To see the other types of publications on this topic, follow the link: Simultaneuos localization and mapping (SLAM).

Dissertations / Theses on the topic 'Simultaneuos localization and mapping (SLAM)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Simultaneuos localization and mapping (SLAM).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Naghi, Nour. "Simultaneous Localization and Mapping Technologies." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17852/.

Full text
Abstract:
Il problema dello SLAM (Simultaneous Localization And Mapping) consiste nel mappare un ambiente sconosciuto per mezzo di un dispositivo che si muove al suo interno, mentre si effettua la localizzazione di quest'ultimo. All'interno di questa tesi viene analizzato il problema dello SLAM e le differenze che lo contraddistinguono dai problemi di mapping e di localizzazione trattati separatamente. In seguito, si effettua una analisi dei principali algoritmi impiegati al giorno d'oggi per la sua risoluzione, ovvero i filtri estesi di Kalman e i particle filter. Si analizzano poi le diverse tecnologie implementative esistenti, tra le quali figurano sistemi SONAR, sistemi LASER, sistemi di visione e sistemi RADAR; questi ultimi, allo stato dell'arte, impiegano onde millimetriche (mmW) e a banda larga (UWB), ma anche tecnologie radio già affermate, fra le quali il Wi-Fi. Infine, vengono effettuate delle simulazioni di tecnologie basate su sistema di visione e su sistema LASER, con l'ausilio di due pacchetti open source di MATLAB. Successivamente, il pacchetto progettato per sistemi LASER è stato modificato al fine di simulare una tecnologia SLAM basata su segnali Wi-Fi. L'utilizzo di tecnologie a basso costo e ampiamente diffuse come il Wi-Fi apre alla possibilità, in un prossimo futuro, di effettuare localizzazione indoor a basso costo, sfruttando l'infrastruttura esistente, mediante un semplice smartphone. Più in prospettiva, l'avvento della tecnologia ad onde millimetriche (5G) consentirà di raggiungere prestazioni maggiori.
APA, Harvard, Vancouver, ISO, and other styles
2

Sünderhauf, Niko. "Robust Optimization for Simultaneous Localization and Mapping." Doctoral thesis, Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-86443.

Full text
Abstract:
SLAM (Simultaneous Localization And Mapping) has been a very active and almost ubiquitous problem in the field of mobile and autonomous robotics for over two decades. For many years, filter-based methods have dominated the SLAM literature, but a change of paradigms could be observed recently. Current state of the art solutions of the SLAM problem are based on efficient sparse least squares optimization techniques. However, it is commonly known that least squares methods are by default not robust against outliers. In SLAM, such outliers arise mostly from data association errors like false positive loop closures. Since the optimizers in current SLAM systems are not robust against outliers, they have to rely heavily on certain preprocessing steps to prevent or reject all data association errors. Especially false positive loop closures will lead to catastrophically wrong solutions with current solvers. The problem is commonly accepted in the literature, but no concise solution has been proposed so far. The main focus of this work is to develop a novel formulation of the optimization-based SLAM problem that is robust against such outliers. The developed approach allows the back-end part of the SLAM system to change parts of the topological structure of the problem\'s factor graph representation during the optimization process. The back-end can thereby discard individual constraints and converge towards correct solutions even in the presence of many false positive loop closures. This largely increases the overall robustness of the SLAM system and closes a gap between the sensor-driven front-end and the back-end optimizers. The approach is evaluated on both large scale synthetic and real-world datasets. This work furthermore shows that the developed approach is versatile and can be applied beyond SLAM, in other domains where least squares optimization problems are solved and outliers have to be expected. This is successfully demonstrated in the domain of GPS-based vehicle localization in urban areas where multipath satellite observations often impede high-precision position estimates.
APA, Harvard, Vancouver, ISO, and other styles
3

Pomerleau, François. "Registration algorithm optimized for simultaneous localization and mapping." Mémoire, Université de Sherbrooke, 2008. http://savoirs.usherbrooke.ca/handle/11143/1465.

Full text
Abstract:
Building maps within an unknown environment while keeping track of the current position is a major step to accomplish safe and autonomous robot navigation. Within the last 20 years, Simultaneous Localization And Mapping (SLAM) became a topic of great interest in robotics. The basic idea of this technique is to combine proprioceptive robot motion information with external environmental information to minimize global positioning errors. Because the robot is moving in its environment, exteroceptive data comes from different points of view and must be expressed in the same coordinate system to be combined. The latter process is called registration. Iterative Closest Point (ICP) is a registration algorithm with very good performances in several 3D model reconstruction applications, and was recently applied to SLAM. However, SLAM has specific needs in terms of real-time and robustness comparatively to 3D model reconstructions, leaving room for specialized robotic mapping optimizations in relation to robot mapping. After reviewing existing SLAM approaches, this thesis introduces a new registration variant called Kd-ICP. This referencing technique iteratively decreases the error between misaligned point clouds without extracting specific environmental features. Results demonstrate that the new rejection technique used to achieve mapping registration is more robust to large initial positioning errors. Experiments with simulated and real environments suggest that Kd-ICP is more robust compared to other ICP variants. Moreover, the Kd-ICP is fast enough for real-time applications and is able to deal with sensor occlusions and partially overlapping maps. Realizing fast and robust local map registrations opens the door to new opportunities in SLAM. It becomes feasible to minimize the cumulation of robot positioning errors, to fuse local environmental information, to reduce memory usage when the robot is revisiting the same location. It is also possible to evaluate network constrains needed to minimize global mapping errors.
APA, Harvard, Vancouver, ISO, and other styles
4

Inostroza, Ferrari Felipe Ignacio. "The estimation of detection statistics in simultaneus localization and mapping." Tesis, Universidad de Chile, 2015. http://repositorio.uchile.cl/handle/2250/134725.

Full text
Abstract:
Magíster en Ciencias de la Ingeniería, Mención Ingeniería Eléctrica
Ingeniero Civil Eléctrico
El uso de Conjuntos Aleatorios Finitos (RFS por su sigla en inglés) tiene varias ventajas respecto de los métodos tradicionales basados en vectores. Entre ellas están el incluir las estadísticas de detección del sensor y la eliminación de las heurísticas tanto para la asociación de datos como para la inicialización y eliminación de objetos en mapa. Para obtener los beneficios de los estimadores basados en RFS en el problema de Construcción de Mapas y Localización Simultanea (SLAM por su acrónimo en inglés), las estadísticas de detección y falsa alarma del extractor de características deben ser modeladas y utilizadas en cada actualización del mapa. Esta Tesis presenta técnicas para obtener estas estadísticas en el caso de características semánticas extraídas de mediciones láser. Además se concentra en la extracción de objetos cilíndricos, como pilares, árboles y postes de luz, en ambientes exteriores. Las estadísticas de detección obtenidas son utilizadas dentro de una solución a SLAM basada en RFS, conocida como Rao-Blackwellized (RB)-probability hypothesis density (PHD)-SLAM, y el algoritmo multiple hypothesis (MH)-factored solution to SLAM (FastSLAM), solución a SLAM basada en vectores. El desempeño de cada algoritmo al usar estas estadísticas es comparado con el de utilizar estadísticas constantes. Los resultados muestran las ventajas de modelar las estadísticas de detección, particularmente en el caso del paradigma RFS. En particular, el error en las estimaciones del mapa, medido utilizando la distancia optimal sub- pattern assignment (OSPA) a un mapa ground truth generado de forma independiente, disminuye en un 13% en el caso de MH-FastSLAM y en un 13% para RB-PHD-SLAM al modelar las estadísticas de detección. A pesar de que no se tiene un ground truth para la trayectoria del robot, se evalúan las trayectorias visualmente, encontradose estimaciones superiores para el método propuesto. Por lo tanto, se concluye que el modelamiento de las estadísticas de detección es de gran importancia al implementar una aplicación de SLAM.
APA, Harvard, Vancouver, ISO, and other styles
5

Bao, Guanqun. "On Simultaneous Localization and Mapping inside the Human Body (Body-SLAM)." Digital WPI, 2014. https://digitalcommons.wpi.edu/etd-dissertations/206.

Full text
Abstract:
Wireless capsule endoscopy (WCE) offers a patient-friendly, non-invasive and painless investigation of the entire small intestine, where other conventional wired endoscopic instruments can barely reach. As a critical component of the capsule endoscopic examination, physicians need to know the precise position of the endoscopic capsule in order to identify the position of intestinal disease after it is detected by the video source. To define the position of the endoscopic capsule, we need to have a map of inside the human body. However, since the shape of the small intestine is extremely complex and the RF signal propagates differently in the non-homogeneous body tissues, accurate mapping and localization inside small intestine is very challenging. In this dissertation, we present an in-body simultaneous localization and mapping technique (Body-SLAM) to enhance the positioning accuracy of the WCE inside the small intestine and reconstruct the trajectory the capsule has traveled. In this way, the positions of the intestinal diseases can be accurately located on the map of inside human body, therefore, facilitates the following up therapeutic operations. The proposed approach takes advantage of data fusion from two sources that come with the WCE: image sequences captured by the WCE's embedded camera and the RF signal emitted by the capsule. This approach estimates the speed and orientation of the endoscopic capsule by analyzing displacements of feature points between consecutive images. Then, it integrates this motion information with the RF measurements by employing a Kalman filter to smooth the localization results and generate the route that the WCE has traveled. The performance of the proposed motion tracking algorithm is validated using empirical data from the patients and this motion model is later imported into a virtual testbed to test the performance of the alternative Body-SLAM algorithms. Experimental results show that the proposed Body-SLAM technique is able to provide accurate tracking of the WCE with average error of less than 2.3cm.
APA, Harvard, Vancouver, ISO, and other styles
6

Tiranti, Luca. "Simultaneous localization and mapping using radar images." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22893/.

Full text
Abstract:
Questa tesi affronta il problema di localizzazione e mappatura simultanea in locali indoor utilizzando la tecnologia radar a onde millimetriche. Gli scenari considerati e le tecnologie impiegate sono in linea con il concetto di “personal mobile radar” rendendo questo lavoro un proof-of-concept di tale idea, testandone le performance in ambienti reali attraverso differenti campagne di misura. In accordo con tale concetto, sarà possibile integrare in dispositivi mobili, quali smartphone e tablet, array di antenne che scansioneranno autonomamente l’ambiente circostante e permetteranno di raggiungere una soluzione con specifiche simili alle più performanti soluzioni di SLAM come la tecnologia laser o lidar. Al contempo, l’utilizzo di tecnologia a onde millimetriche permette un possibile impiego del radar personale anche in ambienti con scarsa visibilità trovando applicazione, ad esempio, in contesti industriali ma anche per la sicurezza delle persone mantenendo i costi contenuti ed evitando l'installazione di infrastrutture ad-hoc. Lo campagne di misura in locali indoor svolte per questa tesi hanno reso possibile la raccolta di dati, i quali successivamente sono stati processati e forniti in input all'algoritmo di SLAM proposto sotto forma di “immagini radar”. A partire da queste, verranno presentate diverse strategie sviluppate per la stima della traiettoria del radar e mapping dell’ambiente e, infine, per ognuna di queste, verranno mostrati i relativi risultati ottenuti. Verranno mostrati i risultati ottenuti da campagne di misure sia a 77 GHz che a 300 GHz. Queste ultime sono state condotte presso il centro di ricerca CEA-Leti (Grenoble, France) nel contesto del progetto europeo PRIMELOC (Personal Radars for Radio Imaging and Infrastructure-less Localization) del quale l’Università di Bologna è coordinatrice. I risultati mostreranno come l’aumento delle frequenze in gioco possa portare benefici in termini di accuratezza dei risultati.
APA, Harvard, Vancouver, ISO, and other styles
7

Pereira, Savio Joseph. "On the utilization of Simultaneous Localization and Mapping(SLAM) along with vehicle dynamics in Mobile Road Mapping Systems." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/94425.

Full text
Abstract:
Mobile Road Mapping Systems (MRMS) are the current solution to the growing demand for high definition road surface maps in wide ranging applications from pavement management to autonomous vehicle testing. The focus of this research work is to improve the accuracy of MRMS by using the principles of Simultaneous Localization and Mapping (SLAM). First a framework for describing the sensor measurement models in MRMS is developed. Next the problem of estimating the road surface from the set of sensor measurements is formulated as a SLAM problem and two approaches are proposed to solve the formulated problem. The first is an incremental solution wherein sensor measurements are processed in sequence using an Extended Kalman Filter (EKF). The second is a post-processing solution wherein the SLAM problem is formulated as an inference problem over a factor graph and existing factor graph SLAM techniques are used to solve the problem. For the mobile road mapping problem, the road surface being measured is one the primary inputs to the dynamics of the MRMS. Hence, concurrent to the main objective this work also investigates the use of the dynamics of the host vehicle of the system to improve the accuracy of the MRMS. Finally a novel method that builds off the concepts of the popular model fitting algorithm, Random Sampling and Consensus (RANSAC), is developed in order to identify outliers in road surface measurements and estimate the road elevations at grid nodes using these measurements. The developed methods are validated in a simulated environment and the results demonstrate a significant improvement in the accuracy of MRMS over current state-of-the art methods.
Doctor of Philosophy
Mobile Road Mapping Systems (MRMS) are the current solution to the growing demand for high definition road surface maps in wide ranging applications from pavement management to autonomous vehicle testing. The objective of this research work is to improve the accuracy of MRMS by investigating methods to improve the sensor data fusion process. The main focus of this work is to apply the principles from the field of Simultaneous Localization and Mapping (SLAM) in order to improve the accuracy of MRMS. The concept of SLAM has been successfully applied to the field of mobile robot navigation and thus the motivation of this work is to investigate its application to the problem of mobile road mapping. For the mobile road mapping problem, the road surface being measured is one the primary inputs to the dynamics of the MRMS. Hence this work also investigates whether knowledge regarding the dynamics of the system can be used to improve the accuracy. Also developed as part of this work is a novel method for identifying outliers in road surface datasets and estimating elevations at road surface grid nodes. The developed methods are validated in a simulated environment and the results demonstrate a significant improvement in the accuracy of MRMS over current state-of-the-art methods.
APA, Harvard, Vancouver, ISO, and other styles
8

Desrochers, Benoît. "Simultaneous localization and mapping in unstructured environments : a set-membership approach." Thesis, Brest, École nationale supérieure de techniques avancées Bretagne, 2018. http://www.theses.fr/2018ENTA0006/document.

