Dissertations / Theses on the topic 'Simultaneuos localization and mapping (SLAM)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Simultaneuos localization and mapping (SLAM).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Naghi, Nour. "Simultaneous Localization and Mapping Technologies." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17852/.
Full textSünderhauf, Niko. "Robust Optimization for Simultaneous Localization and Mapping." Doctoral thesis, Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-86443.
Full textPomerleau, François. "Registration algorithm optimized for simultaneous localization and mapping." Mémoire, Université de Sherbrooke, 2008. http://savoirs.usherbrooke.ca/handle/11143/1465.
Full textInostroza, Ferrari Felipe Ignacio. "The estimation of detection statistics in simultaneus localization and mapping." Tesis, Universidad de Chile, 2015. http://repositorio.uchile.cl/handle/2250/134725.
Full textIngeniero Civil Eléctrico
El uso de Conjuntos Aleatorios Finitos (RFS por su sigla en inglés) tiene varias ventajas respecto de los métodos tradicionales basados en vectores. Entre ellas están el incluir las estadísticas de detección del sensor y la eliminación de las heurísticas tanto para la asociación de datos como para la inicialización y eliminación de objetos en mapa. Para obtener los beneficios de los estimadores basados en RFS en el problema de Construcción de Mapas y Localización Simultanea (SLAM por su acrónimo en inglés), las estadísticas de detección y falsa alarma del extractor de características deben ser modeladas y utilizadas en cada actualización del mapa. Esta Tesis presenta técnicas para obtener estas estadísticas en el caso de características semánticas extraídas de mediciones láser. Además se concentra en la extracción de objetos cilíndricos, como pilares, árboles y postes de luz, en ambientes exteriores. Las estadísticas de detección obtenidas son utilizadas dentro de una solución a SLAM basada en RFS, conocida como Rao-Blackwellized (RB)-probability hypothesis density (PHD)-SLAM, y el algoritmo multiple hypothesis (MH)-factored solution to SLAM (FastSLAM), solución a SLAM basada en vectores. El desempeño de cada algoritmo al usar estas estadísticas es comparado con el de utilizar estadísticas constantes. Los resultados muestran las ventajas de modelar las estadísticas de detección, particularmente en el caso del paradigma RFS. En particular, el error en las estimaciones del mapa, medido utilizando la distancia optimal sub- pattern assignment (OSPA) a un mapa ground truth generado de forma independiente, disminuye en un 13% en el caso de MH-FastSLAM y en un 13% para RB-PHD-SLAM al modelar las estadísticas de detección. A pesar de que no se tiene un ground truth para la trayectoria del robot, se evalúan las trayectorias visualmente, encontradose estimaciones superiores para el método propuesto. Por lo tanto, se concluye que el modelamiento de las estadísticas de detección es de gran importancia al implementar una aplicación de SLAM.
Bao, Guanqun. "On Simultaneous Localization and Mapping inside the Human Body (Body-SLAM)." Digital WPI, 2014. https://digitalcommons.wpi.edu/etd-dissertations/206.
Full textTiranti, Luca. "Simultaneous localization and mapping using radar images." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22893/.
Full textPereira, Savio Joseph. "On the utilization of Simultaneous Localization and Mapping(SLAM) along with vehicle dynamics in Mobile Road Mapping Systems." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/94425.
Full textDoctor of Philosophy
Mobile Road Mapping Systems (MRMS) are the current solution to the growing demand for high definition road surface maps in wide ranging applications from pavement management to autonomous vehicle testing. The objective of this research work is to improve the accuracy of MRMS by investigating methods to improve the sensor data fusion process. The main focus of this work is to apply the principles from the field of Simultaneous Localization and Mapping (SLAM) in order to improve the accuracy of MRMS. The concept of SLAM has been successfully applied to the field of mobile robot navigation and thus the motivation of this work is to investigate its application to the problem of mobile road mapping. For the mobile road mapping problem, the road surface being measured is one the primary inputs to the dynamics of the MRMS. Hence this work also investigates whether knowledge regarding the dynamics of the system can be used to improve the accuracy. Also developed as part of this work is a novel method for identifying outliers in road surface datasets and estimating elevations at road surface grid nodes. The developed methods are validated in a simulated environment and the results demonstrate a significant improvement in the accuracy of MRMS over current state-of-the-art methods.
Desrochers, Benoît. "Simultaneous localization and mapping in unstructured environments : a set-membership approach." Thesis, Brest, École nationale supérieure de techniques avancées Bretagne, 2018. http://www.theses.fr/2018ENTA0006/document.
Full textThis thesis deals with the simultaneous localization and mapping (SLAM) problem in unstructured environments, i.e. which cannot be described by geometrical features. This type of environment frequently occurs in an underwater context.Unlike classical approaches, the environment is not described by a collection of punctual features or landmarks, but directly by sets. These sets, called shapes, are associated with physical features such as the relief, some textures or, in a more symbolic way, the space free of obstacles that can be sensed around a robot. In a theoretical point of view, the SLAM problem is formalized as an hybrid constraint network where the variables are vectors and subsets of Rn. Whereas an uncertain real number is enclosed in an interval, an uncertain shape is enclosed in an interval of sets. The main contribution of this thesis is the introduction of a new formalism, based on interval analysis, able to deal with these domains. As an application, we illustrate our method on a SLAM problem based on bathymetric data acquired by an autonomous underwater vehicle (AUV)
Lee, Chun-Fan Computer Science & Engineering Faculty of Engineering UNSW. "Towards topological mapping with vision-based simultaneous localization and map building." Awarded by:University of New South Wales. Computer Science & Engineering, 2008. http://handle.unsw.edu.au/1959.4/41551.
Full textVallivaara, I. (Ilari). "Simultaneous localization and mapping using the indoor magnetic field." Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526217741.
Full textTiivistelmä Maan magneettikenttään perustuvat kompassit ovat ohjanneet merenkäyntiä vuosisatojen ajan. Rakennusten metallirakenteet aiheuttavat paikallisia häiriöitä tähän magneettikenttään, minkä vuoksi kompasseja on pidetty epäluotettavina sisätiloissa. Vasta viimeisen vuosikymmenen aikana on huomattu, että koska nämä häiriöt ovat ajallisesti pysyviä ja paikallisesti hyvin erottelevia, niistä voidaan muodostaa jokaiselle rakennukselle yksilöllinen häiriöihin perustuva magneettinen kartta, jota voidaan käyttää sisätiloissa paikantamiseen. Suurin osa tämänhetkisistä magneettikarttojen sovelluksista perustuu kartan käsin keräämiseen, mikä on sekä työlästä että tarjoaa mahdollisuuden inhimillisiin virheisiin. Tämä väitöstutkimus tarttuu ongelmaan laittamalla robotin hoitamaan kartoitustyön ja näyttää, että robotti pystyy itsenäisesti keräämään magneettisen kartan hyödyntäen pelkästään magnetometriä ja renkaiden antamia matkalukemia. Ratkaisu perustuu faktoroituun partikkelisuodattimeen (RBPF), joka approksimoi täsmällistä rekursiivista bayesilaista ratkaisua. Robotin keräämien karttojen tarkkuus mahdollistaa paikannuksen n. 10 senttimetrin tarkkuudella. Vähäisten sensori- ja muiden vaatimusten takia menetelmä soveltuu erityisen hyvin koti- ja parvirobotiikkaan, joissa hinta on usein ratkaiseva tekijä. Tutkimuksessa esitellään lisäksi uusia apumenetelmiä tehokkaaseen näytteistykseen ja epävarmuuden hallintaan. Näiden käyttöala ei rajoitu pelkästään magneettipaikannukseen- ja kartoitukseen. Robotiikan sovellusten lisäksi tutkimusta motivoi voimakkaasti kasvava tarve älylaitteissa toimivalle sisätilapaikannukselle. Tämä avaa uusia mahdollisuuksia paikannukselle ympäristöissä, joissa GPS ei perinteisesti toimi
Brink, Wikus. "Stereo vision for simultaneous localization and mapping." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71593.
