Academic literature on the topic 'Simultaneuos localization and mapping (SLAM)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Simultaneuos localization and mapping (SLAM).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Simultaneuos localization and mapping (SLAM)"
Saat, Shahrizal, AN MF Airini, Muhammad Salihin Saealal, A. R. Wan Norhisyam, and M. S. Farees Ezwan. "Hector SLAM 2D Mapping for Simultaneous Localization and Mapping (SLAM)." Journal of Engineering and Applied Sciences 14, no. 16 (November 10, 2019): 5610–15. http://dx.doi.org/10.36478/jeasci.2019.5610.5615.
Full textTsubouchi, Takashi. "Introduction to Simultaneous Localization and Mapping." Journal of Robotics and Mechatronics 31, no. 3 (June 20, 2019): 367–74. http://dx.doi.org/10.20965/jrm.2019.p0367.
Full textBoal, Jaime, Álvaro Sánchez-Miralles, and Álvaro Arranz. "Topological simultaneous localization and mapping: a survey." Robotica 32, no. 5 (December 3, 2013): 803–21. http://dx.doi.org/10.1017/s0263574713001070.
Full textSkrzypczyński, Piotr. "Simultaneous localization and mapping: A feature-based probabilistic approach." International Journal of Applied Mathematics and Computer Science 19, no. 4 (December 1, 2009): 575–88. http://dx.doi.org/10.2478/v10006-009-0045-z.
Full textAlsadik, Bashar, and Samer Karam. "The Simultaneous Localization and Mapping (SLAM)-An Overview." Surveying and Geospatial Engineering Journal 2, no. 01 (May 18, 2021): 01–12. http://dx.doi.org/10.38094/sgej1027.
Full textNGUYEN, DuyHinh, Xiqian WU, Daisuke IWAKURA, and Kenzo NONAMI. "2C11 Autonomous control and Simultaneous Localization and Mapping (SLAM) of Unmanned Ground Vehicle." Proceedings of the Symposium on the Motion and Vibration Control 2010 (2010): _2C11–1_—_2C11–9_. http://dx.doi.org/10.1299/jsmemovic.2010._2c11-1_.
Full textXu, S., Z. Ji, D. T. Pham, and F. Yu. "Simultaneous localization and mapping: swarm robot mutual localization and sonar arc bidirectional carving mapping." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 225, no. 3 (September 10, 2010): 733–44. http://dx.doi.org/10.1243/09544062jmes2239.
Full textBailey, T., and H. Durrant-Whyte. "Simultaneous localization and mapping (SLAM): part II." IEEE Robotics & Automation Magazine 13, no. 3 (September 2006): 108–17. http://dx.doi.org/10.1109/mra.2006.1678144.
Full textSaat, Shahrizal, WN Abd Rashid, MZM Tumari, and MS Saealal. "HECTORSLAM 2D MAPPING FOR SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM)." Journal of Physics: Conference Series 1529 (April 2020): 042032. http://dx.doi.org/10.1088/1742-6596/1529/4/042032.
Full textDebeunne, César, and Damien Vivet. "A Review of Visual-LiDAR Fusion based Simultaneous Localization and Mapping." Sensors 20, no. 7 (April 7, 2020): 2068. http://dx.doi.org/10.3390/s20072068.
Full textDissertations / Theses on the topic "Simultaneuos localization and mapping (SLAM)"
Naghi, Nour. "Simultaneous Localization and Mapping Technologies." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17852/.
Full textSünderhauf, Niko. "Robust Optimization for Simultaneous Localization and Mapping." Doctoral thesis, Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-86443.
Full textPomerleau, François. "Registration algorithm optimized for simultaneous localization and mapping." Mémoire, Université de Sherbrooke, 2008. http://savoirs.usherbrooke.ca/handle/11143/1465.
Full textInostroza, Ferrari Felipe Ignacio. "The estimation of detection statistics in simultaneus localization and mapping." Tesis, Universidad de Chile, 2015. http://repositorio.uchile.cl/handle/2250/134725.