Full text
Abstract:
Cette thèse étudie le problème de la localisation et de la cartographie simultanée (SLAM), dans des environnements non structurés, c'est-à-dire, qui ne peuvent pas être décrits par des équations ou des formes géométriques. Ces types d'environnements sont souvent rencontrés dans le domaine sous-marin. Contrairement aux approches classiques, l'environnement n'est pas modélisé par une collection de descripteurs ou d'amers ponctuels, mais directement par des ensembles. Ces ensembles, appelés forme ou shape, sont associés à des caractéristiques physiques de l'environnement, comme par exemple, des textures, du relief ou, de manière plus symbolique, à l'espace libre autour du véhicule. D'un point de vue théorique, le problème du SLAM, basé sur des formes, est formalisé par un réseau de contraintes hybrides dont les variables sont des vecteurs de Rn et des sous-ensembles de Rn. De la même façon que l'incertitude sur une variable réelle est représentée par un intervalle de réels, l'incertitude sur les formes sera représentée par un intervalle de forme. La principale contribution de cette thèse est de proposer un formalisme, basé sur le calcul par intervalle, capable de calculer ces domaines. En application, les algorithmes développés ont été appliqués au problème du SLAM à partir de données bathymétriques recueillies par un véhicule sous-marin autonome (AUV)
This thesis deals with the simultaneous localization and mapping (SLAM) problem in unstructured environments, i.e. which cannot be described by geometrical features. This type of environment frequently occurs in an underwater context.Unlike classical approaches, the environment is not described by a collection of punctual features or landmarks, but directly by sets. These sets, called shapes, are associated with physical features such as the relief, some textures or, in a more symbolic way, the space free of obstacles that can be sensed around a robot. In a theoretical point of view, the SLAM problem is formalized as an hybrid constraint network where the variables are vectors and subsets of Rn. Whereas an uncertain real number is enclosed in an interval, an uncertain shape is enclosed in an interval of sets. The main contribution of this thesis is the introduction of a new formalism, based on interval analysis, able to deal with these domains. As an application, we illustrate our method on a SLAM problem based on bathymetric data acquired by an autonomous underwater vehicle (AUV)
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Chun-Fan Computer Science &amp Engineering Faculty of Engineering UNSW. "Towards topological mapping with vision-based simultaneous localization and map building." Awarded by:University of New South Wales. Computer Science & Engineering, 2008. http://handle.unsw.edu.au/1959.4/41551.

Full text
Abstract:
Although the theory of Simultaneous Localization and Map Building (SLAM) is well developed, there are many challenges to overcome when incorporating vision sensors into SLAM systems. Visual sensors have different properties when compared to range finding sensors and therefore require different considerations. Existing vision-based SLAM algorithms extract point landmarks, which are required for SLAM algorithms such as the Kalman filter. Under this restriction, the types of image features that can be used are limited and the full advantages of vision not realized. This thesis examines the theoretical formulation of the SLAM problem and the characteristics of visual information in the SLAM domain. It also examines different representations of uncertainty, features and environments. It identifies the necessity to develop a suitable framework for vision-based SLAM systems and proposes a framework called VisionSLAM, which utilizes an appearance-based landmark representation and topological map structure to model metric relations between landmarks. A set of Haar feature filters are used to extract image structure statistics, which are robust against illumination changes, have good uniqueness property and can be computed in real time. The algorithm is able to resolve and correct false data associations and is robust against random correlation resulting from perceptual aliasing. The algorithm has been tested extensively in a natural outdoor environment.
APA, Harvard, Vancouver, ISO, and other styles
10

Vallivaara, I. (Ilari). "Simultaneous localization and mapping using the indoor magnetic field." Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526217741.

Full text
Abstract:
Abstract The Earth’s magnetic field (MF) has been used for navigation for centuries. Man-made metallic structures, such as steel reinforcements in buildings, cause local distortions to the Earth’s magnetic field. Up until the recent decade, these distortions have been mostly considered as a source of error in indoor localization, as they interfere with the compass direction. However, as the distortions are temporally stable and spatially distinctive, they provide a unique magnetic landscape that can be used for constructing a map for indoor localization purposes, as noted by recent research in the field. Most approaches rely on manually collecting the magnetic field map, a process that can be both tedious and error-prone. In this thesis, the map is collected by a robotic platform with minimal sensor equipment. It is shown that a mere magnetometer along with odometric information suffices to construct the map via a simultaneous localization and mapping (SLAM) procedure that builds on the Rao-Blackwellized particle filter as means for recursive Bayesian estimation. Furthermore, the maps are shown to achieve decimeter level localization accuracy that combined with the extremely low-cost hardware requirements makes the presented methods very lucrative for domestic robots. In addition, general auxiliary methods for effective sampling and dealing with uncertainties are presented. Although the methods presented here are devised in mobile robotics context, most of them are also applicable to mobile device-based localization, for example, with little modifications. Magnetic field localization offers a promising alternative to WiFi-based methods for achieving GPS-level localization indoors. This is motivated by the rapidly growing indoor location market
Tiivistelmä Maan magneettikenttään perustuvat kompassit ovat ohjanneet merenkäyntiä vuosisatojen ajan. Rakennusten metallirakenteet aiheuttavat paikallisia häiriöitä tähän magneettikenttään, minkä vuoksi kompasseja on pidetty epäluotettavina sisätiloissa. Vasta viimeisen vuosikymmenen aikana on huomattu, että koska nämä häiriöt ovat ajallisesti pysyviä ja paikallisesti hyvin erottelevia, niistä voidaan muodostaa jokaiselle rakennukselle yksilöllinen häiriöihin perustuva magneettinen kartta, jota voidaan käyttää sisätiloissa paikantamiseen. Suurin osa tämänhetkisistä magneettikarttojen sovelluksista perustuu kartan käsin keräämiseen, mikä on sekä työlästä että tarjoaa mahdollisuuden inhimillisiin virheisiin. Tämä väitöstutkimus tarttuu ongelmaan laittamalla robotin hoitamaan kartoitustyön ja näyttää, että robotti pystyy itsenäisesti keräämään magneettisen kartan hyödyntäen pelkästään magnetometriä ja renkaiden antamia matkalukemia. Ratkaisu perustuu faktoroituun partikkelisuodattimeen (RBPF), joka approksimoi täsmällistä rekursiivista bayesilaista ratkaisua. Robotin keräämien karttojen tarkkuus mahdollistaa paikannuksen n. 10 senttimetrin tarkkuudella. Vähäisten sensori- ja muiden vaatimusten takia menetelmä soveltuu erityisen hyvin koti- ja parvirobotiikkaan, joissa hinta on usein ratkaiseva tekijä. Tutkimuksessa esitellään lisäksi uusia apumenetelmiä tehokkaaseen näytteistykseen ja epävarmuuden hallintaan. Näiden käyttöala ei rajoitu pelkästään magneettipaikannukseen- ja kartoitukseen. Robotiikan sovellusten lisäksi tutkimusta motivoi voimakkaasti kasvava tarve älylaitteissa toimivalle sisätilapaikannukselle. Tämä avaa uusia mahdollisuuksia paikannukselle ympäristöissä, joissa GPS ei perinteisesti toimi
APA, Harvard, Vancouver, ISO, and other styles
11

Brink, Wikus. "Stereo vision for simultaneous localization and mapping." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71593.

Full text
Abstract:
Thesis (MScEng)--Stellenbosch University, 2012.
ENGLISH ABSTRACT: Simultaneous localization and mapping (SLAM) is vital for autonomous robot navigation. The robot must build a map of its environment while tracking its own motion through that map. Although many solutions to this intricate problem have been proposed, one of the most prominent issues that still needs to be resolved is to accurately measure and track landmarks over time. In this thesis we investigate the use of stereo vision for this purpose. In order to find landmarks in images we explore the use of two feature detectors: the scale-invariant feature transform (SIFT) and speeded-up robust features (SURF). Both these algorithms find salient points in images and calculate a descriptor for each point that is invariant to scale, rotation and illumination. By using the descriptors we match these image features between stereo images and use the geometry of the system to calculate a set of 3D landmark measurements. A Taylor approximation of this transformation is used to derive a Gaussian noise model for the measurements. The measured landmarks are matched to landmarks in a map to find correspondences. We find that this process often incorrectly matches ambiguous landmarks. To find these mismatches we develop a novel outlier detection scheme based on the random sample consensus (RANSAC) framework. We use a similarity transformation for the RANSAC model and derive a probabilistic consensus measure that takes the uncertainties of landmark locations into account. Through simulation and practical tests we find that this method is a significant improvement on the standard approach of using the fundamental matrix. With accurately identified landmarks we are able to perform SLAM. We investigate the use of three popular SLAM algorithms: EKF SLAM, FastSLAM and FastSLAM 2. EKF SLAM uses a Gaussian distribution to describe the systems states and linearizes the motion and measurement equations with Taylor approximations. The two FastSLAM algorithms are based on the Rao-Blackwellized particle filter that uses particles to describe the robot states, and EKFs to estimate the landmark states. FastSLAM 2 uses a refinement process to decrease the size of the proposal distribution and in doing so decreases the number of particles needed for accurate SLAM. We test the three SLAM algorithms extensively in a simulation environment and find that all three are capable of very accurate results under the right circumstances. EKF SLAM displays extreme sensitivity to landmark mismatches. FastSLAM, on the other hand, is considerably more robust against landmark mismatches but is unable to describe the six-dimensional state vector required for 3D SLAM. FastSLAM 2 offers a good compromise between efficiency and accuracy, and performs well overall. In order to evaluate the complete system we test it with real world data. We find that our outlier detection algorithm is very effective and greatly increases the accuracy of the SLAM systems. We compare results obtained by all three SLAM systems, with both feature detection algorithms, against DGPS ground truth data and achieve accuracies comparable to other state-of-the-art systems. From our results we conclude that stereo vision is viable as a sensor for SLAM.
AFRIKAANSE OPSOMMING: Gelyktydige lokalisering en kartering (simultaneous localization and mapping, SLAM) is ’n noodsaaklike proses in outomatiese robot-navigasie. Die robot moet ’n kaart bou van sy omgewing en tegelykertyd sy eie beweging deur die kaart bepaal. Alhoewel daar baie oplossings vir hierdie ingewikkelde probleem bestaan, moet een belangrike saak nog opgelos word, naamlik om landmerke met verloop van tyd akkuraat op te spoor en te meet. In hierdie tesis ondersoek ons die moontlikheid om stereo-visie vir hierdie doel te gebruik. Ons ondersoek die gebruik van twee beeldkenmerk-onttrekkers: scale-invariant feature transform (SIFT) en speeded-up robust features (SURF). Altwee algoritmes vind toepaslike punte in beelde en bereken ’n beskrywer vir elke punt wat onveranderlik is ten opsigte van skaal, rotasie en beligting. Deur die beskrywer te gebruik, kan ons ooreenstemmende beeldkenmerke soek en die geometrie van die stelsel gebruik om ’n stel driedimensionele landmerkmetings te bereken. Ons gebruik ’n Taylor- benadering van hierdie transformasie om ’n Gaussiese ruis-model vir die metings te herlei. Die gemete landmerke se beskrywers word dan vergelyk met dié van landmerke in ’n kaart om ooreenkomste te vind. Hierdie proses maak egter dikwels foute. Om die foutiewe ooreenkomste op te spoor het ons ’n nuwe uitskieterherkenningsalgoritme ontwikkel wat gebaseer is op die RANSAC-raamwerk. Ons gebruik ’n gelykvormigheidstransformasie vir die RANSAC-model en lei ’n konsensusmate af wat die onsekerhede van die ligging van landmerke in ag neem. Met simulasie en praktiese toetse stel ons vas dat die metode ’n beduidende verbetering op die standaardprosedure, waar die fundamentele matriks gebruik word, is. Met ons akkuraat geïdentifiseerde landmerke kan ons dan SLAM uitvoer. Ons ondersoek die gebruik van drie SLAM-algoritmes: EKF SLAM, FastSLAM en FastSLAM 2. EKF SLAM gebruik ’n Gaussiese verspreiding om die stelseltoestande te beskryf en Taylor-benaderings om die bewegings- en meetvergelykings te lineariseer. Die twee FastSLAM-algoritmes is gebaseer op die Rao-Blackwell partikelfilter wat partikels gebruik om robottoestande te beskryf en EKF’s om die landmerktoestande af te skat. FastSLAM 2 gebruik ’n verfyningsproses om die grootte van die voorstelverspreiding te verminder en dus die aantal partikels wat vir akkurate SLAM benodig word, te verminder. Ons toets die drie SLAM-algoritmes deeglik in ’n simulasie-omgewing en vind dat al drie onder die regte omstandighede akkurate resultate kan behaal. EKF SLAM is egter baie sensitief vir foutiewe landmerkooreenkomste. FastSLAM is meer bestand daarteen, maar kan nie die sesdimensionele verspreiding wat vir 3D SLAM vereis word, beskryf nie. FastSLAM 2 bied ’n goeie kompromie tussen effektiwiteit en akkuraatheid, en presteer oor die algemeen goed. Ons toets die hele stelsel met werklike data om dit te evalueer, en vind dat ons uitskieterherkenningsalgoritme baie effektief is en die akkuraatheid van die SLAM-stelsels beduidend verbeter. Ons vergelyk resultate van die drie SLAM-stelsels met onafhanklike DGPS-data, wat as korrek beskou kan word, en behaal akkuraatheid wat vergelykbaar is met ander toonaangewende stelsels. Ons resultate lei tot die gevolgtrekking dat stereo-visie ’n lewensvatbare sensor vir SLAM is.
APA, Harvard, Vancouver, ISO, and other styles
12

Dahlin, Alfred. "Simultaneous Localization and Mapping for an Unmanned Aerial Vehicle Using Radar and Radio Transmitters." Thesis, Linköpings universitet, Reglerteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-110645.