Full textENGLISH ABSTRACT: Simultaneous localization and mapping (SLAM) is vital for autonomous robot navigation. The robot must build a map of its environment while tracking its own motion through that map. Although many solutions to this intricate problem have been proposed, one of the most prominent issues that still needs to be resolved is to accurately measure and track landmarks over time. In this thesis we investigate the use of stereo vision for this purpose. In order to find landmarks in images we explore the use of two feature detectors: the scale-invariant feature transform (SIFT) and speeded-up robust features (SURF). Both these algorithms find salient points in images and calculate a descriptor for each point that is invariant to scale, rotation and illumination. By using the descriptors we match these image features between stereo images and use the geometry of the system to calculate a set of 3D landmark measurements. A Taylor approximation of this transformation is used to derive a Gaussian noise model for the measurements. The measured landmarks are matched to landmarks in a map to find correspondences. We find that this process often incorrectly matches ambiguous landmarks. To find these mismatches we develop a novel outlier detection scheme based on the random sample consensus (RANSAC) framework. We use a similarity transformation for the RANSAC model and derive a probabilistic consensus measure that takes the uncertainties of landmark locations into account. Through simulation and practical tests we find that this method is a significant improvement on the standard approach of using the fundamental matrix. With accurately identified landmarks we are able to perform SLAM. We investigate the use of three popular SLAM algorithms: EKF SLAM, FastSLAM and FastSLAM 2. EKF SLAM uses a Gaussian distribution to describe the systems states and linearizes the motion and measurement equations with Taylor approximations. The two FastSLAM algorithms are based on the Rao-Blackwellized particle filter that uses particles to describe the robot states, and EKFs to estimate the landmark states. FastSLAM 2 uses a refinement process to decrease the size of the proposal distribution and in doing so decreases the number of particles needed for accurate SLAM. We test the three SLAM algorithms extensively in a simulation environment and find that all three are capable of very accurate results under the right circumstances. EKF SLAM displays extreme sensitivity to landmark mismatches. FastSLAM, on the other hand, is considerably more robust against landmark mismatches but is unable to describe the six-dimensional state vector required for 3D SLAM. FastSLAM 2 offers a good compromise between efficiency and accuracy, and performs well overall. In order to evaluate the complete system we test it with real world data. We find that our outlier detection algorithm is very effective and greatly increases the accuracy of the SLAM systems. We compare results obtained by all three SLAM systems, with both feature detection algorithms, against DGPS ground truth data and achieve accuracies comparable to other state-of-the-art systems. From our results we conclude that stereo vision is viable as a sensor for SLAM.
AFRIKAANSE OPSOMMING: Gelyktydige lokalisering en kartering (simultaneous localization and mapping, SLAM) is ’n noodsaaklike proses in outomatiese robot-navigasie. Die robot moet ’n kaart bou van sy omgewing en tegelykertyd sy eie beweging deur die kaart bepaal. Alhoewel daar baie oplossings vir hierdie ingewikkelde probleem bestaan, moet een belangrike saak nog opgelos word, naamlik om landmerke met verloop van tyd akkuraat op te spoor en te meet. In hierdie tesis ondersoek ons die moontlikheid om stereo-visie vir hierdie doel te gebruik. Ons ondersoek die gebruik van twee beeldkenmerk-onttrekkers: scale-invariant feature transform (SIFT) en speeded-up robust features (SURF). Altwee algoritmes vind toepaslike punte in beelde en bereken ’n beskrywer vir elke punt wat onveranderlik is ten opsigte van skaal, rotasie en beligting. Deur die beskrywer te gebruik, kan ons ooreenstemmende beeldkenmerke soek en die geometrie van die stelsel gebruik om ’n stel driedimensionele landmerkmetings te bereken. Ons gebruik ’n Taylor- benadering van hierdie transformasie om ’n Gaussiese ruis-model vir die metings te herlei. Die gemete landmerke se beskrywers word dan vergelyk met dié van landmerke in ’n kaart om ooreenkomste te vind. Hierdie proses maak egter dikwels foute. Om die foutiewe ooreenkomste op te spoor het ons ’n nuwe uitskieterherkenningsalgoritme ontwikkel wat gebaseer is op die RANSAC-raamwerk. Ons gebruik ’n gelykvormigheidstransformasie vir die RANSAC-model en lei ’n konsensusmate af wat die onsekerhede van die ligging van landmerke in ag neem. Met simulasie en praktiese toetse stel ons vas dat die metode ’n beduidende verbetering op die standaardprosedure, waar die fundamentele matriks gebruik word, is. Met ons akkuraat geïdentifiseerde landmerke kan ons dan SLAM uitvoer. Ons ondersoek die gebruik van drie SLAM-algoritmes: EKF SLAM, FastSLAM en FastSLAM 2. EKF SLAM gebruik ’n Gaussiese verspreiding om die stelseltoestande te beskryf en Taylor-benaderings om die bewegings- en meetvergelykings te lineariseer. Die twee FastSLAM-algoritmes is gebaseer op die Rao-Blackwell partikelfilter wat partikels gebruik om robottoestande te beskryf en EKF’s om die landmerktoestande af te skat. FastSLAM 2 gebruik ’n verfyningsproses om die grootte van die voorstelverspreiding te verminder en dus die aantal partikels wat vir akkurate SLAM benodig word, te verminder. Ons toets die drie SLAM-algoritmes deeglik in ’n simulasie-omgewing en vind dat al drie onder die regte omstandighede akkurate resultate kan behaal. EKF SLAM is egter baie sensitief vir foutiewe landmerkooreenkomste. FastSLAM is meer bestand daarteen, maar kan nie die sesdimensionele verspreiding wat vir 3D SLAM vereis word, beskryf nie. FastSLAM 2 bied ’n goeie kompromie tussen effektiwiteit en akkuraatheid, en presteer oor die algemeen goed. Ons toets die hele stelsel met werklike data om dit te evalueer, en vind dat ons uitskieterherkenningsalgoritme baie effektief is en die akkuraatheid van die SLAM-stelsels beduidend verbeter. Ons vergelyk resultate van die drie SLAM-stelsels met onafhanklike DGPS-data, wat as korrek beskou kan word, en behaal akkuraatheid wat vergelykbaar is met ander toonaangewende stelsels. Ons resultate lei tot die gevolgtrekking dat stereo-visie ’n lewensvatbare sensor vir SLAM is.