Full textIngeniero Civil Eléctrico
El uso de Conjuntos Aleatorios Finitos (RFS por su sigla en inglés) tiene varias ventajas respecto de los métodos tradicionales basados en vectores. Entre ellas están el incluir las estadísticas de detección del sensor y la eliminación de las heurísticas tanto para la asociación de datos como para la inicialización y eliminación de objetos en mapa. Para obtener los beneficios de los estimadores basados en RFS en el problema de Construcción de Mapas y Localización Simultanea (SLAM por su acrónimo en inglés), las estadísticas de detección y falsa alarma del extractor de características deben ser modeladas y utilizadas en cada actualización del mapa. Esta Tesis presenta técnicas para obtener estas estadísticas en el caso de características semánticas extraídas de mediciones láser. Además se concentra en la extracción de objetos cilíndricos, como pilares, árboles y postes de luz, en ambientes exteriores. Las estadísticas de detección obtenidas son utilizadas dentro de una solución a SLAM basada en RFS, conocida como Rao-Blackwellized (RB)-probability hypothesis density (PHD)-SLAM, y el algoritmo multiple hypothesis (MH)-factored solution to SLAM (FastSLAM), solución a SLAM basada en vectores. El desempeño de cada algoritmo al usar estas estadísticas es comparado con el de utilizar estadísticas constantes. Los resultados muestran las ventajas de modelar las estadísticas de detección, particularmente en el caso del paradigma RFS. En particular, el error en las estimaciones del mapa, medido utilizando la distancia optimal sub- pattern assignment (OSPA) a un mapa ground truth generado de forma independiente, disminuye en un 13% en el caso de MH-FastSLAM y en un 13% para RB-PHD-SLAM al modelar las estadísticas de detección. A pesar de que no se tiene un ground truth para la trayectoria del robot, se evalúan las trayectorias visualmente, encontradose estimaciones superiores para el método propuesto. Por lo tanto, se concluye que el modelamiento de las estadísticas de detección es de gran importancia al implementar una aplicación de SLAM.
Bao, Guanqun. "On Simultaneous Localization and Mapping inside the Human Body (Body-SLAM)." Digital WPI, 2014. https://digitalcommons.wpi.edu/etd-dissertations/206.
Full textTiranti, Luca. "Simultaneous localization and mapping using radar images." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22893/.
Full textPereira, Savio Joseph. "On the utilization of Simultaneous Localization and Mapping(SLAM) along with vehicle dynamics in Mobile Road Mapping Systems." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/94425.
Full textDoctor of Philosophy
Mobile Road Mapping Systems (MRMS) are the current solution to the growing demand for high definition road surface maps in wide ranging applications from pavement management to autonomous vehicle testing. The objective of this research work is to improve the accuracy of MRMS by investigating methods to improve the sensor data fusion process. The main focus of this work is to apply the principles from the field of Simultaneous Localization and Mapping (SLAM) in order to improve the accuracy of MRMS. The concept of SLAM has been successfully applied to the field of mobile robot navigation and thus the motivation of this work is to investigate its application to the problem of mobile road mapping. For the mobile road mapping problem, the road surface being measured is one the primary inputs to the dynamics of the MRMS. Hence this work also investigates whether knowledge regarding the dynamics of the system can be used to improve the accuracy. Also developed as part of this work is a novel method for identifying outliers in road surface datasets and estimating elevations at road surface grid nodes. The developed methods are validated in a simulated environment and the results demonstrate a significant improvement in the accuracy of MRMS over current state-of-the-art methods.
Desrochers, Benoît. "Simultaneous localization and mapping in unstructured environments : a set-membership approach." Thesis, Brest, École nationale supérieure de techniques avancées Bretagne, 2018. http://www.theses.fr/2018ENTA0006/document.
Full textThis thesis deals with the simultaneous localization and mapping (SLAM) problem in unstructured environments, i.e. which cannot be described by geometrical features. This type of environment frequently occurs in an underwater context.Unlike classical approaches, the environment is not described by a collection of punctual features or landmarks, but directly by sets. These sets, called shapes, are associated with physical features such as the relief, some textures or, in a more symbolic way, the space free of obstacles that can be sensed around a robot. In a theoretical point of view, the SLAM problem is formalized as an hybrid constraint network where the variables are vectors and subsets of Rn. Whereas an uncertain real number is enclosed in an interval, an uncertain shape is enclosed in an interval of sets. The main contribution of this thesis is the introduction of a new formalism, based on interval analysis, able to deal with these domains. As an application, we illustrate our method on a SLAM problem based on bathymetric data acquired by an autonomous underwater vehicle (AUV)
Lee, Chun-Fan Computer Science & Engineering Faculty of Engineering UNSW. "Towards topological mapping with vision-based simultaneous localization and map building." Awarded by:University of New South Wales. Computer Science & Engineering, 2008. http://handle.unsw.edu.au/1959.4/41551.
Full textVallivaara, I. (Ilari). "Simultaneous localization and mapping using the indoor magnetic field." Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526217741.