Full text
Abstract:
The Global Positioning System (GPS) is a cornerstone in Unmanned Aerial Vehicle (UAV) navigation and is by far the most common way to obtain the position of a UAV. However, since there are many scenarios in which GPS measurements might not be available, the possibility of estimating the UAV position without using the GPS would greatly improve the overall robustness of the navigation. This thesis studies the possibility of instead using Simultaneous Localisation and Mapping (SLAM) in order to estimate the position of a UAV using an Inertial Measurement Unit (IMU) and the direction towards ground based radio transmitters without prior knowledge of their position. Simulations using appropriately generated data provides a feasibility analysis which shows promising results for position errors for outdoor trajectories over large areas, however with some issues regarding overall offset. The method seems to have potential but further studies are required using the measurements from a live flight, in order to determine the true performance.
APA, Harvard, Vancouver, ISO, and other styles
13

Kondrath, Andrew Stephen. "Frequency Modulated Continuous Wave Radar and Video Fusion for Simultaneous Localization and Mapping." Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1347715085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Svensson, Depraetere Xavier. "Application of new particle-based solutions to the Simultaneous Localization and Mapping (SLAM) problem." Thesis, KTH, Matematisk statistik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-212999.

Full text
Abstract:
In this thesis, we explore novel solutions to the Simultaneous Localization and Mapping (SLAM) problem based on particle filtering and smoothing methods. In essence, the SLAM problem constitutes of two interdependent tasks: map building and tracking. Three solution methods utilizing different smoothing techniques are explored. The smoothing methods used are fixed lag smoothing (FLS), forward-only forward-filtering backward-smoothing (forward-only FFBSm) and the particle-based, rapid incremental smoother (PaRIS). In conjunction with these smoothing techniques the well-established Expectation-Maximization (EM) algorithm is used to produce maximum-likelihood estimates of the map. The three solution method are then evaluated and compared in a simulated setting.
I detta examensarbete utforskas nya lösningar till Simultaneous Localization and Mapping (SLAM) problemet baserat på partikelfilter- och partikelglättnings-metoder. I sin grund består SLAM problemet av två av varandra beroende uppgifter: kartläggning och spårning. Tre lösningsmetoder som använder olika glättnings-metoder appliceras för att lösa dessa uppgifter.  Dessa glättningsmetoder är fixed lag smoothing (FLS), forward-only forward-filtering backward-smoothing (forward-only FFBSm) och the particle-based, rapid incremental smoother (PaRIS). I samband med dessa glättningstekniker används den väletablerade Expectation-Maximization (EM) algoritmen för att skapa maximum-likelihood skattningar av kartan. De tre lösningsmetoderna utvärderas sedan och jämförs i en simulerad miljö.
APA, Harvard, Vancouver, ISO, and other styles
15

Manhed, Joar. "Investigating Simultaneous Localization and Mapping for an Automated Guided Vehicle." Thesis, Linköpings universitet, Reglerteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-163075.

Full text
Abstract:
The aim of the thesis is to apply simultaneous localization and mapping (SLAM) to automated guided vehicles (AGVs) in a Robot Operating System (ROS) environment. Different sensor setups are used and evaluated. The SLAM applications used is the open-source solution Cartographer as well as Intel's own commercial SLAM in their T265 tracking camera. The different sensor setups are evaluated based on how well the localization will give the exact pose of the AGV in comparison to another positioning system acting as ground truth.
APA, Harvard, Vancouver, ISO, and other styles
16

Kiang, Kai-Ming Mechanical &amp Manufacturing Engineering Faculty of Engineering UNSW. "Natural feature extraction as a front end for simultaneous localization and mapping." Awarded by:University of New South Wales. School of Mechanical and Manufacturing Engineering, 2006. http://handle.unsw.edu.au/1959.4/26960.

Full text
Abstract:
This thesis is concerned with algorithms for finding natural features that are then used for simultaneous localisation and mapping, commonly known as SLAM in navigation theory. The task involves capturing raw sensory inputs, extracting features from these inputs and using the features for mapping and localising during navigation. The ability to extract natural features allows automatons such as robots to be sent to environments where no human beings have previously explored working in a way that is similar to how human beings understand and remember where they have been. In extracting natural features using images, the way that features are represented and matched is a critical issue in that the computation involved could be wasted if the wrong method is chosen. While there are many techniques capable of matching pre-defined objects correctly, few of them can be used for real-time navigation in an unexplored environment, intelligently deciding on what is a relevant feature in the images. Normally, feature analysis that extracts relevant features from an image is a 2-step process, the steps being firstly to select interest points and then to represent these points based on the local region properties. A novel technique is presented in this thesis for extracting a small enough set of natural features robust enough for navigation purposes. The technique involves a 3-step approach. The first step involves an interest point selection method based on extrema of difference of Gaussians (DOG). The second step applies Textural Feature Analysis (TFA) on the local regions of the interest points. The third step selects the distinctive features using Distinctness Analysis (DA) based mainly on the probability of occurrence of the features extracted. The additional step of DA has shown that a significant improvement on the processing speed is attained over previous methods. Moreover, TFA / DA has been applied in a SLAM configuration that is looking at an underwater environment where texture can be rich in natural features. The results demonstrated that an improvement in loop closure ability is attained compared to traditional SLAM methods. This suggests that real-time navigation in unexplored environments using natural features could now be a more plausible option.
APA, Harvard, Vancouver, ISO, and other styles
17

Svensson, Henrik. "Simultaneous Localization And Mapping in a Marine Environment using Radar Images." Thesis, Linköping University, Automatic Control, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-20845.

Full text
Abstract:

Simultaneous Localization And Mapping (SLAM) is a process of mapping an unknown environment and at the same time keeping track of the position within this map. In this theses, SLAM is performed in a marine environent using radar images only.

A SLAM solution is presented. It uses SIFT to compare pairs of radar images. From these comparisons, measurements of the boat movements are obtained. A type of Kalman filter (Exactly Sparse Delayed-state Filter, ESDF) uses these measurements to estimate the trajectory of the boat. Once the trajectory is estimated, the radar images are joined together in order to create a map.

The presented solution is tested and the estimated trajectory is compared to GPS data. Results show that the method performs well for at least shorter periods of time.

APA, Harvard, Vancouver, ISO, and other styles
18

Bacca, Cortés Eval Bladimir. "Appearance-based mapping and localization using feature stability histograms for mobile robot navigation." Doctoral thesis, Universitat de Girona, 2012. http://hdl.handle.net/10803/83589.

Full text
Abstract:
This work proposes an appearance-based SLAM method whose main contribution is the Feature Stability Histogram (FSH). The FSH is built using a voting schema, if the feature is re-observed, it will be promoted; otherwise it progressively decreases its corresponding FSH value. The FSH is based on the human memory model to deal with changing environments and long-term SLAM. This model introduces concepts of Short-Term memory (STM), which retains information long enough to use it, and Long-Term memory (LTM), which retains information for longer periods of time. If the entries in the STM are rehearsed, they become part of the LTM (i.e. they become more stable). However, this work proposes a different memory model, allowing to any input be part of the STM or LTM considering the input strength. The most stable features are only used for SLAM. This innovative feature management approach is able to cope with changing environments, and long-term SLAM.
Este trabajo propone un método de SLAM basado en apariencia cuya principal contribución es el Histograma de Estabilidad de Características (FSH). El FSH es construido por votación, si una característica es re-observada, ésta será promovida; de lo contrario su valor FSH progresivamente es reducido. El FSH es basado en el modelo de memoria humana para ocuparse de ambientes cambiantes y SLAM a largo término. Este modelo introduce conceptos como memoria a corto plazo (STM) y largo plazo (LTM), las cuales retienen información por cortos y largos periodos de tiempo. Si una entrada a la STM es reforzada, ésta hará parte de la LTM (i.e. es más estable). Sin embargo, este trabajo propone un modelo de memoria diferente, permitiendo a cualquier entrada ser parte de la STM o LTM considerando su intensidad. Las características más estables son solamente usadas en SLAM. Esta innovadora estrategia de manejo de características es capaz de hacer frente a ambientes cambiantes y SLAM de largo término.
APA, Harvard, Vancouver, ISO, and other styles
19

HERRERA, LUIS ERNESTO YNOQUIO. "MOBILE ROBOT SIMULTANEOUS LOCALIZATION AND MAPPING USING DP-SLAM WITH A SINGLE LASER RANGE FINDER." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2011. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=34617@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
SLAM (Mapeamento e Localização Simultânea) é uma das áreas mais pesquisadas na Robótica móvel. Trata-se do problema, num robô móvel, de construir um mapa sem conhecimento prévio do ambiente e ao mesmo tempo manter a sua localização nele. Embora a tecnologia ofereça sensores cada vez mais precisos, pequenos erros na medição são acumulados comprometendo a precisão na localização, sendo estes evidentes quando o robô retorna a uma posição inicial depois de percorrer um longo caminho. Assim, para melhoria do desempenho do SLAM é necessário representar a sua formulação usando teoria das probabilidades. O SLAM com Filtro Extendido de Kalman (EKF-SLAM) é uma solução básica, e apesar de suas limitações é a técnica mais popular. O Fast SLAM, por outro lado, resolve algumas limitações do EKF-SLAM usando uma instância do filtro de partículas conhecida como Rao-Blackwellized. Outra solução bem sucedida é o DP-SLAM, o qual usa uma representação do mapa em forma de grade de ocupação, com um algoritmo hierárquico que constrói mapas 2D bastante precisos. Todos estes algoritmos usam informação de dois tipos de sensores: odômetros e sensores de distância. O Laser Range Finder (LRF) é um medidor laser de distância por varredura, e pela sua precisão é bastante usado na correção do erro em odômetros. Este trabalho apresenta uma detalhada implementação destas três soluções para o SLAM, focalizado em ambientes fechados e estruturados. Apresenta-se a construção de mapas 2D e 3D em terrenos planos tais como em aplicações típicas de ambientes fechados. A representação dos mapas 2D é feita na forma de grade de ocupação. Por outro lado, a representação dos mapas 3D é feita na forma de nuvem de pontos ao invés de grade, para reduzir o custo computacional. É considerado um robô móvel equipado com apenas um LRF, sem nenhuma informação de odometria. O alinhamento entre varreduras laser é otimizado fazendo o uso de Algoritmos Genéticos. Assim, podem-se construir mapas e ao mesmo tempo localizar o robô sem necessidade de odômetros ou outros sensores. Um simulador em Matlab é implementado para a geração de varreduras virtuais de um LRF em um ambiente 3D (virtual). A metodologia proposta é validada com os dados simulados, assim como com dados experimentais obtidos da literatura, demonstrando a possibilidade de construção de mapas 3D com apenas um sensor LRF.
Simultaneous Localization and Mapping (SLAM) is one of the most widely researched areas of Robotics. It addresses the mobile robot problem of generating a map without prior knowledge of the environment, while keeping track of its position. Although technology offers increasingly accurate position sensors, even small measurement errors can accumulate and compromise the localization accuracy. This becomes evident when programming a robot to return to its original position after traveling a long distance, based only on its sensor readings. Thus, to improve SLAM s performance it is necessary to represent its formulation using probability theory. The Extended Kalman Filter SLAM (EKF-SLAM) is a basic solution and, despite its shortcomings, it is by far the most popular technique. Fast SLAM, on the other hand, solves some limitations of the EKFSLAM using an instance of the Rao-Blackwellized particle filter. Another successful solution is to use the DP-SLAM approach, which uses a grid representation and a hierarchical algorithm to build accurate 2D maps. All SLAM solutions require two types of sensor information: odometry and range measurement. Laser Range Finders (LRF) are popular range measurement sensors and, because of their accuracy, are well suited for odometry error correction. Furthermore, the odometer may even be eliminated from the system if multiple consecutive LRF scans are matched. This works presents a detailed implementation of these three SLAM solutions, focused on structured indoor environments. The implementation is able to map 2D environments, as well as 3D environments with planar terrain, such as in a typical indoor application. The 2D application is able to automatically generate a stochastic grid map. On the other hand, the 3D problem uses a point cloud representation of the map, instead of a 3D grid, to reduce the SLAM computational effort. The considered mobile robot only uses a single LRF, without any odometry information. A Genetic Algorithm is presented to optimize the matching of LRF scans taken at different instants. Such matching is able not only to map the environment but also localize the robot, without the need for odometers or other sensors. A simulation program is implemented in Matlab to generate virtual LRF readings of a mobile robot in a 3D environment. Both simulated readings and experimental data from the literature are independently used to validate the proposed methodology, automatically generating 3D maps using just a single LRF.
APA, Harvard, Vancouver, ISO, and other styles
20

Taylor, Trevor. "Mapping of indoor environments by robots using low-cost vision sensors." Queensland University of Technology, 2009. http://eprints.qut.edu.au/26282/.

Full text
Abstract:
For robots to operate in human environments they must be able to make their own maps because it is unrealistic to expect a user to enter a map into the robot’s memory; existing floorplans are often incorrect; and human environments tend to change. Traditionally robots have used sonar, infra-red or laser range finders to perform the mapping task. Digital cameras have become very cheap in recent years and they have opened up new possibilities as a sensor for robot perception. Any robot that must interact with humans can reasonably be expected to have a camera for tasks such as face recognition, so it makes sense to also use the camera for navigation. Cameras have advantages over other sensors such as colour information (not available with any other sensor), better immunity to noise (compared to sonar), and not being restricted to operating in a plane (like laser range finders). However, there are disadvantages too, with the principal one being the effect of perspective. This research investigated ways to use a single colour camera as a range sensor to guide an autonomous robot and allow it to build a map of its environment, a process referred to as Simultaneous Localization and Mapping (SLAM). An experimental system was built using a robot controlled via a wireless network connection. Using the on-board camera as the only sensor, the robot successfully explored and mapped indoor office environments. The quality of the resulting maps is comparable to those that have been reported in the literature for sonar or infra-red sensors. Although the maps are not as accurate as ones created with a laser range finder, the solution using a camera is significantly cheaper and is more appropriate for toys and early domestic robots.
APA, Harvard, Vancouver, ISO, and other styles
21

Hjelmare, Fredrik, and Jonas Rangsjö. "Simultaneous Localization And Mapping Using a Kinect in a Sparse Feature Indoor Environment." Thesis, Linköpings universitet, Reglerteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-81140.