Dahlin, Alfred. "Simultaneous Localization and Mapping for an Unmanned Aerial Vehicle Using Radar and Radio Transmitters." Thesis, Linköpings universitet, Reglerteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-110645.
Full textKondrath, Andrew Stephen. "Frequency Modulated Continuous Wave Radar and Video Fusion for Simultaneous Localization and Mapping." Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1347715085.
Full textSvensson, Depraetere Xavier. "Application of new particle-based solutions to the Simultaneous Localization and Mapping (SLAM) problem." Thesis, KTH, Matematisk statistik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-212999.
Full textI detta examensarbete utforskas nya lösningar till Simultaneous Localization and Mapping (SLAM) problemet baserat på partikelfilter- och partikelglättnings-metoder. I sin grund består SLAM problemet av två av varandra beroende uppgifter: kartläggning och spårning. Tre lösningsmetoder som använder olika glättnings-metoder appliceras för att lösa dessa uppgifter. Dessa glättningsmetoder är fixed lag smoothing (FLS), forward-only forward-filtering backward-smoothing (forward-only FFBSm) och the particle-based, rapid incremental smoother (PaRIS). I samband med dessa glättningstekniker används den väletablerade Expectation-Maximization (EM) algoritmen för att skapa maximum-likelihood skattningar av kartan. De tre lösningsmetoderna utvärderas sedan och jämförs i en simulerad miljö.
Manhed, Joar. "Investigating Simultaneous Localization and Mapping for an Automated Guided Vehicle." Thesis, Linköpings universitet, Reglerteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-163075.
Full textKiang, Kai-Ming Mechanical & Manufacturing Engineering Faculty of Engineering UNSW. "Natural feature extraction as a front end for simultaneous localization and mapping." Awarded by:University of New South Wales. School of Mechanical and Manufacturing Engineering, 2006. http://handle.unsw.edu.au/1959.4/26960.
Full textSvensson, Henrik. "Simultaneous Localization And Mapping in a Marine Environment using Radar Images." Thesis, Linköping University, Automatic Control, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-20845.
Full textSimultaneous Localization And Mapping (SLAM) is a process of mapping an unknown environment and at the same time keeping track of the position within this map. In this theses, SLAM is performed in a marine environent using radar images only.
A SLAM solution is presented. It uses SIFT to compare pairs of radar images. From these comparisons, measurements of the boat movements are obtained. A type of Kalman filter (Exactly Sparse Delayed-state Filter, ESDF) uses these measurements to estimate the trajectory of the boat. Once the trajectory is estimated, the radar images are joined together in order to create a map.
The presented solution is tested and the estimated trajectory is compared to GPS data. Results show that the method performs well for at least shorter periods of time.
Bacca, Cortés Eval Bladimir. "Appearance-based mapping and localization using feature stability histograms for mobile robot navigation." Doctoral thesis, Universitat de Girona, 2012. http://hdl.handle.net/10803/83589.
Full textEste trabajo propone un método de SLAM basado en apariencia cuya principal contribución es el Histograma de Estabilidad de Características (FSH). El FSH es construido por votación, si una característica es re-observada, ésta será promovida; de lo contrario su valor FSH progresivamente es reducido. El FSH es basado en el modelo de memoria humana para ocuparse de ambientes cambiantes y SLAM a largo término. Este modelo introduce conceptos como memoria a corto plazo (STM) y largo plazo (LTM), las cuales retienen información por cortos y largos periodos de tiempo. Si una entrada a la STM es reforzada, ésta hará parte de la LTM (i.e. es más estable). Sin embargo, este trabajo propone un modelo de memoria diferente, permitiendo a cualquier entrada ser parte de la STM o LTM considerando su intensidad. Las características más estables son solamente usadas en SLAM. Esta innovadora estrategia de manejo de características es capaz de hacer frente a ambientes cambiantes y SLAM de largo término.
HERRERA, LUIS ERNESTO YNOQUIO. "MOBILE ROBOT SIMULTANEOUS LOCALIZATION AND MAPPING USING DP-SLAM WITH A SINGLE LASER RANGE FINDER." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2011. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=34617@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
SLAM (Mapeamento e Localização Simultânea) é uma das áreas mais pesquisadas na Robótica móvel. Trata-se do problema, num robô móvel, de construir um mapa sem conhecimento prévio do ambiente e ao mesmo tempo manter a sua localização nele. Embora a tecnologia ofereça sensores cada vez mais precisos, pequenos erros na medição são acumulados comprometendo a precisão na localização, sendo estes evidentes quando o robô retorna a uma posição inicial depois de percorrer um longo caminho. Assim, para melhoria do desempenho do SLAM é necessário representar a sua formulação usando teoria das probabilidades. O SLAM com Filtro Extendido de Kalman (EKF-SLAM) é uma solução básica, e apesar de suas limitações é a técnica mais popular. O Fast SLAM, por outro lado, resolve algumas limitações do EKF-SLAM usando uma instância do filtro de partículas conhecida como Rao-Blackwellized. Outra solução bem sucedida é o DP-SLAM, o qual usa uma representação do mapa em forma de grade de ocupação, com um algoritmo hierárquico que constrói mapas 2D bastante precisos. Todos estes algoritmos usam informação de dois tipos de sensores: odômetros e sensores de distância. O Laser Range Finder (LRF) é um medidor laser de distância por varredura, e pela sua precisão é bastante usado na correção do erro em odômetros. Este trabalho apresenta uma detalhada implementação destas três soluções para o SLAM, focalizado em ambientes fechados e estruturados. Apresenta-se a construção de mapas 2D e 3D em terrenos planos tais como em aplicações típicas de ambientes fechados. A representação dos mapas 2D é feita na forma de grade de ocupação. Por outro lado, a representação dos mapas 3D é feita na forma de nuvem de pontos ao invés de grade, para reduzir o custo computacional. É considerado um robô móvel equipado com apenas um LRF, sem nenhuma informação de odometria. O alinhamento entre varreduras laser é otimizado fazendo o uso de Algoritmos Genéticos. Assim, podem-se construir mapas e ao mesmo tempo localizar o robô sem necessidade de odômetros ou outros sensores. Um simulador em Matlab é implementado para a geração de varreduras virtuais de um LRF em um ambiente 3D (virtual). A metodologia proposta é validada com os dados simulados, assim como com dados experimentais obtidos da literatura, demonstrando a possibilidade de construção de mapas 3D com apenas um sensor LRF.
Simultaneous Localization and Mapping (SLAM) is one of the most widely researched areas of Robotics. It addresses the mobile robot problem of generating a map without prior knowledge of the environment, while keeping track of its position. Although technology offers increasingly accurate position sensors, even small measurement errors can accumulate and compromise the localization accuracy. This becomes evident when programming a robot to return to its original position after traveling a long distance, based only on its sensor readings. Thus, to improve SLAM s performance it is necessary to represent its formulation using probability theory. The Extended Kalman Filter SLAM (EKF-SLAM) is a basic solution and, despite its shortcomings, it is by far the most popular technique. Fast SLAM, on the other hand, solves some limitations of the EKFSLAM using an instance of the Rao-Blackwellized particle filter. Another successful solution is to use the DP-SLAM approach, which uses a grid representation and a hierarchical algorithm to build accurate 2D maps. All SLAM solutions require two types of sensor information: odometry and range measurement. Laser Range Finders (LRF) are popular range measurement sensors and, because of their accuracy, are well suited for odometry error correction. Furthermore, the odometer may even be eliminated from the system if multiple consecutive LRF scans are matched. This works presents a detailed implementation of these three SLAM solutions, focused on structured indoor environments. The implementation is able to map 2D environments, as well as 3D environments with planar terrain, such as in a typical indoor application. The 2D application is able to automatically generate a stochastic grid map. On the other hand, the 3D problem uses a point cloud representation of the map, instead of a 3D grid, to reduce the SLAM computational effort. The considered mobile robot only uses a single LRF, without any odometry information. A Genetic Algorithm is presented to optimize the matching of LRF scans taken at different instants. Such matching is able not only to map the environment but also localize the robot, without the need for odometers or other sensors. A simulation program is implemented in Matlab to generate virtual LRF readings of a mobile robot in a 3D environment. Both simulated readings and experimental data from the literature are independently used to validate the proposed methodology, automatically generating 3D maps using just a single LRF.
Taylor, Trevor. "Mapping of indoor environments by robots using low-cost vision sensors." Queensland University of Technology, 2009. http://eprints.qut.edu.au/26282/.
Full textHjelmare, Fredrik, and Jonas Rangsjö. "Simultaneous Localization And Mapping Using a Kinect in a Sparse Feature Indoor Environment." Thesis, Linköpings universitet, Reglerteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-81140.
Full textConte, Marza Fabián Alejandro. "An evaluation and comparison of long term simultaneous localization and mapping algorithms." Tesis, Universidad de Chile, 2018. http://repositorio.uchile.cl/handle/2250/152947.
Full textEste trabajo consiste en la generación de un set de datos con un respectivo ground truth (medición más confiable) y el uso de los algoritmos ORB-SLAM (Orientated FAST and Rotated BRIEF (Binary Robust Independent Elementary Features) Simultaneous Location And Mapping) y LOAM (Lidar Odometry And Mapping) a modo de entender de mejor forma el problema de SLAM (localización y mapeo simultaneo) y comparar los resultados obtenidos con el ground truth. A modo de entender de mejor forma el set de datos generado, la funcionalidad de los diferentes sensores es explicada. Los sensores utilizados para generar los datos son LIDAR, cámara estéreo y GPS. Este trabajo posee dos mayores etapas, en primer lugar, el GPS es estudiado para establecer las diferentes formas de extraer los datos desde el dispositivo. Una forma es generar un nodo de ROS que mediante comunicación de Bluetooth otorga un mensaje que puede ser leído. Otra forma es presionar tres veces el botón de encendido del GPS, lo que inicia el almacenamiento de los datos en la tarjeta SD. Mientras el primer método entrega mayor cantidad de información, es menos confiable, existiendo la posibilidad de guardar mensajes vacios o perdida de ciertos datos, afectando la tasa de muestreo. Finalmente una combinación de ambos métodos es implementada. Un set de datos de prueba es generado cerca de la Universidad De Chile, para probar que los datos están siendo almacenados correctamente. En el test se concluye que a modo de obtener mejor resultado con el GPS es necesario tomar los datos en zonas con baja cantidad de edificios. Finalmente con los datos y el ground truth el Error Absoluto de la Trayectoria (ATE) es calculado como método de comparación de ambas trayectorias generadas con los algoritmos mencionados. El ATE s la cantidad de energía necesaria para transformar la trayectoria estimada en el ground truth. Dadas ciertas limitaciones en la extracción de los datos estimados, la comparación se realizo entre dos set de datos de prueba, con pequeña cantidad de loops en el camino recorrido. En esta situación los resultados dados por LOAM son mejores que los obtenidos con ORB.SLAM. Pero en un ambiente con mayor cantidad de loops y una trayectoria más larga ORB-SLAM entregaría mejores resultados. ABSTRACT This work consists of the generation of a data-set with ground truth and the use of ORB-SLAM (Orientated FAST and Rotated BRIEF (Binary Robust Independent Elementary Features) Simultaneous Location And Mapping) and LOAM (Lidar Odometry And Mapping) algorithms as a way to better understand SLAM and to compare the ground truth and the data-set generated. To fully understand the data-set generated, the functionality of the different sensors is explained. The sensors used to generate the data-set are LIDAR, Stereo Camera and a GPS. This work is divided into two stages, in the first place the GPS is studied to establish the different ways to extract the data from it. One way is to generate a ROS node that through Bluetooth communication generates a message which is published. The other way is to press three times the button of the GPS to store the data in the GPS micro SD memory. While the first method is capable of store more data per second, it is less reliable, existing the possibility of store an empty message or simply the loss of data in the process. In the end, a combination of the two methods is implemented, modifying the bag file with the data stored in the micro SD. A test-data is generated near the University Of Chile, to prove that the bag file (a type of file that can contain any kind of information such as images, video or text, between others) is correctly generated. In these tests, it was concluded that to obtain better performance of the GPS therefore, obtain a better ground truth, it was necessary to generate the data in a zone with a low quantity of high buildings. Finally with the data-set and the ground truth the Absolute Trajectory Error (ATE) is used as a method to compare the trajectories. The ATE is the amount of energy that would require to transform the estimated trajectory on the ground truth. Since certain limitations of the extraction of the estimated path, the comparison was made between two small data-set which counted with low quantity of closed loops. Therefore the LOAM algorithm shows better results in this trajectory. The ORB-SLAM algorithm shows better results in data-sets with a high quantity of loops in the path.
Werner, Sebastian. "Variabilitätsmodellierung in Kartographierungs- und Lokalisierungsverfahren." Thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-172457.
Full textCunningham, Alexander G. "Scalable online decentralized smoothing and mapping." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51848.
Full textMakhubela, J. K. "Visual simultaneous localization and mapping in a noisy static environment." Thesis, Vaal University of Technology, 2019. http://hdl.handle.net/10352/462.
Full textSimultaneous Localization and Mapping (SLAM) has seen tremendous interest amongst the research community in recent years due to its ability to make the robot truly independent in navigation. Visual Simultaneous Localization and Mapping (VSLAM) is when an autonomous mobile robot is embedded with a vision sensor such as monocular, stereo vision, omnidirectional or Red Green Blue Depth (RGBD) camera to localize and map an unknown environment. The purpose of this research is to address the problem of environmental noise, such as light intensity in a static environment, which has been an issue that makes a Visual Simultaneous Localization and Mapping (VSLAM) system to be ineffective. In this study, we have introduced a Light Filtering Algorithm into the Visual Simultaneous Localization and Mapping (VSLAM) method to reduce the amount of noise in order to improve the robustness of the system in a static environment, together with the Extended Kalman Filter (EKF) algorithm for localization and mapping and A* algorithm for navigation. Simulation is utilized to execute experimental performance. Experimental results show a 60% landmark or landfeature detection of the total landmark or landfeature within a simulation environment and a root mean square error (RMSE) of 0.13m, which is minimal when compared with other Simultaneous Localization and Mapping (SLAM) systems from literature. The inclusion of a Light Filtering Algorithm has enabled the Visual Simultaneous Localization and Mapping (VSLAM) system to navigate in an obscure environment.
Gustafsson, Amanda, and Olov Wängborg. "Mätosäkerhet vid digital terrängmodellering med handhållen laserskanner : Undersökning av den handhållna laserskannern ZEB-REVO." Thesis, Högskolan i Gävle, Samhällsbyggnad, GIS, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-26841.
Full textA digital terrain model (DTM) represent exclusively the earth surface. There are several methods which can be utilized to create DTMs, where laser scanning have become a common used method. Airborne laser scanning (ALS) is often used since the method can cover a large area in a relatively short time. However a disadvantage with ALS is that the data collection, for a wooded area, can be inadequate due to penetration difficulties for some laser beams. For that reason a handheld laser scanner (HLS) can be an alternative since measurements can be done fast and does not need the same extensive planning. Earlier studies mention HLS to have several advantages but can still not yet be compared with terrestrial laser scanning (TLS) concerning the measurements uncertainty. There are, however, no studies that investigates how measurements with HLS stands against FLS. The purpose with the study is to evaluate the ability to use measurements from HLS to create a DTM for a wooded area in comparison with ALS. This is done by comparing the different uncertainties for each DTM. In the study the acquisition of HLS laser data was collected with the instrument ZEB-REVO and the ALS laser data was received from Lantmäteriet (cadastral mapping and surveying authority in Sweden). After the data acquisition a DTM were created from each data set (method). The DTMs were then compared to control profiles, which have been measured with total station. From the comparison with the control profiles average height deviation and standard deviation were calculated for each DTM. The result shows that the DTM created from ALS data received an average height deviation of 0,055 m for the whole area with a standard deviation of 0,046 m. Corresponding result for the DTM created from HLS data were calculated, at best, to 0,043 m in average height deviation and 0,034 m in standard deviation. The study shows that the methods HLS and ALS gave equivalent result regarding the comparison with the control profiles, however HLS gave a generally lower value for standard deviation. Furthermore ZEB-REVO with its processing program GeoSLAM was considered to be very easy and user friendly. The area (approx. 2000 m2) for the study was scanned within only 10 min. The conclusion which were drawn from the obtained result was that measurements with HLS can generate an equivalent DTM, concerning the uncertainty, as measurements with FLS. Thereby HLS can be a complementing method but still FLS is seen as an effective method.
Trevor, Alexander J. B. "Semantic mapping for service robots: building and using maps for mobile manipulators in semi-structured environments." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53583.
Full textAbouzahir, Mohamed. "Algorithmes SLAM : Vers une implémentation embarquée." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS058/document.
Full textAutonomous navigation is a main axis of research in the field of mobile robotics. In this context, the robot must have an algorithm that allow the robot to move autonomously in a complex and unfamiliar environments. Mapping in advance by a human operator is a tedious and time consuming task. On the other hand, it is not always reliable, especially when the structure of the environment changes. SLAM algorithms allow a robot to map its environment while localizing it in the space.SLAM algorithms are becoming more efficient, but there is no full hardware or architectural implementation that has taken place . Such implantation of architecture must take into account the energy consumption, the embeddability and computing power. This scientific work aims to evaluate the embedded systems implementing locatization and scene reconstruction (SLAM). The methodology will adopt an approach AAM ( Algorithm Architecture Matching) to improve the efficiency of the implementation of algorithms especially for systems with high constaints. SLAM embedded system must have an electronic and software architecture to ensure the production of relevant data from sensor information, while ensuring the localization of the robot in its environment. Therefore, the objective is to define, for a chosen algorithm, an architecture model that meets the constraints of embedded systems. The first work of this thesis was to explore the different algorithmic approaches for solving the SLAM problem. Further study of these algorithms is performed. This allows us to evaluate four different kinds of algorithms: FastSLAM2.0, ORB SLAM, SLAM RatSLAM and linear. These algorithms were then evaluated on multiple architectures for embedded systems to study their portability on energy low consumption systems and limited resources. The comparison takes into account the time of execution and consistency of results. After having deeply analyzed the temporal evaluations for each algorithm, the FastSLAM2.0 was finally chosen for its compromise performance-consistency of localization result and execution time, as a candidate for further study on an embedded heterogeneous architecture. The second part of this thesis is devoted to the study of an embedded implementing of the monocular FastSLAM2.0 which is dedicated to large scale environments. An algorithmic modification of the FastSLAM2.0 was necessary in order to better adapt it to the constraints imposed by the largescale environments. The resulting system is designed around a parallel multi-core architecture. Using an algorithm architecture matching approach, the FastSLAM2.0 was implemeted on a heterogeneous CPU-GPU architecture. Uisng an effective algorithme partitioning, an overall acceleration factor o about 22 was obtained on a recent dedicated architecture for embedded systems. The nature of the execution of FastSLAM2.0 algorithm could benefit from a highly parallel architecture. A second instance hardware based on programmable FPGA architecture is proposed. The implantation was performed using high-level synthesis tools to reduce development time. A comparison of the results of implementation on the hardware architecture compared to GPU-based architectures was realized. The gains obtained are promising, even compared to a high-end GPU that currently have a large number of cores. The resulting system can map a large environments while maintainingthe balance between the consistency of the localization results and real time performance. Using multiple calculators involves the use of a means of data exchange between them. This requires strong coupling (communication bus and shared memory). This thesis work has put forward the interests of parallel heterogeneous architectures (multicore, GPU) for embedding the SLAM algorithms. The FPGA-based heterogeneous architectures can particularly become potential candidatesto bring complex algorithms dealing with massive data
Pilch, Tomasz. "Simultalní lokalizace, mapování a vytváření modelu prostředí pro autonomní robotiku." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-254449.
Full textLee, Chee Sing. "Simultaneous localization and mapping using single cluster probability hypothesis density filters." Doctoral thesis, Universitat de Girona, 2015. http://hdl.handle.net/10803/323637.
Full textEn aquesta tesis es desenvolupa aquest algoritme a partir d’un filtre PHD amb un únic grup (SC-PHD), una tècnica d’estimació multi-objecte basat en processos d’agrupació. Aquest algoritme té unes capacitats que normalment no es veuen en els algoritmes de SLAM basats en característiques, ja que és capaç de tractar falses característiques, així com característiques no detectades pels sensors del vehicle, a més de navegar en un entorn amb la presència de característiques estàtiques i característiques en moviment de forma simultània. Es presenten els resultats experimentals de l’algoritme SC-PHD en entorns reals i simulats utilitzant un vehicle autònom submarí. Els resultats són comparats amb l’algoritme de SLAM Rao-Blackwellized PHD (RB-PHD), demostrant que es requereixen menys aproximacions en la seva derivació i en conseqüència s’obté un rendiment superior.
Johansson, Fredrik, and Samuel Svensson. "Evaluation of Monocular Visual SLAM Methods on UAV Imagery to Reconstruct 3D Terrain." Thesis, Linköpings universitet, Medie- och Informationsteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177585.
Full textExamensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet
Huang, Henry. "Bearing-only SLAM : a vision-based navigation system for autonomous robots." Queensland University of Technology, 2008. http://eprints.qut.edu.au/28599/.
Full textNicola, Jérémy. "Robust, precise and reliable simultaneous localization and mapping for and underwater robot. Comparison and combination of probabilistic and set-membership methods for the SLAM problem." Thesis, Brest, 2017. http://www.theses.fr/2017BRES0066/document.
Full textIn this thesis, we work on the problem of simultaneously localizing an underwater robot while mapping a set of acoustic beacons lying on the seafloor, using an acoustic range-meter and an inertial navigation system. We focus on the two main approaches classically used to solve this type of problem: Kalman filtering and set-membership filtering using interval analysis. The Kalman filter is optimal when the state equations of the robot are linear, and the noises are additive, white and Gaussian. The interval-based filter do not model uncertainties in a probabilistic framework, and makes only one assumption about their nature: they are bounded. Moreover, the interval-based approach allows to rigorously propagate the uncertainties, even when the equations are non-linear. This results in a high reliability in the set estimate, at the cost of a reduced precision.We show that in a subsea context, when the robot is equipped with a high precision inertial navigation system, a part of the SLAM equations can reasonably be seen as linear with additive Gaussian noise, making it the ideal playground of a Kalman filter. On the other hand, the equations related to the acoustic range-meter are much more problematic: the system is not observable, the equations are non-linear, and the outliers are frequent. These conditions are ideal for a set-based approach using interval analysis.By taking advantage of the properties of Gaussian noises, this thesis reconciles the probabilistic and set-membership processing of uncertainties for both linear and non-linear systems with additive Gaussian noises. By reasoning geometrically, we are able to express the part of the Kalman filter equations linked to the dynamics of the vehicle in a set-membership context. In the same way, a more rigorous and precise treatment of uncertainties is described for the part of the Kalman filter linked to the range-measurements. These two tools can then be combined to obtain a SLAM algorithm that is reliable, precise and robust. Some of the methods developed during this thesis are demonstrated on real data
Fåk, Joel, and Tomas Wilkinson. "Autonomous Mapping and Exploration of Dynamic Indoor Environments." Thesis, Linköpings universitet, Reglerteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-97609.
Full textDetta exjobb beskriver delarna som krävs för att för bygga ett komplett system som autonomt kartlägger inomhusmiljöer i tre dimensioner. Robotplattformen är en Segway, som är kapabel att röra sig i ett plan. Segwayn, tillsammans med en tröghetssensor, två Microsoft Kinects och en bärbar dator utgör grunden till systemet, som kan delas i tre delar: En lokaliserings- och karteringsdel, som i grunden är en SLAM-algoritm (simultan lokalisering och kartläggning) baserad på registreringsmetoden Iterative Closest Point (ICP). Kartan som byggs upp är i tre dimensioner och ska dessutom hantera kartläggningen av dynamiska miljöer, något som orginalforumleringen av SLAM problemet inte klarar av. En automatisk planeringsdel, som består av två delar. Dels ruttplanering som går ut på att hitta en väg från sin nuvarande position till det valda målet och dels målplanering som innebär att välja ett mål att åka till givet den nuvarande kartan och robotens nuvarande position. Systemets tredje del är regler- och kollisionssystemen. Dessa system har inte varit i fokus i detta arbete, men de är ändå högst nödvändiga för att ett autonomt system skall fungera. Detta examensarbete bidrar med följande: Octomap, ett ramverk för kartläggningen i 3D, har utökats för att hantera kartläggningen av dynamiska miljöer; En ny metod för målplanering, baserad på bildbehandling läggs fram; En kalibreringsprocedur för roboten är framtagen som ger den fullständiga posen i förhållande till roboten för varje Kinect. Resultaten visar att vår kalibreringsprocedur ger en nogrann pose for för varje Kinect, vilket är avgörande för att systemet ska fungera. Metoden för kartläggningen av dynamiska miljöer visas prestera bra i grundläggande situationer som uppstår vid kartläggning av dynamiska miljöer. Vidare visas att målplaneringsalgoritmen ger ett snabbt och enkelt sätt att planera mål att åka till. Slutligen utvärderas hela systemets autonoma kartläggningsförmåga, som ger lovande resultat. Dock lyfter resultat även fram problem som begränsar systemets prestanda, till exempel Kinectens onoggranhet och korta räckvidd samt brus som läggs till och förstärks av de olika subsystemen.
Pfingsthorn, Max [Verfasser], Andreas [Akademischer Betreuer] Birk, Kausthubh [Akademischer Betreuer] Pathak, and Udo [Akademischer Betreuer] Frese. "Generalized Simultaneous Localization and Mapping (SLAM) on Graphs with Multimodal Probabilities and Hyperedges / Max Pfingsthorn. Betreuer: Andreas Birk. Gutachter: Andreas Birk ; Kausthubh Pathak ; Udo Frese." Bremen : IRC-Library, Information Resource Center der Jacobs University Bremen, 2014. http://d-nb.info/1087295173/34.
Full textPietzsch, Tobias. "Towards Dense Visual SLAM." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-78943.
Full textKlečka, Jan. "Algoritmy a metody pro fúzi dat maticových snímačů při mapování interiéru budovy." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-414158.
Full textHENELL, DANIEL. "Airborne SLAM Using High-Speed Vision : The construction of a fully self-contained micro air vehicle localized and controlledusing computer vision based Simultaneous Localization And Mapping." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-141772.
Full textEn helikopterplattform har satts samman där all motorstyrning, lokalisering och övriga beräkningar sker ombord på helikoptern vilket gör den oberoende av extern hårdvara. Lokaliseringen av helikoptern görs enbart med hjälp av en monokulär kamera genom att analysera videoströmmen med hjälp av datorseende-algoritmer. Algoritmen som används är en anpassning av PTAM, en Similtaneous Localization and Mapping (SLAM) algoritm publicerad 2007 av G. Klein och D. Murray. Algoritmen har modifierats så att den kan bättre hantera situationer med repeterande marktextur utan speciellt utmärkande särdrag, samt att programvaran har integrerats med helikopterhårdvaran för att att skicka styrsignaler. Algoritmen har även förbättrats med automatiskt initiering av trackern, samt ett alternativ att hålla kartstorleken konstant så att helikoptern kan röra sig över större områden utan att begränsas av den ökande beräkningstiden och minnesanvändningen för en större karta. Hur användandet av höghastighetskameror på 60 Hz påverkar kvalitén av trackningen undersöktes. Inverkan visade sig vara mindre än förväntad. Tracking-stabiliteten ökade mycket i övergången från 10 Hz till 30 Hz video. Mätningarna visade dock att det knappt var någon skillnad att gå från 30 Hz till 60 Hz. I 60 Hz så blir skillnaden mellan bildrutor mindre med det gav inte bättre trackning. Anledningen till detta är med största sannolikhet att 30 Hz ger tillräckligt mjuka rörelser för att kunna tracka rörelser i de hastigheter som är aktuella för helikoptern. Den begränsande faktorn är därför att den algoritm som används inte klarar av alla typer av scener och det kommer inte kunna lösas med snabbare och bättre kameror utan kommer kräva förbättringar av SLAM algoritmen. Lokaliseringen fungerar bra när det finns många framträdande särdrag. Precisionen i de fallen har mätts till att ha ett RMS fel på 2,4 cm jämfört med data från motion capture som kan antas vara exakt.
Guizilini, Vitor Campanholo. "Localização e mapeamento simultâneos com auxílio visual omnidirecional." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/3/3152/tde-17082009-095800/.
Full textThe problem of simultaneous localization and mapping, known as the problem of SLAM, is one of the greatest obstacles that the field of autonomous robotics faces nowadays. This problem is related to a robots ability to navigate through an unknown environment, constructing a map of the regions it has already visited at the same time as localizing itself on this map. The imprecision inherent to the sensors used to collect information generates errors that accumulate over time, not allowing for a precise estimation of localization and mapping when used directly. SLAM algorithms try to eliminate these errors by taking advantage of their mutual dependence and solving both problems simultaneously, using the results of one step to refine the estimatives of the other. One possible way to achieve this is the establishment of landmarks in the environment that the robot can use as points of reference to localize itself while it navigates. This work presents a solution to the problem of SLAM using an omnidirectional vision system to detect these landmarks. The choice of visual sensors allows for the extraction of natural landmarks and robust matching under different points of view, as the robot moves through the environment. The omnidirectional vision amplifies the field of vision of the robot, increasing the number of landmarks observed at each instant. The detected landmarks are added to the map, and when they are later recognized they generate information that the robot can use to refine its estimatives of localization and mapping, eliminating accumulated errors and keeping them precise even after long periods of navigation. This solution has been tested in real navigational situations and the results show a substantial improvement in the results compared to those obtained through the direct use of the information collected.
Kaess, Michael. "Incremental smoothing and mapping." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26572.
Full textCommittee Chair: Dellaert, Frank; Committee Member: Bobick, Aaron; Committee Member: Christensen, Henrik; Committee Member: Leonard, John; Committee Member: Rehg, James. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Aulinas, Masó Josep M. "Selective submap joining SLAM for autonomous vehicles." Doctoral thesis, Universitat de Girona, 2011. http://hdl.handle.net/10803/48718.
Full textEls algoritmes de localització i creació de mapes simultàniament (Simultaneous Localization and Mapping - SLAM) no produeixen mapes correctes de grans àrees a causa de l'augment gradual de la incertesa en les missions de llarga durada. El cost de computació augmenta a mesura que el mapa creix. Aquesta tesi presenta un estudi de les tècniques de SLAM en entorns grans. També s'estudien aquells treballs centrats en ambients submarins. Es proposa una nova tècnica basada en l'ús de submapes independents i un mapa estocàstic global. Aquesta tècnica s'ha anomenat Unió Selectiva de Submapes en SLAM (SSJS). El mapa global conté les transformacions relatives entre mapes, que s'actualitzen en revisitar zones conegudes. Així doncs, els submapes que comparteixen informació es fusionen, mantenint les correlacions entre el vehicle i les fites. L'ús de submapes redueix el cost de càlcul i millora la consistència del mapa en comparació a les tècniques existents.
Mahdoui, Chedly Nesrine. "Communicating multi-UAV system for cooperative SLAM-based exploration." Thesis, Compiègne, 2018. http://www.theses.fr/2018COMP2447/document.
Full textIn the aerial robotic community, a growing interest for Multi-Robot Systems (MRS) appeared in the last years. This is thanks to i) the technological advances, such as better onboard processing capabilities and higher communication performances, and ii) the promising results of MRS deployment, such as increased area coverage in minimum time. The development of highly efficient and affordable fleet of Unmanned Aerial Vehicles (UAVs) and Micro Aerial Vehicles (MAVs) of small size has paved the way to new large-scale applications, that demand such System of Systems (SoS) features in areas like security, disaster surveillance, inundation monitoring, search and rescue, infrastructure inspection, and so on. Such applications require the robots to identify their environment and localize themselves. These fundamental tasks can be ensured by the exploration mission. In this context, this thesis addresses the cooperative exploration of an unknown environment sensed by a team of UAVs with embedded vision. We propose a multi-robot framework where the key problem is to cooperatively choose specific regions of the environment to be simultaneously explored and mapped by each robot in an optimized manner in order to reduce exploration time and, consequently, energy consumption. Each UAV is able to performSimultaneous Localization And Mapping (SLAM) with a visual sensor as the main input sensor. To explore the unknown regions, the targets – selected from the computed frontier points lying between free and unknown areas – are assigned to robots by considering a trade-off between fast exploration and getting detailed grid maps. For the sake of decision making, UAVs usually exchange a copy of their local map; however, the novelty in this work is to exchange map frontier points instead, which allow to save communication bandwidth. One of the most challenging points in MRS is the inter-robot communication. We study this part in both topological and typological aspects. We also propose some strategies to cope with communication drop-out or failure. Validations based on extensive simulations and testbeds are presented
McVicker, Michael Charles. "Effects of different camera motions on the error in estimates of epipolar geometry between two dimensional images in order to provide a framework for solutions to vision based Simultaneous Localization and Mapping (SLAM)." Thesis, Monterey, Calif. : Naval Postgraduate School, 2007. http://bosun.nps.edu/uhtbin/hyperion-image.exe/07Sep%5FMcVicker.pdf.
Full textThesis Advisor(s): Kölsch, Mathias ; Squire, Kevin. "September 2007." Description based on title screen as viewed on October 24, 2007. Includes bibliographical references (p. 169-171). Also available in print.
Avdiu, Blerta. "Matching Feature Points in 3D World." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Data- och elektroteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-23049.
Full textMacdonald, John Charles. "Efficient Estimation for Small Multi-Rotor Air Vehicles Operating in Unknown, Indoor Environments." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3496.
Full textDujardin, Aymeric. "Détection d’obstacles par stéréovision en environnement non structuré." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMIR09.
Full textAutonomous vehicles and robots represent the future of transportation and production industries. The challenge ahead will come from the robustness of perception and flexibility from unexpected situations and changing environments. Stereoscopic cameras are passive sensors that provide color images and depth information of the scene by correlating 2 images like the human vision. In this work, we developed a localization system, by visual odometry that can determine efficiently the position in space of the sensor by exploiting the dense depth map. It is also combined with a SLAM system that enables robust localization against disturbances and potentials drifts. Additionally, we developed a few mapping and obstacles detections solutions, both for aerial and terrestrial vehicles. These algorithms are now partly integrated into commercial products
Svoboda, Ondřej. "Analýza vlastností stereokamery ZED ve venkovním prostředí." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-399416.
Full textJama, Michal. "Monocular vision based localization and mapping." Diss., Kansas State University, 2011. http://hdl.handle.net/2097/8561.
Full textDepartment of Electrical and Computer Engineering
Balasubramaniam Natarajan
Dale E. Schinstock
In this dissertation, two applications related to vision-based localization and mapping are considered: (1) improving navigation system based satellite location estimates by using on-board camera images, and (2) deriving position information from video stream and using it to aid an auto-pilot of an unmanned aerial vehicle (UAV). In the first part of this dissertation, a method for analyzing a minimization process called bundle adjustment (BA) used in stereo imagery based 3D terrain reconstruction to refine estimates of camera poses (positions and orientations) is presented. In particular, imagery obtained with pushbroom cameras is of interest. This work proposes a method to identify cases in which BA does not work as intended, i.e., the cases in which the pose estimates returned by the BA are not more accurate than estimates provided by a satellite navigation systems due to the existence of degrees of freedom (DOF) in BA. Use of inaccurate pose estimates causes warping and scaling effects in the reconstructed terrain and prevents the terrain from being used in scientific analysis. Main contributions of this part of work include: 1) formulation of a method for detecting DOF in the BA; and 2) identifying that two camera geometries commonly used to obtain stereo imagery have DOF. Also, this part presents results demonstrating that avoidance of the DOF can give significant accuracy gains in aerial imagery. The second part of this dissertation proposes a vision based system for UAV navigation. This is a monocular vision based simultaneous localization and mapping (SLAM) system, which measures the position and orientation of the camera and builds a map of the environment using a video-stream from a single camera. This is different from common SLAM solutions that use sensors that measure depth, like LIDAR, stereoscopic cameras or depth cameras. The SLAM solution was built by significantly modifying and extending a recent open-source SLAM solution that is fundamentally different from a traditional approach to solving SLAM problem. The modifications made are those needed to provide the position measurements necessary for the navigation solution on a UAV while simultaneously building the map, all while maintaining control of the UAV. The main contributions of this part include: 1) extension of the map building algorithm to enable it to be used realistically while controlling a UAV and simultaneously building the map; 2) improved performance of the SLAM algorithm for lower camera frame rates; and 3) the first known demonstration of a monocular SLAM algorithm successfully controlling a UAV while simultaneously building the map. This work demonstrates that a fully autonomous UAV that uses monocular vision for navigation is feasible, and can be effective in Global Positioning System denied environments.
Wang, Zhan. "Guaranteed Localization and Mapping for Autonomous Vehicles." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS395.
Full textWith the rapid development and extensive applications of robot technology, the research on intelligent mobile robot has been scheduled in high technology development plan in many countries. Autonomous navigation plays a more and more important role in the research field of intelligent mobile robot. Localization and map building are the core problems to be solved by the robot to realize autonomous navigation. Probabilistic techniques (such as Extented Kalman Filter and Particle Filter) have long been used to solve the robotic localization and mapping problem. Despite their good performance in practical applications, they could suffer the inconsistency problem in the non linear, non Gaussian scenarios. This thesis focus on study the interval analysis based methods applied to solve the robotic localization and mapping problem. Instead of making hypothesis on the probability distribution, all the sensor noises are assumed to be bounded within known limits. Based on such foundation, this thesis formulates the localization and mapping problem in the framework of Interval Constraint Satisfaction Problem and applied consistent interval techniques to solve them in a guaranteed way. To deal with the “uncorrected yaw” problem encountered by Interval Constraint Propagation (ICP) based localization approaches, this thesis proposes a new ICP algorithm dealing with the real-time vehicle localization. The proposed algorithm employs a low-level consistency algorithm and is capable of heading uncertainty correction. Afterwards, the thesis presents an interval analysis based SLAM algorithm (IA-SLAM) dedicates for monocular camera. Bound-error parameterization and undelayed initialization for nature landmark are proposed. The SLAM problem is formed as ICSP and solved via interval constraint propagation techniques. A shaving method for landmark uncertainty contraction and an ICSP graph based optimization method are put forward to improve the obtaining result. Theoretical analysis of mapping consistency is also provided to illustrated the strength of IA-SLAM. Moreover, based on the proposed IA-SLAM algorithm, the thesis presents a low cost and consistent approach for outdoor vehicle localization. It works in a two-stage framework (visual teach and repeat) and is validated with a car-like vehicle equipped with dead reckoning sensors and monocular camera
Ferrera, Maxime. "Monocular Visual-Inertial-Pressure fusion for Underwater localization and 3D mapping." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS089.
Full textThis thesis addresses the problem of real-time 3D localization and mapping in underwater environments.In the underwater archaeology field, Remotely Operated Vehicles (ROVs) are used to conduct deep-seasurveys and excavations. Providing both accurate localization and mapping information in real-time iscrucial for manual or automated piloting of the robots. While many localization solutions already existfor underwater robots, most of them rely on very accurate sensors, such as Doppler velocity logs or fiberoptic gyroscopes, which are very expensive and may be too bulky for small ROVs. Acoustic positioningsystems are also commonly used for underwater positioning, but they provide low frequencymeasurements, with limited accuracy.In this thesis, we study the use of low-cost sensors for accurate underwater localization. Our studyinvestigates the use of a monocular camera, a pressure sensor and a low-cost MEMS-IMU as the onlymeans of performing localization and mapping in the context of underwater archaeology.We have conducted an evaluation of different features tracking methods on images affected by typicaldisturbances met in an underwater context. From the results obtained with this evaluation, we havedeveloped a monocular Visual SLAM (Simultaneous Localization and Mapping) method, robust to thespecific disturbances of underwater environments. Then, we propose an extension of this method totightly integrate the measurements of a pressure sensor and an IMU in the SLAM algorithm. The finalmethod provides a very accurate localization and runs in real-time. In addition, an online dense 3Dreconstruction module, compliant with a monocular setup, is also proposed. Two lightweight and compactprototypes of this system have been designed and used to record datasets that have been publiclyreleased. Furthermore, these prototypes have been successfully used to test and validate the proposedlocalization and mapping algorithms in real-case scenarios