Full textTiivistelmä Maan magneettikenttään perustuvat kompassit ovat ohjanneet merenkäyntiä vuosisatojen ajan. Rakennusten metallirakenteet aiheuttavat paikallisia häiriöitä tähän magneettikenttään, minkä vuoksi kompasseja on pidetty epäluotettavina sisätiloissa. Vasta viimeisen vuosikymmenen aikana on huomattu, että koska nämä häiriöt ovat ajallisesti pysyviä ja paikallisesti hyvin erottelevia, niistä voidaan muodostaa jokaiselle rakennukselle yksilöllinen häiriöihin perustuva magneettinen kartta, jota voidaan käyttää sisätiloissa paikantamiseen. Suurin osa tämänhetkisistä magneettikarttojen sovelluksista perustuu kartan käsin keräämiseen, mikä on sekä työlästä että tarjoaa mahdollisuuden inhimillisiin virheisiin. Tämä väitöstutkimus tarttuu ongelmaan laittamalla robotin hoitamaan kartoitustyön ja näyttää, että robotti pystyy itsenäisesti keräämään magneettisen kartan hyödyntäen pelkästään magnetometriä ja renkaiden antamia matkalukemia. Ratkaisu perustuu faktoroituun partikkelisuodattimeen (RBPF), joka approksimoi täsmällistä rekursiivista bayesilaista ratkaisua. Robotin keräämien karttojen tarkkuus mahdollistaa paikannuksen n. 10 senttimetrin tarkkuudella. Vähäisten sensori- ja muiden vaatimusten takia menetelmä soveltuu erityisen hyvin koti- ja parvirobotiikkaan, joissa hinta on usein ratkaiseva tekijä. Tutkimuksessa esitellään lisäksi uusia apumenetelmiä tehokkaaseen näytteistykseen ja epävarmuuden hallintaan. Näiden käyttöala ei rajoitu pelkästään magneettipaikannukseen- ja kartoitukseen. Robotiikan sovellusten lisäksi tutkimusta motivoi voimakkaasti kasvava tarve älylaitteissa toimivalle sisätilapaikannukselle. Tämä avaa uusia mahdollisuuksia paikannukselle ympäristöissä, joissa GPS ei perinteisesti toimi
Books on the topic "Simultaneuos localization and mapping (SLAM)"
Sanfeliu, Alberto, and Juan Andrade Cetto. Environment Learning for Indoor Mobile Robots: A Stochastic State Estimation Approach to Simultaneous Localization and Map Building. Springer, 2010.
Find full textErdem, Uğur Murat, Nicholas Roy, John J. Leonard, and Michael E. Hasselmo. Spatial and episodic memory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199674923.003.0029.
Full textAndrade-Cetto, Juan, and Alberto Sanfeliu. Environment Learning for Indoor Mobile Robots: A Stochastic State Estimation Approach to Simultaneous Localization and Map Building (Springer Tracts in Advanced Robotics). Springer, 2006.
Find full textBook chapters on the topic "Simultaneuos localization and mapping (SLAM)"
Berns, Karsten, and Ewald von Puttkamer. "Simultaneous localization and mapping (SLAM)." In Autonomous Land Vehicles, 146–72. Wiesbaden: Vieweg+Teubner, 2009. http://dx.doi.org/10.1007/978-3-8348-9334-5_6.
Full textPerera, Samunda, Dr Nick Barnes, and Dr Alexander Zelinsky. "Exploration: Simultaneous Localization and Mapping (SLAM)." In Computer Vision, 268–75. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-0-387-31439-6_280.
Full textChatterjee, Amitava, Anjan Rakshit, and N. Nirmal Singh. "Simultaneous Localization and Mapping (SLAM) in Mobile Robots." In Vision Based Autonomous Robot Navigation, 167–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33965-3_7.
Full textKung, Da-Wei, Chen-Chien Hsu, Wei-Yen Wang, and Jacky Baltes. "Adaptive Computation Algorithm for Simultaneous Localization and Mapping (SLAM)." In Advances in Intelligent Systems and Computing, 75–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31293-4_7.
Full textHuang, Teng-Wei, Chen-Chien Hsu, Wei-Yen Wang, and Jacky Baltes. "ROSLAM—A Faster Algorithm for Simultaneous Localization and Mapping (SLAM)." In Advances in Intelligent Systems and Computing, 65–74. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31293-4_6.
Full textYeh, Chun-Hsiao, Herng-Hua Chang, Chen-Chien Hsu, and Wei-Yen Wang. "Simultaneous Localization and Mapping with a Dynamic Switching Mechanism (SLAM-DSM)." In Advances in Intelligent Systems and Computing, 55–64. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31293-4_5.
Full textThusabantu, Nyasha Fadzai, and G. Vadivu. "Adoption of Big Data Streaming Techniques for Simultaneous Localization and Mapping (SLAM) in IoT-Aided Robotics Devices." In Cognitive Informatics and Soft Computing, 315–20. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0617-4_31.
Full textEllery, Alex. "Autonomous Navigation—Self-localization and Mapping (SLAM)." In Planetary Rovers, 331–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-03259-2_9.
Full textJoukhadar, Abdulkader, Dalia Kass Hanna, Andreas Müller, and Christoph Stöger. "UKF-Assisted SLAM for 4WDDMR Localization and Mapping." In Mechanism, Machine, Robotics and Mechatronics Sciences, 259–70. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89911-4_19.
Full textMo, Hongwei, Xiaosen Chen, Kai Wang, and Haoran Wang. "Autonomous Localization and Mapping for Mobile Robot Based on ORB-SLAM." In Proceedings of 2018 Chinese Intelligent Systems Conference, 749–60. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2288-4_71.
Full textConference papers on the topic "Simultaneuos localization and mapping (SLAM)"
Khairuddin, Alif Ridzuan, Mohamad Shukor Talib, and Habibollah Haron. "Review on simultaneous localization and mapping (SLAM)." In 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE). IEEE, 2015. http://dx.doi.org/10.1109/iccsce.2015.7482163.
Full textShih, Yan-Jhang, Chen-Chien Hsu, Wei-Yen Wang, and Yin-Tien Wang. "Feature extracted algorithm for simultaneous localization and mapping (SLAM)." In 2015 IEEE International Conference on Consumer Electronics (ICCE). IEEE, 2015. http://dx.doi.org/10.1109/icce.2015.7066497.
Full textOrtiz, Salvador, Wen Yu, and Erik Zamora. "Sliding Mode SLAM for Robust Simultaneous Localization and Mapping." In IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2018. http://dx.doi.org/10.1109/iecon.2018.8591121.
Full textTuna, Gurkan, Kayhan Gulez, V. Cagri Gungor, and T. Veli Mumcu. "Evaluations of different Simultaneous Localization and Mapping (SLAM) algorithms." In IECON 2012 - 38th Annual Conference of IEEE Industrial Electronics. IEEE, 2012. http://dx.doi.org/10.1109/iecon.2012.6389151.
Full textChin, Wei Hong, and Chu Kiong Loo. "Topological Gaussian ARAM for Simultaneous Localization and Mapping (SLAM)." In 2012 International Symposium on Micro-NanoMechatronics and Human Science (MHS). IEEE, 2012. http://dx.doi.org/10.1109/mhs.2012.6492468.
Full textCheng-Kai Yang, Chen-Chien Hsu, and Yin-Tien Wang. "Computationally efficient algorithm for simultaneous localization and mapping (SLAM)." In 2013 IEEE 10th International Conference on Networking, Sensing and Control (ICNSC 2013). IEEE, 2013. http://dx.doi.org/10.1109/icnsc.2013.6548759.
Full textRosa, Paulo, Onias Silveira, João De Melo, Leandro Moreira, and Luiz Rodrigues. "Development of Embedded Algorithm for Visual Simultaneous Localization and Mapping." In XXXII Conference on Graphics, Patterns and Images. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/sibgrapi.est.2019.8319.
Full textHerath, Damith C., S. Kodagoda, and Gamini Dissanayake. "New framework for Simultaneous Localization and Mapping: Multi map SLAM." In 2008 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2008. http://dx.doi.org/10.1109/robot.2008.4543483.
Full textToivanen, Pekka, Vandad Imani, and Keijo Haataja. "Three main paradigms of simultaneous localization and mapping (SLAM) problem." In Tenth International Conference on Machine Vision (ICMV 2017), edited by Jianhong Zhou, Petia Radeva, Dmitry Nikolaev, and Antanas Verikas. SPIE, 2018. http://dx.doi.org/10.1117/12.2310094.
Full textI. Mourikis, Anastasios, and Stergios I. Roumeliotis. "Performance Bounds for Cooperative Simultaneous Localization and Mapping (C-SLAM)." In Robotics: Science and Systems 2005. Robotics: Science and Systems Foundation, 2005. http://dx.doi.org/10.15607/rss.2005.i.010.
Full textReports on the topic "Simultaneuos localization and mapping (SLAM)"
Kelley, Troy D. Using a Cognitive Architecture to Solve Simultaneous Localization and Mapping (SLAM) Problems. Fort Belvoir, VA: Defense Technical Information Center, April 2006. http://dx.doi.org/10.21236/ad1016045.
Full textKelley, Troy D. Using a Cognitive Architecture to Solve Simultaneous Localization and Mapping (SLAM) Problems. Fort Belvoir, VA: Defense Technical Information Center, April 2006. http://dx.doi.org/10.21236/ada636872.
Full textChristie, Benjamin, Osama Ennasr, and Garry Glaspell. Autonomous navigation and mapping in a simulated environment. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42006.
Full text