Full text
Abstract:
Localization and mapping are two of the most central tasks when it comes toautonomous robots. It has often been performed using expensive, accurate sensorsbut the fast development of consumer electronics has made similar sensorsavailable at a more affordable price. In this master thesis a TurtleBot\texttrademark\, robot and a MicrosoftKinect\texttrademark\, camera are used to perform Simultaneous Localization AndMapping, SLAM. The thesis presents modifications to an already existing opensource SLAM algorithm. The original algorithm, based on visual odometry, isextended so that it can also make use of measurements from wheel odometry and asingle axis gyro. Measurements are fused using an Extended Kalman Filter,EKF, operating in a multirate fashion. Both the SLAM algorithm and the EKF areimplemented in C++ using the framework Robot Operating System, ROS. The implementation is evaluated on two different data sets. One set isrecorded in an ordinary office room which constitutes an environment with manylandmarks. The other set is recorded in a conference room where one of the wallsis flat and white. This gives a partially sparse featured environment. The result by providing additional sensor information is a more robust algorithm.Periods without credible visual information does not make the algorithm lose itstrack and the algorithm can thus be used in a larger variety of environmentsincluding such where the possibility to extract landmarks is low. The resultalso shows that the visual odometry can cancel out drift introduced bywheel odometry and gyro sensors.
APA, Harvard, Vancouver, ISO, and other styles
22

Conte, Marza Fabián Alejandro. "An evaluation and comparison of long term simultaneous localization and mapping algorithms." Tesis, Universidad de Chile, 2018. http://repositorio.uchile.cl/handle/2250/152947.

Full text
Abstract:
Ingeniero Civil Eléctrico
Este trabajo consiste en la generación de un set de datos con un respectivo ground truth (medición más confiable) y el uso de los algoritmos ORB-SLAM (Orientated FAST and Rotated BRIEF (Binary Robust Independent Elementary Features) Simultaneous Location And Mapping) y LOAM (Lidar Odometry And Mapping) a modo de entender de mejor forma el problema de SLAM (localización y mapeo simultaneo) y comparar los resultados obtenidos con el ground truth. A modo de entender de mejor forma el set de datos generado, la funcionalidad de los diferentes sensores es explicada. Los sensores utilizados para generar los datos son LIDAR, cámara estéreo y GPS. Este trabajo posee dos mayores etapas, en primer lugar, el GPS es estudiado para establecer las diferentes formas de extraer los datos desde el dispositivo. Una forma es generar un nodo de ROS que mediante comunicación de Bluetooth otorga un mensaje que puede ser leído. Otra forma es presionar tres veces el botón de encendido del GPS, lo que inicia el almacenamiento de los datos en la tarjeta SD. Mientras el primer método entrega mayor cantidad de información, es menos confiable, existiendo la posibilidad de guardar mensajes vacios o perdida de ciertos datos, afectando la tasa de muestreo. Finalmente una combinación de ambos métodos es implementada. Un set de datos de prueba es generado cerca de la Universidad De Chile, para probar que los datos están siendo almacenados correctamente. En el test se concluye que a modo de obtener mejor resultado con el GPS es necesario tomar los datos en zonas con baja cantidad de edificios. Finalmente con los datos y el ground truth el Error Absoluto de la Trayectoria (ATE) es calculado como método de comparación de ambas trayectorias generadas con los algoritmos mencionados. El ATE s la cantidad de energía necesaria para transformar la trayectoria estimada en el ground truth. Dadas ciertas limitaciones en la extracción de los datos estimados, la comparación se realizo entre dos set de datos de prueba, con pequeña cantidad de loops en el camino recorrido. En esta situación los resultados dados por LOAM son mejores que los obtenidos con ORB.SLAM. Pero en un ambiente con mayor cantidad de loops y una trayectoria más larga ORB-SLAM entregaría mejores resultados. ABSTRACT This work consists of the generation of a data-set with ground truth and the use of ORB-SLAM (Orientated FAST and Rotated BRIEF (Binary Robust Independent Elementary Features) Simultaneous Location And Mapping) and LOAM (Lidar Odometry And Mapping) algorithms as a way to better understand SLAM and to compare the ground truth and the data-set generated. To fully understand the data-set generated, the functionality of the different sensors is explained. The sensors used to generate the data-set are LIDAR, Stereo Camera and a GPS. This work is divided into two stages, in the first place the GPS is studied to establish the different ways to extract the data from it. One way is to generate a ROS node that through Bluetooth communication generates a message which is published. The other way is to press three times the button of the GPS to store the data in the GPS micro SD memory. While the first method is capable of store more data per second, it is less reliable, existing the possibility of store an empty message or simply the loss of data in the process. In the end, a combination of the two methods is implemented, modifying the bag file with the data stored in the micro SD. A test-data is generated near the University Of Chile, to prove that the bag file (a type of file that can contain any kind of information such as images, video or text, between others) is correctly generated. In these tests, it was concluded that to obtain better performance of the GPS therefore, obtain a better ground truth, it was necessary to generate the data in a zone with a low quantity of high buildings. Finally with the data-set and the ground truth the Absolute Trajectory Error (ATE) is used as a method to compare the trajectories. The ATE is the amount of energy that would require to transform the estimated trajectory on the ground truth. Since certain limitations of the extraction of the estimated path, the comparison was made between two small data-set which counted with low quantity of closed loops. Therefore the LOAM algorithm shows better results in this trajectory. The ORB-SLAM algorithm shows better results in data-sets with a high quantity of loops in the path.
APA, Harvard, Vancouver, ISO, and other styles
23

Werner, Sebastian. "Variabilitätsmodellierung in Kartographierungs- und Lokalisierungsverfahren." Thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-172457.

Full text
Abstract:
In der heutigen Zeit spielt die Automatisierung eine immer bedeutendere Rolle, speziell im Bereich der Robotik entwickeln sich immer neue Einsatzgebiete, in denen der Mensch durch autonome Fahrzeuge ersetzt wird. Dabei orientiert sich der Großteil der eingesetzten Roboter an Streckenmarkierungen, die in den Einsatzumgebungen installiert sind. Bei diesen Systemen gibt es jedoch einen hohen Installationsaufwand, was die Entwicklung von Robotersystemen, die sich mithilfe ihrer verbauten Sensorik orientieren, vorantreibt. Es existiert zwar eine Vielzahl an Robotern die dafür verwendet werden können. Die Entwicklung der Steuerungssoftware ist aber immer noch Teil der Forschung. Für die Steuerung wird eine Umgebungskarte benötigt, an der sich der Roboter orientieren kann. Hierfür eignen sich besonders SLAM-Verfahren, die simultanes Lokalisieren und Kartographieren durchführen. Dabei baut der Roboter während seiner Bewegung durch den Raum mithilfe seiner Sensordaten eine Umgebungskarte auf und lokalisiert sich daran, um seine Position auf der Karte exakt zu bestimmen. Im Laufe dieser Arbeit wurden über 30 verschiedene SLAM Implementierungen bzw. Umsetzungen gefunden die das SLAM Problem lösen. Diese sind jedoch größtenteils an spezielle Systembzw. Umgebungsvoraussetzungen angepasste eigenständige Implementierungen. Es existiert keine öffentlich zugängliche Übersicht, die einen Vergleich aller bzw. des Großteils der Verfahren, z.B. in Bezug auf ihre Funktionsweise, Systemvoraussetzungen (Sensorik, Roboterplattform), Umgebungsvoraussetzungen (Indoor, Outdoor, ...), Genauigkeit oder Geschwindigkeit, gibt. Viele dieser SLAMs besitzen Implementierungen und Dokumentationen in denen ihre Einsatzgebiete, Testvoraussetzungen oder Weiterentwicklungen im Vergleich zu anderen SLAMVerfahren beschrieben werden, was aber bei der großen Anzahl an Veröffentlichungen das Finden eines passenden SLAM-Verfahrens nicht erleichtert. Bei einer solchen Menge an SLAM-Verfahren und Implementierungen stellen sich aus softwaretechnologischer Sicht folgende Fragen: 1. Besteht die Möglichkeit einzelne Teile des SLAM wiederzuverwenden? 2. Besteht die Möglichkeit einzelne Teile des SLAM dynamisch auszutauschen? Mit dieser Arbeit wird das Ziel verfolgt, diese beiden Fragen zu beantworten. Hierfür wird zu Beginn eine Übersicht über alle gefundenen SLAMs aufgebaut um diese in ihren grundlegenden Eigenschaften zu unterscheiden. Aus der Vielzahl von Verfahren werden die rasterbasierten Verfahren, welche Laserscanner bzw. Tiefenbildkamera als Sensorik verwenden, als zu untersuchende Menge ausgewählt. Diese Teilmenge an SLAM-Verfahren wird hinsichtlich ihrer nichtfunktionalen Eigenschaften genauer untersucht und versucht in Komponenten zu unterteilen, welche in mehreren verschiedenen Implementierungen wiederverwendet werden können. Anhand der extrahierten Komponenten soll ein Featurebaum aufgebaut werden, der dem Anwender einen Überblick und die Möglichkeit bereitstellt SLAM-Verfahren nach speziellen Kriterien (Systemvoraussetzungen, Umgebungen, ...) zusammenzusetzen bzw. zur Laufzeit anzupassen. Dafür müssen die verfügbaren SLAM Implementierungen und dazugehörigen Dokumentationen in Bezug auf ihre Gemeinsamkeiten und Unterschiede analysiert werden.
APA, Harvard, Vancouver, ISO, and other styles
24

Cunningham, Alexander G. "Scalable online decentralized smoothing and mapping." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51848.

Full text
Abstract:
Many applications for field robots can benefit from large numbers of robots, especially applications where the objective is for the robots to cover or explore a region. A key enabling technology for robust autonomy in these teams of small and cheap robots is the development of collaborative perception to account for the shortcomings of the small and cheap sensors on the robots. In this dissertation, I present DDF-SAM to address the decentralized data fusion (DDF) inference problem with a smoothing and mapping (SAM) approach to single-robot mapping that is online, scalable and consistent while supporting a variety of sensing modalities. The DDF-SAM approach performs fully decentralized simultaneous localization and mapping in which robots choose a relevant subset of variables from their local map to share with neighbors. Each robot summarizes their local map to yield a density on exactly this chosen set of variables, and then distributes this summarized map to neighboring robots, allowing map information to propagate throughout the network. Each robot fuses summarized maps it receives to yield a map solution with an extended sensor horizon. I introduce two primary variations on DDF-SAM, one that uses a batch nonlinear constrained optimization procedure to combine maps, DDF-SAM 1.0, and one that uses an incremental solving approach for substantially faster performance, DDF-SAM 2.0. I validate these systems using a combination of real-world and simulated experiments. In addition, I evaluate design trade-offs for operations within DDF-SAM, with a focus on efficient approximate map summarization to minimize communication costs.
APA, Harvard, Vancouver, ISO, and other styles
25

Makhubela, J. K. "Visual simultaneous localization and mapping in a noisy static environment." Thesis, Vaal University of Technology, 2019. http://hdl.handle.net/10352/462.

Full text
Abstract:
M. Tech. (Department of Information and Communication Technology, Faculty of Applied and Computer Sciences), Vaal University of Technology
Simultaneous Localization and Mapping (SLAM) has seen tremendous interest amongst the research community in recent years due to its ability to make the robot truly independent in navigation. Visual Simultaneous Localization and Mapping (VSLAM) is when an autonomous mobile robot is embedded with a vision sensor such as monocular, stereo vision, omnidirectional or Red Green Blue Depth (RGBD) camera to localize and map an unknown environment. The purpose of this research is to address the problem of environmental noise, such as light intensity in a static environment, which has been an issue that makes a Visual Simultaneous Localization and Mapping (VSLAM) system to be ineffective. In this study, we have introduced a Light Filtering Algorithm into the Visual Simultaneous Localization and Mapping (VSLAM) method to reduce the amount of noise in order to improve the robustness of the system in a static environment, together with the Extended Kalman Filter (EKF) algorithm for localization and mapping and A* algorithm for navigation. Simulation is utilized to execute experimental performance. Experimental results show a 60% landmark or landfeature detection of the total landmark or landfeature within a simulation environment and a root mean square error (RMSE) of 0.13m, which is minimal when compared with other Simultaneous Localization and Mapping (SLAM) systems from literature. The inclusion of a Light Filtering Algorithm has enabled the Visual Simultaneous Localization and Mapping (VSLAM) system to navigate in an obscure environment.
APA, Harvard, Vancouver, ISO, and other styles
26

Gustafsson, Amanda, and Olov Wängborg. "Mätosäkerhet vid digital terrängmodellering med handhållen laserskanner : Undersökning av den handhållna laserskannern ZEB-REVO." Thesis, Högskolan i Gävle, Samhällsbyggnad, GIS, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-26841.

Full text
Abstract:
En digital terrängmodell (DTM) är en representation av enbart själva markytan. Det finns flera metoder för att framställa DTM:er, där laserskanning har blivit en alltmer vanlig metod. Inom laserskanning är flygburen laserskanning (FLS) en flitigt använd metod, då metoden har fördelen av att kunna täcka stora områden på kort tid. Det finns dock nackdelar med FLS då datainsamlingen kan bli bristfällig i t.ex. skogsområden, där laserstrålar inte kan tränga igenom tät vegetation. Här kan handhållen laserskanning (HLS) vara ett bra alternativ då HLS går snabbt och inte behöver samma omfattande planering. Tidigare studier visar att HLS har många fördelar, men som dock inte kan hålla samma låga osäkerhet som terrester laserskanning (TLS). Det saknas däremot studier om hur HLS ställer sig mot mätningar med FLS. Syftet med studien är därför att utvärdera möjligheten att använda och tillämpa mätningar med HLS för framställning av DTM i skogsterräng gentemot FLS. Detta görs genom att jämföra respektive DTM:s lägesosäkerhet. I studien användes instrumentet ZEB-REVO för insamlingen av data för metoden HLS. Medan för FLS användes laserdata från Lantmäteriet. Från insamlad laserdata skapades därefter DTM:er. Dessa jämfördes mot ett antal kontrollprofiler som mättes in med totalstation. För respektive metod, HLS och FLS, beräknades medelvärde för höjdavvikelserna mot kontrollprofilerna där även standardavvikelse beräknades. Resultatet visar att DTM:en skapad av data från FLS beräknades ha en höjdavvikelse för hela området på 0,055 m som medelvärde gentemot inmätta kontrollprofiler. Standardavvikelsen för denna höjdavvikelse beräknades till 0,046 m för FLS. För DTM:en med data från HLS beräknades en höjdavvikelse på 0,043 m i medelvärde som bäst, där standardavvikelse beräknades till 0,034 m. Studien visar att metoderna HLS och FLS gav likvärdiga resultat gentemot de inmätta kontrollprofilerna, dock gav HLS generellt mindre standardavvikelse i jämförelse mot FLS. Vidare ansågs ZEB-REVO och dess tillhörande databearbetningsprogram GeoSLAM vara väldigt användarvänligt, där själva skanningen med instrumentet tog endast 10 minuter för studiens område på ca 2000 m2. Utifrån studiens resultat drogs slutsatsen att mätningar med HLS kan ge en likvärdig DTM, sett till osäkerheten, som FLS-mätningar. HLS kan därmed vara en kompletterande metod men att FLS är en fortsatt effektiv metod.
A digital terrain model (DTM) represent exclusively the earth surface. There are several methods which can be utilized to create DTMs, where laser scanning have become a common used method. Airborne laser scanning (ALS) is often used since the method can cover a large area in a relatively short time. However a disadvantage with ALS is that the data collection, for a wooded area, can be inadequate due to penetration difficulties for some laser beams. For that reason a handheld laser scanner (HLS) can be an alternative since measurements can be done fast and does not need the same extensive planning. Earlier studies mention HLS to have several advantages but can still not yet be compared with terrestrial laser scanning (TLS) concerning the measurements uncertainty. There are, however, no studies that investigates how measurements with HLS stands against FLS. The purpose with the study is to evaluate the ability to use measurements from HLS to create a DTM for a wooded area in comparison with ALS. This is done by comparing the different uncertainties for each DTM. In the study the acquisition of HLS laser data was collected with the instrument ZEB-REVO and the ALS laser data was received from Lantmäteriet (cadastral mapping and surveying authority in Sweden). After the data acquisition a DTM were created from each data set (method). The DTMs were then compared to control profiles, which have been measured with total station. From the comparison with the control profiles average height deviation and standard deviation were calculated for each DTM. The result shows that the DTM created from ALS data received an average height deviation of 0,055 m for the whole area with a standard deviation of 0,046 m. Corresponding result for the DTM created from HLS data were calculated, at best, to 0,043 m in average height deviation and 0,034 m in standard deviation. The study shows that the methods HLS and ALS gave equivalent result regarding the comparison with the control profiles, however HLS gave a generally lower value for standard deviation. Furthermore ZEB-REVO with its processing program GeoSLAM was considered to be very easy and user friendly. The area (approx. 2000 m2) for the study was scanned within only 10 min. The conclusion which were drawn from the obtained result was that measurements with HLS can generate an equivalent DTM, concerning the uncertainty, as measurements with FLS. Thereby HLS can be a complementing method but still FLS is seen as an effective method.
APA, Harvard, Vancouver, ISO, and other styles
27

Trevor, Alexander J. B. "Semantic mapping for service robots: building and using maps for mobile manipulators in semi-structured environments." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53583.

Full text
Abstract:
Although much progress has been made in the field of robotic mapping, many challenges remain including: efficient semantic segmentation using RGB-D sensors, map representations that include complex features (structures and objects), and interfaces for interactive annotation of maps. This thesis addresses how prior knowledge of semi-structured human environments can be leveraged to improve segmentation, mapping, and semantic annotation of maps. We present an organized connected component approach for segmenting RGB-D data into planes and clusters. These segments serve as input to our mapping approach that utilizes them as planar landmarks and object landmarks for Simultaneous Localization and Mapping (SLAM), providing necessary information for service robot tasks and improving data association and loop closure. These features are meaningful to humans, enabling annotation of mapped features to establish common ground and simplifying tasking. A modular, open-source software framework, the OmniMapper, is also presented that allows a number of different sensors and features to be combined to generate a combined map representation, and enabling easy addition of new feature types.
APA, Harvard, Vancouver, ISO, and other styles
28

Abouzahir, Mohamed. "Algorithmes SLAM : Vers une implémentation embarquée." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS058/document.

Full text
Abstract:
La navigation autonome est un axe de recherche principal dans le domaine de la robotique mobile. Dans ce contexte, le robot doit disposer des algorithmes qui lui permettent d’évoluer de manière autonome dans des environnements complexes et inconnus. Les algorithmes de SLAM permettent à un robot de cartographier son environnement tout en se localisant dans l’espace. Les algorithmes SLAM sont de plus en plus performants, mais aucune implémentation matérielle ou architecturale complète n’a eu. Une telle implantation d’architecture doit prendre en considération la consommation d’énergie, l’embarquabilité et la puissance de calcul. Ce travail scientifique vise à évaluer des systèmes embarqués impliquant de la localisation ou reconstruction de scène. La méthodologie adoptera une approche A3 (Adéquation Algorithme Architecture) pour améliorer l’efficacité de l’implantation des algorithmes plus particulièrement pour des systèmes à fortes contraintes. Le système SLAM embarqué doit disposer d’une architecture électronique et logicielle permettant d’assurer la production d’information pertinentes à partir de données capteurs, tout en assurant la localisation de l’embarquant dans son environnement. L’objectif est donc de définir, pour un algorithme choisi, un modèle d’architecture répondant aux contraintes de l’embarqué. Les premiers travaux de cette thèse ont consisté à explorer les différentes approches algorithmiques permettant la résolution du problème de SLAM. Une étude plus approfondie de ces algorithmes est réalisée. Ceci nous a permet d’évaluer quatre algorithmes de différente nature : FastSLAM2.0, ORB SLAM, RatSLAM et le SLAM linéaire. Ces algorithmes ont été ensuite évalués sur plusieurs architectures pour l’embarqué afin d’étudier leur portabilité sur des systèmes de faible consommation énergétique et de ressources limitées. La comparaison prend en compte les temps d’exécutions et la consistance des résultats. Après avoir analysé profondément les évaluations temporelles de chaque algorithme, le FastSLAM2.0 est finalement choisi, pour un compromis temps d’exécution-consistance de résultat de localisation, comme candidat pour une étude plus approfondie sur une architecture hétérogène embarquée. La second partie de cette thèse est consacré à l’étude d’un système embarqué implémentant le FastSLAM2.0 monoculaire dédié aux environnements larges. Une réécriture algorithmique du FastSLAM2.0 a été nécessaire afin de l’adapter au mieux aux contraintes imposées par les environnements de grande échelle. Dans une démarche A3, le FastSLAM2.0 a été implanté sur une architecture hétérogène CPU-GPU. Grâce à un partitionnement efficace, un facteur d’accélération global de l’ordre de 22 a été obtenu sur une architecture récente dédiée pour l’embarqué. La nature du traitement de l’algorithme FastSLAM2.0 pouvait bénéficier d’une architecture fortement parallèle. Une deuxième instance matérielle basée sur une architecture programmable FPGA est proposée. L’implantation a été réalisée en utilisant des outils de synthèse de haut-niveau afin de réduire le temps de développement. Une comparaison des résultats d’implantation sur cette architecture matérielle par rapport à des architectures à base de GPU a été réalisée. Les gains obtenus sont conséquent, même par rapport aux GPU haut-de-gamme avec un grand nombre de cœurs. Le système résultant peut cartographier des environnements larges tout en garantissant le compromis entre la consistance des résultats de localisation et le temps réel. L’utilisation de plusieurs calculateurs implique d’utiliser des moyens d’échanges de données entre ces derniers. Cela passe par des couplages forts. Ces travaux de thèse ont permis de mettre en avant l’intérêt des architectures hétérogènes parallèles pour le portage des algorithmes SLAM. Les architectures hétérogènes à base de FPGA peuvent particulièrement devenir des candidats potentiels pour porter des algorithmes complexes traitant des données massives
Autonomous navigation is a main axis of research in the field of mobile robotics. In this context, the robot must have an algorithm that allow the robot to move autonomously in a complex and unfamiliar environments. Mapping in advance by a human operator is a tedious and time consuming task. On the other hand, it is not always reliable, especially when the structure of the environment changes. SLAM algorithms allow a robot to map its environment while localizing it in the space.SLAM algorithms are becoming more efficient, but there is no full hardware or architectural implementation that has taken place . Such implantation of architecture must take into account the energy consumption, the embeddability and computing power. This scientific work aims to evaluate the embedded systems implementing locatization and scene reconstruction (SLAM). The methodology will adopt an approach AAM ( Algorithm Architecture Matching) to improve the efficiency of the implementation of algorithms especially for systems with high constaints. SLAM embedded system must have an electronic and software architecture to ensure the production of relevant data from sensor information, while ensuring the localization of the robot in its environment. Therefore, the objective is to define, for a chosen algorithm, an architecture model that meets the constraints of embedded systems. The first work of this thesis was to explore the different algorithmic approaches for solving the SLAM problem. Further study of these algorithms is performed. This allows us to evaluate four different kinds of algorithms: FastSLAM2.0, ORB SLAM, SLAM RatSLAM and linear. These algorithms were then evaluated on multiple architectures for embedded systems to study their portability on energy low consumption systems and limited resources. The comparison takes into account the time of execution and consistency of results. After having deeply analyzed the temporal evaluations for each algorithm, the FastSLAM2.0 was finally chosen for its compromise performance-consistency of localization result and execution time, as a candidate for further study on an embedded heterogeneous architecture. The second part of this thesis is devoted to the study of an embedded implementing of the monocular FastSLAM2.0 which is dedicated to large scale environments. An algorithmic modification of the FastSLAM2.0 was necessary in order to better adapt it to the constraints imposed by the largescale environments. The resulting system is designed around a parallel multi-core architecture. Using an algorithm architecture matching approach, the FastSLAM2.0 was implemeted on a heterogeneous CPU-GPU architecture. Uisng an effective algorithme partitioning, an overall acceleration factor o about 22 was obtained on a recent dedicated architecture for embedded systems. The nature of the execution of FastSLAM2.0 algorithm could benefit from a highly parallel architecture. A second instance hardware based on programmable FPGA architecture is proposed. The implantation was performed using high-level synthesis tools to reduce development time. A comparison of the results of implementation on the hardware architecture compared to GPU-based architectures was realized. The gains obtained are promising, even compared to a high-end GPU that currently have a large number of cores. The resulting system can map a large environments while maintainingthe balance between the consistency of the localization results and real time performance. Using multiple calculators involves the use of a means of data exchange between them. This requires strong coupling (communication bus and shared memory). This thesis work has put forward the interests of parallel heterogeneous architectures (multicore, GPU) for embedding the SLAM algorithms. The FPGA-based heterogeneous architectures can particularly become potential candidatesto bring complex algorithms dealing with massive data
APA, Harvard, Vancouver, ISO, and other styles
29

Pilch, Tomasz. "Simultalní lokalizace, mapování a vytváření modelu prostředí pro autonomní robotiku." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-254449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Lee, Chee Sing. "Simultaneous localization and mapping using single cluster probability hypothesis density filters." Doctoral thesis, Universitat de Girona, 2015. http://hdl.handle.net/10803/323637.

Full text
Abstract:
The majority of research in feature-based SLAM builds on the legacy of foundational work using the EKF, a single-object estimation technique. Because feature-based SLAM is an inherently multi-object problem, this has led to a number of suboptimalities in popular solutions. We develop an algorithm using the SC-PHD filter, a multi-object estimator modeled on cluster processes. This algorithm hosts capabilities not typically seen with feature-base SLAM solutions such as principled handling of clutter measurements and missed detections, and navigation with a mixture of stationary and moving landmarks. We present experiments with the SC-PHD SLAM algorithm on both synthetic and real datasets using an autonomous underwater vehicle. We compare our method to the RB-PHD SLAM, showing that it requires fewer approximations in its derivation and thus achieves superior performance.
En aquesta tesis es desenvolupa aquest algoritme a partir d’un filtre PHD amb un únic grup (SC-PHD), una tècnica d’estimació multi-objecte basat en processos d’agrupació. Aquest algoritme té unes capacitats que normalment no es veuen en els algoritmes de SLAM basats en característiques, ja que és capaç de tractar falses característiques, així com característiques no detectades pels sensors del vehicle, a més de navegar en un entorn amb la presència de característiques estàtiques i característiques en moviment de forma simultània. Es presenten els resultats experimentals de l’algoritme SC-PHD en entorns reals i simulats utilitzant un vehicle autònom submarí. Els resultats són comparats amb l’algoritme de SLAM Rao-Blackwellized PHD (RB-PHD), demostrant que es requereixen menys aproximacions en la seva derivació i en conseqüència s’obté un rendiment superior.
APA, Harvard, Vancouver, ISO, and other styles
31

Johansson, Fredrik, and Samuel Svensson. "Evaluation of Monocular Visual SLAM Methods on UAV Imagery to Reconstruct 3D Terrain." Thesis, Linköpings universitet, Medie- och Informationsteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177585.

Full text
Abstract:
When reconstructing the Earth in 3D, the imagery can come from various mediums, including satellites, planes, and drones. One significant benefit of utilizing drones in combination with a Visual Simultaneous Localization and Mapping (V-SLAM) system is that specific areas of the world can be accurately mapped in real-time at a low cost. Drones can essentially be equipped with any camera sensor, but most commercially available drones use a monocular rolling shutter camera sensor. Therefore, on behalf of Maxar Technologies, multiple monocular V-SLAM systems were studied during this thesis, and ORB-SLAM3 and LDSO were determined to be evaluated further. In order to provide an accurate and reproducible result, the methods were benchmarked on the public datasets EuRoC MAV and TUM monoVO, which includes drone imagery and outdoor sequences, respectively. A third dataset was collected with a DJI Mavic 2 Enterprise Dual drone to evaluate how the methods would perform with a consumer-friendly drone. The datasets were used to evaluate the two V-SLAM systems regarding the generated 3D map (point cloud) and estimated camera trajectory. The results showed that ORB-SLAM3 is less impacted by the artifacts caused by a rolling shutter camera sensor than LDSO. However, ORB-SLAM3 generates a sparse point cloud where depth perception can be challenging since it abstracts the images using feature descriptors. In comparison, LDSO produces a semi-dense 3D map where each point includes the pixel intensity, which improves the depth perception. Furthermore, LDSO is more suitable for dark environments and low-texture surfaces. Depending on the use case, either method can be used as long as the required prerequisites are provided. In conclusion, monocular V-SLAM systems are highly dependent on the type of sensor being used. The differences in the accuracy and robustness of the systems using a global shutter and a rolling shutter are significant, as the geometric artifacts caused by a rolling shutter are devastating for a pure visual pipeline.

Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet

APA, Harvard, Vancouver, ISO, and other styles
32

Huang, Henry. "Bearing-only SLAM : a vision-based navigation system for autonomous robots." Queensland University of Technology, 2008. http://eprints.qut.edu.au/28599/.

Full text
Abstract:
To navigate successfully in a previously unexplored environment, a mobile robot must be able to estimate the spatial relationships of the objects of interest accurately. A Simultaneous Localization and Mapping (SLAM) sys- tem employs its sensors to build incrementally a map of its surroundings and to localize itself in the map simultaneously. The aim of this research project is to develop a SLAM system suitable for self propelled household lawnmowers. The proposed bearing-only SLAM system requires only an omnidirec- tional camera and some inexpensive landmarks. The main advantage of an omnidirectional camera is the panoramic view of all the landmarks in the scene. Placing landmarks in a lawn field to define the working domain is much easier and more flexible than installing the perimeter wire required by existing autonomous lawnmowers. The common approach of existing bearing-only SLAM methods relies on a motion model for predicting the robot’s pose and a sensor model for updating the pose. In the motion model, the error on the estimates of object positions is cumulated due mainly to the wheel slippage. Quantifying accu- rately the uncertainty of object positions is a fundamental requirement. In bearing-only SLAM, the Probability Density Function (PDF) of landmark position should be uniform along the observed bearing. Existing methods that approximate the PDF with a Gaussian estimation do not satisfy this uniformity requirement. This thesis introduces both geometric and proba- bilistic methods to address the above problems. The main novel contribu- tions of this thesis are: 1. A bearing-only SLAM method not requiring odometry. The proposed method relies solely on the sensor model (landmark bearings only) without relying on the motion model (odometry). The uncertainty of the estimated landmark positions depends on the vision error only, instead of the combination of both odometry and vision errors. 2. The transformation of the spatial uncertainty of objects. This thesis introduces a novel method for translating the spatial un- certainty of objects estimated from a moving frame attached to the robot into the global frame attached to the static landmarks in the environment. 3. The characterization of an improved PDF for representing landmark position in bearing-only SLAM. The proposed PDF is expressed in polar coordinates, and the marginal probability on range is constrained to be uniform. Compared to the PDF estimated from a mixture of Gaussians, the PDF developed here has far fewer parameters and can be easily adopted in a probabilistic framework, such as a particle filtering system. The main advantages of our proposed bearing-only SLAM system are its lower production cost and flexibility of use. The proposed system can be adopted in other domestic robots as well, such as vacuum cleaners or robotic toys when terrain is essentially 2D.
APA, Harvard, Vancouver, ISO, and other styles
33

Nicola, Jérémy. "Robust, precise and reliable simultaneous localization and mapping for and underwater robot. Comparison and combination of probabilistic and set-membership methods for the SLAM problem." Thesis, Brest, 2017. http://www.theses.fr/2017BRES0066/document.

Full text
Abstract:
Dans cette thèse on s'intéresse au problème de la localisation d'un robot sous-marin et de la cartographie en simultané d'un jeu de balises acoustiques installées sur le fond marin, en utilisant un distance-mètre acoustique et une centrale inertielle. Nous nous focalisons sur les deux approches principales utilisées pour résoudre ce type de problème: le filtrage de Kalman et le filtrage ensembliste basé sur l'analyse par intervalles. Le filtre de Kalman est optimal quand les équations d'état du robot sont linéaires et les bruits sont additifs, Gaussiens. Le filtrage par intervalles ne modélise pas les incertitudes dans un cadre probabiliste, et ne fait qu'une seule hypothèse sur leur nature: elles sont bornées. De plus, l'approche utilisant les intervalles permet la propagation rigoureuse des incertitudes, même quand les équations sont non linéaires. Cela résulte en une estimation hautement fiable, au prix d'une précision réduite. Nous montrons que dans un contexte sous-marin, quand le robot est équipé avec une centrale inertielle de haute précision, une partie des équations du SLAM peut raisonnablement être considérée comme linéaire avec un bruit Gaussien additif, en faisant le terrain de jeu idéal d'un filtre de Kalman. De l'autre côté, les équations liées aux observations du distance-mètre acoustique sont bien plus problématiques: le système n'est pas observable, les équations sont non linéaires, et les outliers sont fréquents. Ces conditions sont idéales pour une approche à erreur bornées basée sur l'analyse par intervalles. En prenant avantage des propriétés des bruits Gaussiens, cette thèse réconcilie le traitement probabiliste et ensembliste des incertitudes pour les systèmes aussi bien linéaires que non linéaires sujets à des bruits Gaussiens additifs. En raisonnant de manière géométrique, nous sommes capables d'exprimer la partie des équations du filtre de Kalman modélisant la dynamique du véhicule dans un cadre ensembliste. De la même manière, un traitement plus rigoureux et précis des incertitudes est décrit pour la partie des équations du filtre de Kalman liée aux mesures de distances. Ces outils peuvent ensuite être combinés pour obtenir un algorithme de SLAM qui est fiable, précis et robuste. Certaines des méthodes développées dans cette thèse sont illustrées sur des données réelles
In this thesis, we work on the problem of simultaneously localizing an underwater robot while mapping a set of acoustic beacons lying on the seafloor, using an acoustic range-meter and an inertial navigation system. We focus on the two main approaches classically used to solve this type of problem: Kalman filtering and set-membership filtering using interval analysis. The Kalman filter is optimal when the state equations of the robot are linear, and the noises are additive, white and Gaussian. The interval-based filter do not model uncertainties in a probabilistic framework, and makes only one assumption about their nature: they are bounded. Moreover, the interval-based approach allows to rigorously propagate the uncertainties, even when the equations are non-linear. This results in a high reliability in the set estimate, at the cost of a reduced precision.We show that in a subsea context, when the robot is equipped with a high precision inertial navigation system, a part of the SLAM equations can reasonably be seen as linear with additive Gaussian noise, making it the ideal playground of a Kalman filter. On the other hand, the equations related to the acoustic range-meter are much more problematic: the system is not observable, the equations are non-linear, and the outliers are frequent. These conditions are ideal for a set-based approach using interval analysis.By taking advantage of the properties of Gaussian noises, this thesis reconciles the probabilistic and set-membership processing of uncertainties for both linear and non-linear systems with additive Gaussian noises. By reasoning geometrically, we are able to express the part of the Kalman filter equations linked to the dynamics of the vehicle in a set-membership context. In the same way, a more rigorous and precise treatment of uncertainties is described for the part of the Kalman filter linked to the range-measurements. These two tools can then be combined to obtain a SLAM algorithm that is reliable, precise and robust. Some of the methods developed during this thesis are demonstrated on real data
APA, Harvard, Vancouver, ISO, and other styles
34

Fåk, Joel, and Tomas Wilkinson. "Autonomous Mapping and Exploration of Dynamic Indoor Environments." Thesis, Linköpings universitet, Reglerteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-97609.

Full text
Abstract:
This thesis describes all the necessary parts needed to build a complete system for autonomous indoor mapping in 3D. The robotic platform used is a two-wheeled Segway, operating in a planar environment. This, together with wheel odometers, an Inertial Measurement Unit (IMU), two Microsoft Kinects and a laptop comprise the backbone of the system, which can be divided into three parts: The localization and mapping part, which fundamentally is a SLAM (simultaneous localization and mapping) algorithm implemented using the registration technique Iterative Closest Point (ICP). Along with the map being in 3D, it also designed to handle the mapping of dynamic scenes, something absent from the standard SLAM design. The planning used by the system is twofold. First, the path planning - finding a path from the current position to a destination - and second, the target planning - determining where to go next given the current state of the map and the robot. The third part of the system is the control and collision systems, which while they have not received much focus, are very necessary for a fully autonomous system. Contributions made by this thesis include: The 3D map framework Octomap is extended to handle the mapping of dynamic scenes; A new method for target planning, based on image processing is presented; A calibration procedure for the robot is derived that gives a full six degree of freedom pose for each Kinect. Results show that our calibration procedure produces an accurate pose for each Kinect, which is crucial for a functioning system. The dynamic mapping is shown to outperform the standard occupancy grid in fundamental situations that arise when mapping dynamic scenes. Additionally, the results indicate that the target planning algorithm provides a fast and easy way to plan new target destinations. Finally, the entire system’s autonomous mapping capabilities are evaluated together, producing promising results. However, it also highlights some problems that limit the system’s performance such as the inaccuracy and short range of the Kinects or noise added and reinforced by the multiple subsystems
Detta exjobb beskriver delarna som krävs för att för bygga ett komplett system som autonomt kartlägger inomhusmiljöer i tre dimensioner. Robotplattformen är en Segway, som är kapabel att röra sig i ett plan. Segwayn, tillsammans med en tröghetssensor, två Microsoft Kinects och en bärbar dator utgör grunden till systemet, som kan delas i tre delar: En lokaliserings- och karteringsdel, som i grunden är en SLAM-algoritm (simultan lokalisering och kartläggning)  baserad på registreringsmetoden Iterative Closest Point (ICP). Kartan som byggs upp är i tre dimensioner och ska dessutom hantera kartläggningen av dynamiska miljöer, något som orginalforumleringen av SLAM problemet inte klarar av. En automatisk planeringsdel, som består av två delar. Dels ruttplanering som går ut på att hitta en väg från sin nuvarande position till det valda målet och dels målplanering som innebär att välja ett mål att åka till givet den nuvarande kartan och robotens nuvarande position. Systemets tredje del är regler- och kollisionssystemen. Dessa system har inte varit i fokus i detta arbete, men de är ändå högst nödvändiga för att ett autonomt system skall fungera. Detta examensarbete bidrar med följande: Octomap, ett ramverk för kartläggningen i 3D, har utökats för att hantera kartläggningen av dynamiska miljöer; En ny metod för målplanering, baserad på bildbehandling läggs fram; En kalibreringsprocedur för roboten är framtagen som ger den fullständiga posen i förhållande till roboten för varje Kinect. Resultaten visar att vår kalibreringsprocedur ger en nogrann pose for för varje Kinect, vilket är avgörande för att systemet ska fungera. Metoden för kartläggningen av dynamiska miljöer visas prestera bra i grundläggande situationer som uppstår vid kartläggning av dynamiska miljöer. Vidare visas att målplaneringsalgoritmen ger ett snabbt och enkelt sätt att planera mål att åka till. Slutligen utvärderas hela systemets autonoma kartläggningsförmåga, som ger lovande resultat. Dock lyfter resultat även fram problem som begränsar systemets prestanda, till exempel Kinectens onoggranhet och korta räckvidd samt brus som läggs till och förstärks av de olika subsystemen.
APA, Harvard, Vancouver, ISO, and other styles
35

Pfingsthorn, Max [Verfasser], Andreas [Akademischer Betreuer] Birk, Kausthubh [Akademischer Betreuer] Pathak, and Udo [Akademischer Betreuer] Frese. "Generalized Simultaneous Localization and Mapping (SLAM) on Graphs with Multimodal Probabilities and Hyperedges / Max Pfingsthorn. Betreuer: Andreas Birk. Gutachter: Andreas Birk ; Kausthubh Pathak ; Udo Frese." Bremen : IRC-Library, Information Resource Center der Jacobs University Bremen, 2014. http://d-nb.info/1087295173/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Pietzsch, Tobias. "Towards Dense Visual SLAM." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-78943.

Full text
Abstract:
Visual Simultaneous Localisation and Mapping (SLAM) is concerned with simultaneously estimating the pose of a camera and a map of the environment from a sequence of images. Traditionally, sparse maps comprising isolated point features have been employed, which facilitate robust localisation but are not well suited to advanced applications. In this thesis, we present map representations that allow a more dense description of the environment. In one approach, planar features are used to represent textured planar surfaces in the scene. This model is applied within a visual SLAM framework based on the Extended Kalman Filter. We presents solutions to several challenges which arise from this approach.
APA, Harvard, Vancouver, ISO, and other styles
37

Klečka, Jan. "Algoritmy a metody pro fúzi dat maticových snímačů při mapování interiéru budovy." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-414158.

Full text
Abstract:
The dissertation is aimed at methods for simultaneous processing of various type sensor data into a virtual map. Conceptually the development was focused on algorithms for simultaneous localization and mapping. In theoretical part has the problem been addressed by the probabilistic approach. The practical part deals with a new approach called as partially collective mapping whose application leads to creation map in form of a set of simple geometrical entities which represents in piecewise manner a border between obstacles and free space.
APA, Harvard, Vancouver, ISO, and other styles
38

HENELL, DANIEL. "Airborne SLAM Using High-Speed Vision : The construction of a fully self-contained micro air vehicle localized and controlledusing computer vision based Simultaneous Localization And Mapping." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-141772.

Full text
Abstract:
A helicopter platform was built where the all the controls, localization and other calculations are performed onboard the helicopter making it fully self-contained. The localization is made only by using a monocular camera (with an option to use a stereo pair for easier initialization) and processing the video feed with computer vision algorithms. The helicopter’s pose is estimated by a computer vision algorithm which is an extended version of PTAM, a Simultaneous Localization and Mapping (SLAM) algorithm published 2007 by G. Klein and D. Murray. The program was changed to be able to track different kinds of self-similar ground textures and to be integrated with the helicopter hardware. The algorithm was also modified to be able to auto-initialize and to keep the map size constant by pruning out far away key frames to not be confined only to small areas. The impact on tracking using high-speed vision at 60 Hz was investigated and compared to tracking at 30 Hz, respectively 10 Hz. The impact was not as big as hypothesized. Tracking stability increases a lot when going from 10 Hz to 30 Hz video. However increasing the frame rate from 30 Hz to 60 Hz has a very small effect. In 60 Hz the difference between frames becomes smaller, but does not seem to affect the tracking stability very much. The reason for this is most likely that 30 Hz is adequate for the velocities in which the helicopter flies and the limiting factor is the algorithm in itself that it cannot track in every possible setting, and this will not be fixed by increasing the frame rate further but will require changes in the algorithm. The computer vision localization works well as long as there are good salient features to track. The tracking accuracy in such cases is measured to have a RMS error of 2.4 cm compared to motion capture data that can be assumed to be ground truth.
En helikopterplattform har satts samman där all motorstyrning, lokalisering och övriga beräkningar sker ombord på helikoptern vilket gör den oberoende av extern hårdvara. Lokaliseringen av helikoptern görs enbart med hjälp av en monokulär kamera genom att analysera videoströmmen med hjälp av datorseende-algoritmer. Algoritmen som används är en anpassning av PTAM, en Similtaneous Localization and Mapping (SLAM) algoritm publicerad 2007 av G. Klein och D. Murray. Algoritmen har modifierats så att den kan bättre hantera situationer med repeterande marktextur utan speciellt utmärkande särdrag, samt att programvaran har integrerats med helikopterhårdvaran för att att skicka styrsignaler. Algoritmen har även förbättrats med automatiskt initiering av trackern, samt ett alternativ att hålla kartstorleken konstant så att helikoptern kan röra sig över större områden utan att begränsas av den ökande beräkningstiden och minnesanvändningen för en större karta. Hur användandet av höghastighetskameror på 60 Hz påverkar kvalitén av trackningen undersöktes. Inverkan visade sig vara mindre än förväntad. Tracking-stabiliteten ökade mycket i övergången från 10 Hz till 30 Hz video. Mätningarna visade dock att det knappt var någon skillnad att gå från 30 Hz till 60 Hz. I 60 Hz så blir skillnaden mellan bildrutor mindre med det gav inte bättre trackning. Anledningen till detta är med största sannolikhet att 30 Hz ger tillräckligt mjuka rörelser för att kunna tracka rörelser i de hastigheter som är aktuella för helikoptern. Den begränsande faktorn är därför att den algoritm som används inte klarar av alla typer av scener och det kommer inte kunna lösas med snabbare och bättre kameror utan kommer kräva förbättringar av SLAM algoritmen. Lokaliseringen fungerar bra när det finns många framträdande särdrag. Precisionen i de fallen har mätts till att ha ett RMS fel på 2,4 cm jämfört med data från motion capture som kan antas vara exakt.
APA, Harvard, Vancouver, ISO, and other styles
39

Guizilini, Vitor Campanholo. "Localização e mapeamento simultâneos com auxílio visual omnidirecional." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/3/3152/tde-17082009-095800/.

Full text
Abstract:
O problema da localização e mapeamento simultâneos, conhecido como problema do SLAM, é um dos maiores desafios que a robótica móvel autônoma enfrenta atualmente. Esse problema surge devido à dificuldade que um robô apresenta ao navegar por um ambiente desconhecido, construindo um mapa das regiões por onde já passou ao mesmo tempo em que se localiza dentro dele. O acúmulo de erros gerados pela imprecisão dos sensores utilizados para estimar os estados de localização e mapeamento impede que sejam obtidos resultados confiáveis após períodos de navegação suficientemente longos. Algoritmos de SLAM procuram eliminar esses erros resolvendo ambos os problemas simultaneamente, utilizando as informações de uma etapa para aumentar a precisão dos resultados alcançados na outra e viceversa. Uma das maneiras de se alcançar isso se baseia no estabelecimento de marcos no ambiente que o robô pode utilizar como pontos de referência para se localizar conforme navega. Esse trabalho apresenta uma solução para o problema do SLAM que faz uso de um sensor de visão omnidirecional para estabelecer esses marcos. O uso de sistemas de visão permite a extração de marcos naturais ao ambiente que podem ser correspondidos de maneira robusta sob diferentes pontos de vista. A visão omnidirecional amplia o campo de visão do robô e com isso aumenta a quantidade de marcos observados a cada instante. Ao ser detectado o marco é adicionado ao mapa que robô possui do ambiente e, ao ser reconhecido, o robô pode utilizar essa informação para refinar suas estimativas de localização e mapeamento, eliminando os erros acumulados e conseguindo mantê-las precisas mesmo após longos períodos de navegação. Essa solução foi testada em situações reais de navegação, e os resultados mostram uma melhora significativa nos resultados alcançados em relação àqueles obtidos com a utilização direta das informações coletadas.
The problem of simultaneous localization and mapping, known as the problem of SLAM, is one of the greatest obstacles that the field of autonomous robotics faces nowadays. This problem is related to a robots ability to navigate through an unknown environment, constructing a map of the regions it has already visited at the same time as localizing itself on this map. The imprecision inherent to the sensors used to collect information generates errors that accumulate over time, not allowing for a precise estimation of localization and mapping when used directly. SLAM algorithms try to eliminate these errors by taking advantage of their mutual dependence and solving both problems simultaneously, using the results of one step to refine the estimatives of the other. One possible way to achieve this is the establishment of landmarks in the environment that the robot can use as points of reference to localize itself while it navigates. This work presents a solution to the problem of SLAM using an omnidirectional vision system to detect these landmarks. The choice of visual sensors allows for the extraction of natural landmarks and robust matching under different points of view, as the robot moves through the environment. The omnidirectional vision amplifies the field of vision of the robot, increasing the number of landmarks observed at each instant. The detected landmarks are added to the map, and when they are later recognized they generate information that the robot can use to refine its estimatives of localization and mapping, eliminating accumulated errors and keeping them precise even after long periods of navigation. This solution has been tested in real navigational situations and the results show a substantial improvement in the results compared to those obtained through the direct use of the information collected.
APA, Harvard, Vancouver, ISO, and other styles
40

Kaess, Michael. "Incremental smoothing and mapping." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26572.

Full text
Abstract:
Thesis (Ph.D)--Computing, Georgia Institute of Technology, 2009.
Committee Chair: Dellaert, Frank; Committee Member: Bobick, Aaron; Committee Member: Christensen, Henrik; Committee Member: Leonard, John; Committee Member: Rehg, James. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
41

Aulinas, Masó Josep M. "Selective submap joining SLAM for autonomous vehicles." Doctoral thesis, Universitat de Girona, 2011. http://hdl.handle.net/10803/48718.

Full text
Abstract:
Simultaneous Localization and Mapping (SLAM) do not result in consistent maps of large areas because of gradual increase of the uncertainty for long term missions. In addition, as the size of the map grows the computational cost increases, making SLAM solutions unsuitable for on-line applications. This thesis surveys SLAM approaches paying special attention to those approaches aimed to work on large scenarios. Special focus is given to existing underwater SLAM applications. A technique based on using independent local maps together with a global stochastic map is presented. This technique is called Selective Submap Joining SLAM (SSJS). A global map contains relative transformations between local maps, which are updated once a new loop is detected. Maps sharing several features are fused, maintaining the correlation between landmarks and vehicle's pose. The use of local maps reduces computational costs and improves map consistency as compared to state of the art techniques.
Els algoritmes de localització i creació de mapes simultàniament (Simultaneous Localization and Mapping - SLAM) no produeixen mapes correctes de grans àrees a causa de l'augment gradual de la incertesa en les missions de llarga durada. El cost de computació augmenta a mesura que el mapa creix. Aquesta tesi presenta un estudi de les tècniques de SLAM en entorns grans. També s'estudien aquells treballs centrats en ambients submarins. Es proposa una nova tècnica basada en l'ús de submapes independents i un mapa estocàstic global. Aquesta tècnica s'ha anomenat Unió Selectiva de Submapes en SLAM (SSJS). El mapa global conté les transformacions relatives entre mapes, que s'actualitzen en revisitar zones conegudes. Així doncs, els submapes que comparteixen informació es fusionen, mantenint les correlacions entre el vehicle i les fites. L'ús de submapes redueix el cost de càlcul i millora la consistència del mapa en comparació a les tècniques existents.
APA, Harvard, Vancouver, ISO, and other styles
42

Mahdoui, Chedly Nesrine. "Communicating multi-UAV system for cooperative SLAM-based exploration." Thesis, Compiègne, 2018. http://www.theses.fr/2018COMP2447/document.

Full text
Abstract:
Dans la communauté robotique aérienne, un croissant intérêt pour les systèmes multirobot (SMR) est apparu ces dernières années. Cela a été motivé par i) les progrès technologiques, tels que de meilleures capacités de traitement à bord des robots et des performances de communication plus élevées, et ii) les résultats prometteurs du déploiement de SMR tels que l’augmentation de la zone de couverture en un minimum de temps. Le développement d’une flotte de véhicules aériens sans pilote (UAV: Unmanned Aerial Vehicle) et de véhicules aériens de petite taille (MAV: Micro Aerial Vehicle) a ouvert la voie à de nouvelles applications à grande échelle nécessitant les caractéristiques de tel système de systèmes dans des domaines tels que la sécurité, la surveillance des catastrophes et des inondations, la recherche et le sauvetage, l’inspection des infrastructures, et ainsi de suite. De telles applications nécessitent que les robots identifient leur environnement et se localisent. Ces tâches fondamentales peuvent être assurées par la mission d’exploration. Dans ce contexte, cette thèse aborde l’exploration coopérative d’un environnement inconnu en utilisant une équipe de drones avec vision intégrée. Nous avons proposé un système multi-robot où le but est de choisir des régions spécifiques de l’environnement à explorer et à cartographier simultanément par chaque robot de manière optimisée, afin de réduire le temps d’exploration et, par conséquent, la consommation d’énergie. Chaque UAV est capable d’effectuer une localisation et une cartographie simultanées (SLAM: Simultaneous Localization And Mapping) à l’aide d’un capteur visuel comme principale modalité de perception. Pour explorer les régions inconnues, les cibles – choisies parmi les points frontières situés entre les zones libres et les zones inconnues – sont assignées aux robots en considérant un compromis entre l’exploration rapide et l’obtention d’une carte détaillée. À des fins de prise de décision, les UAVs échangent habituellement une copie de leur carte locale, mais la nouveauté dans ce travail est d’échanger les points frontières de cette carte, ce qui permet d’économiser la bande passante de communication. L’un des points les plus difficiles du SMR est la communication inter-robot. Nous étudions cette partie sous les aspects topologiques et typologiques. Nous proposons également des stratégies pour faire face à l’abandon ou à l’échec de la communication. Des validations basées sur des simulations étendues et des bancs d’essai sont présentées
In the aerial robotic community, a growing interest for Multi-Robot Systems (MRS) appeared in the last years. This is thanks to i) the technological advances, such as better onboard processing capabilities and higher communication performances, and ii) the promising results of MRS deployment, such as increased area coverage in minimum time. The development of highly efficient and affordable fleet of Unmanned Aerial Vehicles (UAVs) and Micro Aerial Vehicles (MAVs) of small size has paved the way to new large-scale applications, that demand such System of Systems (SoS) features in areas like security, disaster surveillance, inundation monitoring, search and rescue, infrastructure inspection, and so on. Such applications require the robots to identify their environment and localize themselves. These fundamental tasks can be ensured by the exploration mission. In this context, this thesis addresses the cooperative exploration of an unknown environment sensed by a team of UAVs with embedded vision. We propose a multi-robot framework where the key problem is to cooperatively choose specific regions of the environment to be simultaneously explored and mapped by each robot in an optimized manner in order to reduce exploration time and, consequently, energy consumption. Each UAV is able to performSimultaneous Localization And Mapping (SLAM) with a visual sensor as the main input sensor. To explore the unknown regions, the targets – selected from the computed frontier points lying between free and unknown areas – are assigned to robots by considering a trade-off between fast exploration and getting detailed grid maps. For the sake of decision making, UAVs usually exchange a copy of their local map; however, the novelty in this work is to exchange map frontier points instead, which allow to save communication bandwidth. One of the most challenging points in MRS is the inter-robot communication. We study this part in both topological and typological aspects. We also propose some strategies to cope with communication drop-out or failure. Validations based on extensive simulations and testbeds are presented
APA, Harvard, Vancouver, ISO, and other styles
43

McVicker, Michael Charles. "Effects of different camera motions on the error in estimates of epipolar geometry between two dimensional images in order to provide a framework for solutions to vision based Simultaneous Localization and Mapping (SLAM)." Thesis, Monterey, Calif. : Naval Postgraduate School, 2007. http://bosun.nps.edu/uhtbin/hyperion-image.exe/07Sep%5FMcVicker.pdf.

Full text
Abstract:
Thesis (M.S. in Computer Science)--Naval Postgraduate School, September 2007.
Thesis Advisor(s): Kölsch, Mathias ; Squire, Kevin. "September 2007." Description based on title screen as viewed on October 24, 2007. Includes bibliographical references (p. 169-171). Also available in print.
APA, Harvard, Vancouver, ISO, and other styles
44

Avdiu, Blerta. "Matching Feature Points in 3D World." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Data- och elektroteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-23049.

Full text
Abstract:
This thesis work deals with the most actual topic in Computer Vision field which is scene understanding and this using matching of 3D feature point images. The objective is to make use of Saab’s latest breakthrough in extraction of 3D feature points, to identify the best alignment of at least two 3D feature point images. The thesis gives a theoretical overview of the latest algorithms used for feature detection, description and matching. The work continues with a brief description of the simultaneous localization and mapping (SLAM) technique, ending with a case study on evaluation of the newly developed software solution for SLAM, called slam6d. Slam6d is a tool that registers point clouds into a common coordinate system. It does an automatic high-accurate registration of the laser scans. In the case study the use of slam6d is extended in registering 3D feature point images extracted from a stereo camera and the results of registration are analyzed. In the case study we start with registration of one single 3D feature point image captured from stationary image sensor continuing with registration of multiple images following a trail. Finally the conclusion from the case study results is that slam6d can register non-laser scan extracted feature point images with high-accuracy in case of single image but it introduces some overlapping results in the case of multiple images following a trail.
APA, Harvard, Vancouver, ISO, and other styles
45

Macdonald, John Charles. "Efficient Estimation for Small Multi-Rotor Air Vehicles Operating in Unknown, Indoor Environments." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3496.

Full text
Abstract:
In this dissertation we present advances in developing an autonomous air vehicle capable of navigating through unknown, indoor environments. The problem imposes stringent limits on the computational power available onboard the vehicle, but the environment necessitates using 3D sensors such as stereo or RGB-D cameras whose data requires significant processing. We address the problem by proposing and developing key elements of a relative navigation scheme that moves as many processing tasks as possible out of the time-critical functions needed to maintain flight. We present in Chapter 2 analysis and results for an improved multirotor helicopter state estimator. The filter generates more accurate estimates by using an improved dynamic model for the vehicle and by properly accounting for the correlations that exist in the uncertainty during state propagation. As a result, the filter can rely more heavily on frequent and easy to process measurements from gyroscopes and accelerometers, making it more robust to error in the processing intensive information received from the exteroceptive sensors. In Chapter 3 we present BERT, a novel approach to map optimization. The goal of map optimization is to produce an accurate global map of the environment by refining the relative pose transformation estimates generated by the real-time navigation system. We develop BERT to jointly optimize the global poses and relative transformations. BERT exploits properties of independence and conditional independence to allow new information to efficiently flow through the network of transformations. We show that BERT achieves the same final solution as a leading iterative optimization algorithm. However, BERT delivers noticeably better intermediate results for the relative transformation estimates. The improved intermediate results, along with more readily available covariance estimates, make BERT especially applicable to our problem where computational resources are limited. We conclude in Chapter 4 with analysis and results that extend BERT beyond the simple example of Chapter 3. We identify important structure in the network of transformations and address challenges arising in more general map optimization problems. We demonstrate results from several variations of the algorithm and conclude the dissertation with a roadmap for future work.
APA, Harvard, Vancouver, ISO, and other styles
46

Dujardin, Aymeric. "Détection d’obstacles par stéréovision en environnement non structuré." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMIR09.

Full text
Abstract:
Les robots et véhicules autonomes représentent le futur des modes de déplacements et de production. Les enjeux de l’avenir reposent sur la robustesse de leurs perceptions et flexibilité face aux environnements changeant et situations inattendues. Les capteurs stéréoscopiques sont des capteurs passifs qui permettent d'obtenir à la fois image et information 3D de la scène à la manière de la vision humaine. Dans ces travaux nous avons développé un système de localisation, par odométrie visuelle permettant de déterminer la position dans l'espace du capteur de façon efficace et performante en tirant partie de la carte de profondeur dense mais également associé à un système de SLAM, rendant la localisation robuste aux perturbations et aux décalages potentiels. Nous avons également développé plusieurs solutions de cartographie et interprétation d’obstacles, à la fois pour le véhicule aérien et terrestre. Ces travaux sont en partie intégrés dans des produits commerciaux
Autonomous vehicles and robots represent the future of transportation and production industries. The challenge ahead will come from the robustness of perception and flexibility from unexpected situations and changing environments. Stereoscopic cameras are passive sensors that provide color images and depth information of the scene by correlating 2 images like the human vision. In this work, we developed a localization system, by visual odometry that can determine efficiently the position in space of the sensor by exploiting the dense depth map. It is also combined with a SLAM system that enables robust localization against disturbances and potentials drifts. Additionally, we developed a few mapping and obstacles detections solutions, both for aerial and terrestrial vehicles. These algorithms are now partly integrated into commercial products
APA, Harvard, Vancouver, ISO, and other styles
47

Svoboda, Ondřej. "Analýza vlastností stereokamery ZED ve venkovním prostředí." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-399416.

Full text
Abstract:
The Master thesis is focused on analyzing stereo camera ZED in the outdoor environment. There is compared ZEDfu visual odometry with commonly used methods like GPS or wheel odometry. Moreover, the thesis includes analyses of SLAM in the changeable outdoor environment, too. The simultaneous mapping and localization in RTAB-Map were processed separately with SIFT and BRISK descriptors. The aim of this master thesis is to analyze the behaviour ZED camera in the outdoor environment for future implementation in mobile robotics.
APA, Harvard, Vancouver, ISO, and other styles
48

Jama, Michal. "Monocular vision based localization and mapping." Diss., Kansas State University, 2011. http://hdl.handle.net/2097/8561.

Full text
Abstract:
Doctor of Philosophy
Department of Electrical and Computer Engineering
Balasubramaniam Natarajan
Dale E. Schinstock
In this dissertation, two applications related to vision-based localization and mapping are considered: (1) improving navigation system based satellite location estimates by using on-board camera images, and (2) deriving position information from video stream and using it to aid an auto-pilot of an unmanned aerial vehicle (UAV). In the first part of this dissertation, a method for analyzing a minimization process called bundle adjustment (BA) used in stereo imagery based 3D terrain reconstruction to refine estimates of camera poses (positions and orientations) is presented. In particular, imagery obtained with pushbroom cameras is of interest. This work proposes a method to identify cases in which BA does not work as intended, i.e., the cases in which the pose estimates returned by the BA are not more accurate than estimates provided by a satellite navigation systems due to the existence of degrees of freedom (DOF) in BA. Use of inaccurate pose estimates causes warping and scaling effects in the reconstructed terrain and prevents the terrain from being used in scientific analysis. Main contributions of this part of work include: 1) formulation of a method for detecting DOF in the BA; and 2) identifying that two camera geometries commonly used to obtain stereo imagery have DOF. Also, this part presents results demonstrating that avoidance of the DOF can give significant accuracy gains in aerial imagery. The second part of this dissertation proposes a vision based system for UAV navigation. This is a monocular vision based simultaneous localization and mapping (SLAM) system, which measures the position and orientation of the camera and builds a map of the environment using a video-stream from a single camera. This is different from common SLAM solutions that use sensors that measure depth, like LIDAR, stereoscopic cameras or depth cameras. The SLAM solution was built by significantly modifying and extending a recent open-source SLAM solution that is fundamentally different from a traditional approach to solving SLAM problem. The modifications made are those needed to provide the position measurements necessary for the navigation solution on a UAV while simultaneously building the map, all while maintaining control of the UAV. The main contributions of this part include: 1) extension of the map building algorithm to enable it to be used realistically while controlling a UAV and simultaneously building the map; 2) improved performance of the SLAM algorithm for lower camera frame rates; and 3) the first known demonstration of a monocular SLAM algorithm successfully controlling a UAV while simultaneously building the map. This work demonstrates that a fully autonomous UAV that uses monocular vision for navigation is feasible, and can be effective in Global Positioning System denied environments.
APA, Harvard, Vancouver, ISO, and other styles
49

Wang, Zhan. "Guaranteed Localization and Mapping for Autonomous Vehicles." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS395.

Full text
Abstract:
Avec le développement rapide et les applications étendues de la technologie de robot, la recherche sur le robot mobile intelligent a été programmée dans le plan de développement de haute technologie dans beaucoup de pays. La navigation autonome joue un rôle de plus en plus important dans le domaine de recherche du robot mobile intelligent. La localisation et la construction de cartes sont les principaux problèmes à résoudre par le robot pour réaliser une navigation autonome. Les techniques probabilistes (telles que le filtre étendu de Kalman et le filtre de particules) ont longtemps été utilisées pour résoudre le problème de localisation et de cartographie robotisées. Malgré leurs bonnes performances dans les applications pratiques, ils pourraient souffrir du problème d'incohérence dans les scénarios non linéaires, non gaussiens. Cette thèse se concentre sur l'étude des méthodes basées sur l'analyse par intervalles appliquées pour résoudre le problème de localisation et de cartographie robotisées. Au lieu de faire des hypothèses sur la distribution de probabilité, tous les bruits de capteurs sont supposés être bornés dans des limites connues. Sur la base d'une telle base, cette thèse formule le problème de localisation et de cartographie dans le cadre du problème de satisfaction de contraintes d'intervalle et applique des techniques d'intervalles cohérentes pour les résoudre de manière garantie. Pour traiter le problème du "lacet non corrigé" rencontré par les approches de localisation par ICP (Interval Constraint Propagation), cette thèse propose un nouvel algorithme ICP traitant de la localisation en temps réel du véhicule. L'algorithme proposé utilise un algorithme de cohérence de bas niveau et est capable de diriger la correction d'incertitude. Par la suite, la thèse présente un algorithme SLAM basé sur l'analyse d'intervalle (IA-SLAM) dédié à la caméra monoculaire. Une paramétrisation d'erreur liée et une initialisation non retardée pour un point de repère naturel sont proposées. Le problème SLAM est formé comme ICSP et résolu par des techniques de propagation par contrainte d'intervalle. Une méthode de rasage pour la contraction de l'incertitude historique et une méthode d'optimisation basée sur un graphique ICSP sont proposées pour améliorer le résultat obtenu. L'analyse théorique de la cohérence de la cartographie est également fournie pour illustrer la force de IA-SLAM. De plus, sur la base de l'algorithme IA-SLAM proposé, la thèse présente une approche cohérente et peu coûteuse pour la localisation de véhicules en extérieur. Il fonctionne dans un cadre en deux étapes (enseignement visuel et répétition) et est validé avec un véhicule de type voiture équipé de capteurs de navigation à l'estime et d'une caméra monoculaire
With the rapid development and extensive applications of robot technology, the research on intelligent mobile robot has been scheduled in high technology development plan in many countries. Autonomous navigation plays a more and more important role in the research field of intelligent mobile robot. Localization and map building are the core problems to be solved by the robot to realize autonomous navigation. Probabilistic techniques (such as Extented Kalman Filter and Particle Filter) have long been used to solve the robotic localization and mapping problem. Despite their good performance in practical applications, they could suffer the inconsistency problem in the non linear, non Gaussian scenarios. This thesis focus on study the interval analysis based methods applied to solve the robotic localization and mapping problem. Instead of making hypothesis on the probability distribution, all the sensor noises are assumed to be bounded within known limits. Based on such foundation, this thesis formulates the localization and mapping problem in the framework of Interval Constraint Satisfaction Problem and applied consistent interval techniques to solve them in a guaranteed way. To deal with the “uncorrected yaw” problem encountered by Interval Constraint Propagation (ICP) based localization approaches, this thesis proposes a new ICP algorithm dealing with the real-time vehicle localization. The proposed algorithm employs a low-level consistency algorithm and is capable of heading uncertainty correction. Afterwards, the thesis presents an interval analysis based SLAM algorithm (IA-SLAM) dedicates for monocular camera. Bound-error parameterization and undelayed initialization for nature landmark are proposed. The SLAM problem is formed as ICSP and solved via interval constraint propagation techniques. A shaving method for landmark uncertainty contraction and an ICSP graph based optimization method are put forward to improve the obtaining result. Theoretical analysis of mapping consistency is also provided to illustrated the strength of IA-SLAM. Moreover, based on the proposed IA-SLAM algorithm, the thesis presents a low cost and consistent approach for outdoor vehicle localization. It works in a two-stage framework (visual teach and repeat) and is validated with a car-like vehicle equipped with dead reckoning sensors and monocular camera
APA, Harvard, Vancouver, ISO, and other styles
50

Ferrera, Maxime. "Monocular Visual-Inertial-Pressure fusion for Underwater localization and 3D mapping." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS089.

Full text
Abstract:
Cette thèse aborde le problème de la localisation et cartographie 3D sous-marine en temps-réel. Dans le domaine de l'archéologie sous-marine, des véhicules téléopérés (ROV – Remotely Operated Vehicle) sont utilisés pour étudier les sites. La localisation et la cartographie précises en temps-réel sont des informations essentielles pour le pilotage manuel ou automatique de ces engins. Bien que plusieurs solutions de localisation existent, la plupart d'entre elles reposent sur l'utilisation de capteurs tels que les lochs Doppler (DVL – Doppler Velocity Log) ou les centrales inertielles à gyroscopes à fibre optique,qui sont très coûteux et peuvent être trop volumineux ou trop lourds pour les ROVs les plus petits. Les systèmes de positionnement acoustique sont également fréquemment utilisés en complément des systèmes précédents, mais leur fréquence d’échantillonnage et leur précision sont limitées.Dans cette thèse, nous étudions l'utilisation de capteurs à faible coût pour la localisation sous-marine.Notre étude porte sur l'utilisation d'une caméra monoculaire, d'un capteur de pression et d'une centrale inertielle MEMS (Micro ElectroMechanical System) à faible coût comme seul moyen de localisation et de cartographie en contexte archéologique sous-marin.Nous avons mené une évaluation de différentes méthodes de suivi de point d'intérêts sur des images affectées par des perturbations typiques rencontrées dans un contexte sous-marin. À partir des résultats obtenus nous avons développé une méthode monoculaire de SLAM (Simultaneous Localization and Mapping) robuste aux perturbations spécifiques de l’environnement sous-marin. Ensuite, nous proposons une extension de cette méthode pour intégrer étroitement les mesures du capteur de pression etde la centrale inertielle dans l’algorithme de SLAM. La méthode finale fournit une localisation très précise et s'exécute en temps-réel. En outre, un module de reconstruction 3D dense, en ligne, compatible avec une configuration monoculaire, est également proposé. Deux prototypes compacts et légers de ce système nt été conçus et utilisés pour enregistrer des jeux de données qui ont été publiés. En outre, ces prototypes ont été utilisés avec succès pour tester et valider en conditions réelles les algorithmes de localisation et de cartographie proposés
This thesis addresses the problem of real-time 3D localization and mapping in underwater environments.In the underwater archaeology field, Remotely Operated Vehicles (ROVs) are used to conduct deep-seasurveys and excavations. Providing both accurate localization and mapping information in real-time iscrucial for manual or automated piloting of the robots. While many localization solutions already existfor underwater robots, most of them rely on very accurate sensors, such as Doppler velocity logs or fiberoptic gyroscopes, which are very expensive and may be too bulky for small ROVs. Acoustic positioningsystems are also commonly used for underwater positioning, but they provide low frequencymeasurements, with limited accuracy.In this thesis, we study the use of low-cost sensors for accurate underwater localization. Our studyinvestigates the use of a monocular camera, a pressure sensor and a low-cost MEMS-IMU as the onlymeans of performing localization and mapping in the context of underwater archaeology.We have conducted an evaluation of different features tracking methods on images affected by typicaldisturbances met in an underwater context. From the results obtained with this evaluation, we havedeveloped a monocular Visual SLAM (Simultaneous Localization and Mapping) method, robust to thespecific disturbances of underwater environments. Then, we propose an extension of this method totightly integrate the measurements of a pressure sensor and an IMU in the SLAM algorithm. The finalmethod provides a very accurate localization and runs in real-time. In addition, an online dense 3Dreconstruction module, compliant with a monocular setup, is also proposed. Two lightweight and compactprototypes of this system have been designed and used to record datasets that have been publiclyreleased. Furthermore, these prototypes have been successfully used to test and validate the proposedlocalization and mapping algorithms in real-case scenarios
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography