427889/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Simulation spice"

1

Tuma, Tadej, and Árpád Buermen. Circuit Simulation with SPICE OPUS. Boston, MA: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4867-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Potchinkov, Alexander. Simulation von Röhrenverstärkern mit SPICE. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-8348-2112-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Potchinkov, Alexander. Simulation von Röhrenverstärkern mit SPICE. Wiesbaden: Vieweg+Teubner, 2009. http://dx.doi.org/10.1007/978-3-8348-9613-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sandler, Steven M. SMPS simulation with SPICE 3. New York: McGraw-Hill, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kielkowski, Ron M. Inside SPICE. 2nd ed. New York: McGraw-Hill, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tuinenga, Paul W. SPICE: A guide to circuit simulation and analysis using SPICE. Hemel Hempstead: Prentice-Hall, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Árpád, Bűrmen, ed. Circuit simulation with SPICE OPUS: Theory and practice. Boston: Birkhäuser, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

SPICE: Practical device modeling. New York: McGraw-Hill, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ferris, Clifford D. SPICE for electronics. Minneapolis/St. Paul: West Pub. Co., 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hines, J. Richard. SPICE modeling guide. Richardson, TX(P.O.Box 851731, Richardson 75081): Oholiab Technology, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Simulation spice"

1

Nakura, Toru. "SPICE Simulation." In Essential Knowledge for Transistor-Level LSI Circuit Design, 19–47. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0424-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Potchinkov, Alexander. "SPICE Implementierungen für PC." In Simulation von Röhrenverstärkern mit SPICE, 25–30. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-8348-2112-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Potchinkov, Alexander. "SPICE-Simulationstechniken für „Fortgeschrittene“." In Simulation von Röhrenverstärkern mit SPICE, 299–423. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-8348-2112-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Potchinkov, Alexander. "SPICE Implementierungen für PC." In Simulation von Röhrenverstärkern mit SPICE, 23–28. Wiesbaden: Vieweg+Teubner, 2009. http://dx.doi.org/10.1007/978-3-8348-9613-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Potchinkov, Alexander. "Simulation elektronischer Schaltungen mit SPICE." In Simulation von Röhrenverstärkern mit SPICE, 7–24. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-8348-2112-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Potchinkov, Alexander. "Simulation elektronischer Schaltungen mit SPICE." In Simulation von Röhrenverstärkern mit SPICE, 7–22. Wiesbaden: Vieweg+Teubner, 2009. http://dx.doi.org/10.1007/978-3-8348-9613-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tuma, Tadej, and Árpád Bűrmen. "Introduction to circuit simulation." In Circuit Simulation with SPICE OPUS, 1–35. Boston, MA: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4867-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Potchinkov, Alexander. "Verstärkerröhren, Verstärker und SPICE-Modelle." In Simulation von Röhrenverstärkern mit SPICE, 43–130. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-8348-2112-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Potchinkov, Alexander. "Verstärkerröhren, Verstärker und SPICE-Modelle." In Simulation von Röhrenverstärkern mit SPICE, 39–126. Wiesbaden: Vieweg+Teubner, 2009. http://dx.doi.org/10.1007/978-3-8348-9613-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Potchinkov, Alexander. "Spice-Simulationen von Röhrenschaltungen in Beispielen." In Simulation von Röhrenverstärkern mit SPICE, 131–298. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-8348-2112-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Simulation spice"

1

Gruszczynski, Walerian. "Sensor circuits simulation using SPICE simulator." In Optoelectronic and Electronic Sensors, edited by Ryszard Jachowicz and Zdzislaw Jankiewicz. SPIE, 1995. http://dx.doi.org/10.1117/12.213164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hussein, Ahmed, Ahmed Nounou, Nehal Saada, Dina Atef, and Diaa Khalil. "SPICE Modeling of Free-Space Optical Systems." In 2006 IEEE International Behavioral Modeling and Simulation Workshop. IEEE, 2006. http://dx.doi.org/10.1109/bmas.2006.283475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Meares, L. G. "New simulation techniques using spice." In 1986 IEEE Applied Power Electronics Conference and Exposition. IEEE, 1986. http://dx.doi.org/10.1109/apec.1986.7073339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Tracey Y., Dian Zhou, Hua Zhang, and Xinyue Niu. "Foundational-circuit-based spice simulation." In 2008 IEEE International Symposium on Circuits and Systems - ISCAS 2008. IEEE, 2008. http://dx.doi.org/10.1109/iscas.2008.4541558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Burstein, Amit, and William J. Kaiser. "Microelectromechanical gyroscope: analysis and simulation using SPICE electronic simulator." In Micromachining and Microfabrication, edited by Ray M. Roop and Kevin H. Chau. SPIE, 1995. http://dx.doi.org/10.1117/12.221172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vogelsong, R. S., and C. Brzezinski. "Extending SPICE for electro-thermal simulation." In 1989 Proceedings of the IEEE Custom Integrated Circuits Conference. IEEE, 1989. http://dx.doi.org/10.1109/cicc.1989.56803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Toth, Balazs, and Zoltan Puklus. "Series active filters — Spice simulation." In 2010 11th International Symposium on Computational Intelligence and Informatics (CINTI). IEEE, 2010. http://dx.doi.org/10.1109/cinti.2010.5672244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cao, Yiqin, Zhao-hui Cen, and Jiao-long Wei. "FDSAC-SPICE: fault diagnosis software for analog circuit based on SPICE simulation." In International Conference on Space Information Technology 2009, edited by Xingrui Ma, Baohua Yang, and Ming Li. SPIE, 2009. http://dx.doi.org/10.1117/12.855758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rostamzadeh, C., F. Grassi, and F. Kashefi. "Modeling SMT ferrite beads for SPICE simulation." In 2011 IEEE International Symposium on Electromagnetic Compatibility - EMC 2011. IEEE, 2011. http://dx.doi.org/10.1109/isemc.2011.6038369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Weber, Lutz, and Stefan Dickmann. "SPICE simulation method for BCI component tests." In 2007 18th International Zurich Symposium on Electromagnetic Compatibility. IEEE, 2007. http://dx.doi.org/10.1109/emczur.2007.4388246.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Simulation spice"

1

Yen, Wen-Tsung. Comparison of SPICE and Network C simulation models using the CAM system. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Duque, Earl, Steve Legensky, Brad Whitlock, David Rogers, Andrew Bauer, Scott Imlay, David Thompson, and Seiji Tsutsumi. Summary of the SciTech 2020 Technical Panel on In Situ/In Transit Computational Environments for Visualization and Data Analysis. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/40887.

Full text
Abstract:
At the AIAA SciTech 2020 conference, the Meshing, Visualization and Computational Environments Technical Committee hosted a special technical panel on In Situ/In Transit Computational Environments for Visualization and Data Analytics. The panel brought together leading experts from industry, software vendors, Department of Energy, Department of Defense and the Japan Aerospace Exploration Agency (JAXA). In situ and in transit methodologies enable Computational Fluid Dynamic (CFD) simulations to avoid the excessive overhead associated with data I/O at large scales especially as simulations scale to millions of processors. These methods either share the data analysis/visualization pipelines with the memory space of the solver or efficiently off load the workload to alternate processors. Using these methods, simulations can scale and have the promise of enabling the community to satisfy the Knowledge Extraction milestones as envisioned by the CFD Vision 2030 study for "on demand analysis/visualization of a 100 Billion point unsteady CFD simulation". This paper summarizes the presentations providing a discussion point of how the community can achieve the goals set forth in the CFD Vision 2030.
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Xi. Quasi-3D space charge simulation. Office of Scientific and Technical Information (OSTI), April 2007. http://dx.doi.org/10.2172/902539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jefferies, Stuart M. Space Surveillance Simulator. Fort Belvoir, VA: Defense Technical Information Center, August 2006. http://dx.doi.org/10.21236/ada455961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Akau, R. L., J. P. Freshour, and S. L. Wilde. Thermal environmental tests on space simulation chamber. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5727703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stern, Eric, Y. Alexahin, and A. Burov. Simulation of Space Charge Compensation with Electron Lenses. Office of Scientific and Technical Information (OSTI), November 2019. http://dx.doi.org/10.2172/1606213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Goodrich, Charles. Using MHD Simulation for Space Weather Forecasting and Nowcasting. Fort Belvoir, VA: Defense Technical Information Center, December 2001. http://dx.doi.org/10.21236/ada413327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Riel, Ed, and Matthew G. Maras. Simulation Based R&D for Space Vehicle Concepts. Fort Belvoir, VA: Defense Technical Information Center, December 2000. http://dx.doi.org/10.21236/ada387512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Robert H. Jackson, Thuc Bui, John Verboncoeur. Improved Space Charge Modeling for Simulation and Design of Photoinjectors. Office of Scientific and Technical Information (OSTI), April 2010. http://dx.doi.org/10.2172/1029945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Amatucci, William E., David Walker, and Guru Ganguli. Space Chamber Simulation of Altitude Variation on Plasma Wave Signatures. Fort Belvoir, VA: Defense Technical Information Center, December 1998. http://dx.doi.org/10.21236/ada359314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography