To see the other types of publications on this topic, follow the link: Sine-Gordon Model.

Journal articles on the topic 'Sine-Gordon Model'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Sine-Gordon Model.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yanagisawa, Takashi. "Chiral sine-Gordon model." EPL (Europhysics Letters) 113, no. 4 (February 1, 2016): 41001. http://dx.doi.org/10.1209/0295-5075/113/41001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lechtenfeld, O. "Noncommutative sine-Gordon model." Fortschritte der Physik 53, no. 5-6 (May 13, 2005): 500–505. http://dx.doi.org/10.1002/prop.200410210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lechtenfeld, Olaf. "Noncommutative Sine-Gordon Model." Czechoslovak Journal of Physics 54, no. 11 (November 2004): 1351–57. http://dx.doi.org/10.1007/s10582-004-9800-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lechtenfeld, Olaf, Liuba Mazzanti, Silvia Penati, Alexander D. Popov, and Laura Tamassia. "Integrable noncommutative sine-Gordon model." Nuclear Physics B 705, no. 3 (January 2005): 477–503. http://dx.doi.org/10.1016/j.nuclphysb.2004.10.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Takács, G., and F. Wágner. "Double sine-Gordon model revisited." Nuclear Physics B 741, no. 3 (May 2006): 353–67. http://dx.doi.org/10.1016/j.nuclphysb.2006.02.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, Bo-Wei, and Yu-Mei Zhang. "The local sine - Gordon model." Journal of Physics A: Mathematical and General 29, no. 22 (November 21, 1996): 7349–52. http://dx.doi.org/10.1088/0305-4470/29/22/028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xu, Bo-Wei, and Yu-Mei Zhang. "The local sine - Gordon model." Journal of Physics A: Mathematical and General 30, no. 19 (October 7, 1997): 6993. http://dx.doi.org/10.1088/0305-4470/30/19/033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Guo-Hui Ding, Bo-Wei Xu, and Yu-Mei Zhang. "A discrete sine-Gordon model." Physics Letters B 317, no. 1-2 (November 1993): 107–11. http://dx.doi.org/10.1016/0370-2693(93)91578-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hairer, Martin, and Hao Shen. "The Dynamical Sine-Gordon Model." Communications in Mathematical Physics 341, no. 3 (December 21, 2015): 933–89. http://dx.doi.org/10.1007/s00220-015-2525-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hsu, Edward, and David Kutasov. "The gravitational sine-Gordon model." Nuclear Physics B 396, no. 2-3 (May 1993): 693–707. http://dx.doi.org/10.1016/0550-3213(93)90668-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Yanagisawa, Takashi. "Dimensional Regularization Approach to the Renormalization Group Theory of the Generalized Sine-Gordon Model." Advances in Mathematical Physics 2018 (September 6, 2018): 1–7. http://dx.doi.org/10.1155/2018/9238280.

Full text
Abstract:
We present the dimensional regularization approach to the renormalization group theory of the generalized sine-Gordon model. The generalized sine-Gordon model means the sine-Gordon model with high frequency cosine modes. We derive renormalization group equations for the generalized sine-Gordon model by regularizing the divergence based on the dimensional method. We discuss the scaling property of renormalization group equations. The generalized model would present a new class of scaling property.
APA, Harvard, Vancouver, ISO, and other styles
12

EßLER, FABIAN H. L. "SINE-GORDON QUANTUM MAGNETS." International Journal of Modern Physics B 13, no. 24n25 (October 10, 1999): 2915–25. http://dx.doi.org/10.1142/s0217979299002745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

KLASSEN, TIMOTHY R., and EZER MELZER. "SINE-GORDON VS. MASSIVE THIRRING." International Journal of Modern Physics A 08, no. 23 (September 20, 1993): 4131–74. http://dx.doi.org/10.1142/s0217751x93001703.

Full text
Abstract:
By viewing the sine-Gordon and massive Thirring models as perturbed conformal field theories, one sees that they are different (the difference being observable, for instance, in finite-volume energy levels). The UV limit of the former (SGM) is a Gaussian model, that of the latter (MTM) a so-called fermionic Gaussian model, the compactification radius of the boson underlying both theories depending on the SG/MT coupling. (These two families of conformal field theories are related by a “twist”.) Corresponding SG and MT models contain a subset of fields with identical correlation functions, but each model also has fields the other one does not have; for example, the fermion fields of MTM are not contained in SGM, and the bosonic soliton fields of SGM are not in MTM. Our results imply, in particular, that the SGM at the so-called “free-Dirac point” β2=4π is actually a theory of two interacting bosons with diagonal S-matrix S=−1, and that for arbitrary couplings the overall sign of the accepted SG S-matrix in the soliton sector should be reversed. More generally, we draw attention to the existence of new classes of quantum field theories, analogs of the (perturbed) fermionic Gaussians models, whose partition functions are invariant only under a subgroup of the modular group. One such class comprises “fermionic versions” of the Virasoro minimal models.
APA, Harvard, Vancouver, ISO, and other styles
14

Caux, J. S., H. Saleur, and F. Siano. "The two-boundary sine-Gordon model." Nuclear Physics B 672, no. 3 (November 2003): 411–61. http://dx.doi.org/10.1016/j.nuclphysb.2003.08.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hashizume, Yasuo. "Sine-Gordon Model of Moving Dislocation." Journal of the Physical Society of Japan 62, no. 7 (July 15, 1993): 2241–47. http://dx.doi.org/10.1143/jpsj.62.2241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Zakrzewski, W. J. "A modified discrete sine-Gordon model." Nonlinearity 8, no. 4 (July 1, 1995): 517–40. http://dx.doi.org/10.1088/0951-7715/8/4/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Niccoli, G., and J. Teschner. "The sine–Gordon model revisited: I." Journal of Statistical Mechanics: Theory and Experiment 2010, no. 09 (September 23, 2010): P09014. http://dx.doi.org/10.1088/1742-5468/2010/09/p09014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Cheng, Xinyu. "On a Parabolic Sine-Gordon Model." Numerical Mathematics: Theory, Methods and Applications 14, no. 4 (June 2021): 1068–84. http://dx.doi.org/10.4208/nmtma.oa-2021-0040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

FENG, SZE-SHIANG, and GUANG-JIONG NI. "GAUSSIAN EFFECTIVE POTENTIAL ANALYSIS OF SINH(SINE)–GORDON MODELS NEW REGULARIZATION–RENORMALIZATION SCHEME." International Journal of Modern Physics A 14, no. 27 (October 30, 1999): 4259–74. http://dx.doi.org/10.1142/s0217751x99002001.

Full text
Abstract:
Using the new regularization and renormalization scheme recently proposed by Yang and used by Ni et al., we analyze the sine–Gordon and sinh–Gordon models within the framework of Gaussian effective potential in D+1 dimensions. Our analysis suffers no divergence and so does not suffer from the manipulational obscurities in the conventional analysis of divergent integrals. Our main conclusions agree exactly with those of Ingermanson for D=1,2 but disagree for D=3: the D=3 sinh(sine)–Gordon model is nontrivial. Furthermore, our analysis shows that for D=1,2, the running coupling constant (RCC) has poles for sine–Gordon model (γ2<0) and the sinh–Gordon model (γ2>0) has a possible critical point [Formula: see text] while for D=3, the RCC has poles for both γ2>0 and γ2<0.
APA, Harvard, Vancouver, ISO, and other styles
20

Steib, I., and S. Nagy. "Renormalization of the bilocal sine-Gordon model." International Journal of Modern Physics A 34, no. 21 (July 29, 2019): 1950117. http://dx.doi.org/10.1142/s0217751x19501173.

Full text
Abstract:
The functional renormalization group treatment is presented for the two-dimensional sine-Gordon model including a bilocal term in the potential, which contributes to the flow at the tree level. It is shown that the flow of the bilocal term can substitute the evolution of the wave function renormalization constant, since it can recover the Kosterlitz–Thouless type phase transition. The flows can also reveal the connection between the sine-Gordon and the noninteracting Thirring models at a special value of the wave number parameter.
APA, Harvard, Vancouver, ISO, and other styles
21

Nach, M. "Hawking’s radiation of sine–Gordon black holes in two dimensions." International Journal of Modern Physics A 34, no. 16 (June 10, 2019): 1950086. http://dx.doi.org/10.1142/s0217751x19500866.

Full text
Abstract:
In the framework of the integrable model of the sine–Gordon equation, we describe a recent method to recover the Hawking temperature from the sine–Gordon black hole (sGBH). We present the SGBH metric, its event horizon and give the Hawking temperature of sine–Gordon black hole. We use the complex path analysis method to examine the Hawking radiation and give the possibility of estimating the evaporation time of the SGBH.
APA, Harvard, Vancouver, ISO, and other styles
22

XU BO-WEI, ZHANG YU-MEI, and LU WEN-FA. "SINE-GORDON MODEL AND GAUSSIAN WAVE FUNCTIONAL." Acta Physica Sinica 42, no. 10 (1993): 1573. http://dx.doi.org/10.7498/aps.42.1573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Nagy, S., I. Nándori, J. Polonyi, and K. Sailer. "Renormalizable parameters of the sine-Gordon model." Physics Letters B 647, no. 2-3 (April 2007): 152–58. http://dx.doi.org/10.1016/j.physletb.2007.01.060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Nepomechie, Rafael I. "The boundary supersymmetric sine-Gordon model revisited." Physics Letters B 509, no. 1-2 (June 2001): 183–88. http://dx.doi.org/10.1016/s0370-2693(01)00534-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bertini, Bruno, Dirk Schuricht, and Fabian H. L. Essler. "Quantum quench in the sine-Gordon model." Journal of Statistical Mechanics: Theory and Experiment 2014, no. 10 (October 30, 2014): P10035. http://dx.doi.org/10.1088/1742-5468/2014/10/p10035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Nakawaki, Y. "Fermionization of the Supersymmetric Sine-Gordon Model." Progress of Theoretical Physics 74, no. 2 (August 1, 1985): 426–28. http://dx.doi.org/10.1143/ptp.74.426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Xu, Bo-Wei, and Yu-Mei Zhang. "Mass renormalization in the sine-Gordon model." Journal of Physics A: Mathematical and General 25, no. 17 (September 7, 1992): L1039—L1042. http://dx.doi.org/10.1088/0305-4470/25/17/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Mussardo, G., V. Riva, and G. Sotkov. "Semiclassical scaling functions of sine-Gordon model." Nuclear Physics B 699, no. 3 (November 2004): 545–74. http://dx.doi.org/10.1016/j.nuclphysb.2004.08.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Castro-Alvaredo, O. A., and A. Fring. "Breathers in the elliptic sine-Gordon model." Journal of Physics A: Mathematical and General 36, no. 40 (September 23, 2003): 10233–49. http://dx.doi.org/10.1088/0305-4470/36/40/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Fring, O. A. Castro-Alvaredo and A. "Breathers in the elliptic sine-Gordon model." Journal of Physics A: Mathematical and General 36, no. 44 (October 22, 2003): 11367. http://dx.doi.org/10.1088/0305-4470/36/44/170045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Mattik, Tako. "Integrability of the boundary sine-Gordon model." Journal of Physics A: Mathematical and General 39, no. 10 (February 22, 2006): 2383–95. http://dx.doi.org/10.1088/0305-4470/39/10/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Fei, Ye, and Xu Bo-wei. "Sine-Gordon model with local symmetric potentials." Acta Physica Sinica (Overseas Edition) 7, no. 10 (October 1998): 739–43. http://dx.doi.org/10.1088/1004-423x/7/10/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

LIU, YI-MIN, FU-CHO PU, and HANG SU. "THE CRITICAL BEHAVIOR OF SINE-GORDON MODEL." Modern Physics Letters B 06, no. 11 (May 10, 1992): 665–74. http://dx.doi.org/10.1142/s0217984992000752.

Full text
Abstract:
Using the algebraic Bethe Ansatz and Euler-Maclaurin formulae, we calculate the finite-size corrections to the energy and momentum of ground and excited states for the sine-Gordon model. The conformal anomaly, operator dimension and critical coupling parameter are given in the ultraviolet limit.
APA, Harvard, Vancouver, ISO, and other styles
34

Levkov, D. G., V. E. Maslov, and E. Ya Nugaev. "Chaotic solitons in driven sine-Gordon model." Chaos, Solitons & Fractals 139 (October 2020): 110079. http://dx.doi.org/10.1016/j.chaos.2020.110079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Liu, Liya, and Chuanzhong Li. "Coupled Sine-Gordon Systems in DNA Dynamics." Advances in Mathematical Physics 2018 (2018): 1–7. http://dx.doi.org/10.1155/2018/4676281.

Full text
Abstract:
We consider a model called the coupled sine-Gordon equation for DNA dynamics by introducing two double helix structures. The second double helix structure is unilaterally influenced by the first one. The completely integrable coupled sine-Gordon equation admits kink-antikink solitons with increased width representing a wide base pair opening configuration in DNA. Also we propose another coupled sine-Gordon model with variable coefficients for DNA dynamics under an inhomogeneous background. We find that the inhomogeneous DNA model has many interesting localized nonrational rogue wave solutions. We can find that the appearance of the rogue waves (possibly means the genetic mutation) in the nonlinear DNA model is highly related to the inhomogeneity.
APA, Harvard, Vancouver, ISO, and other styles
36

ITOYAMA, H., V. E. KOREPIN, and H. B. THACKER. "FREDHOLM DETERMINANT REPRESENTATION OF QUANTUM CORRELATION FUNCTION FOR SINE-GORDON AT SPECIAL VALUE OF COUPLING CONSTANT." Modern Physics Letters B 06, no. 22 (September 20, 1992): 1405–11. http://dx.doi.org/10.1142/s0217984992001113.

Full text
Abstract:
Correlation functions of the Sine-Gordon model (which is equivalent to the Massive-Thirring model) are considered at the free fermion point. We derive a determinant formula for local correlation functions of the Sine-Gordon model, starting from Bethe ansatz wave function. Kernel of integral operator is trigonometric version of the one for Impenetrable Bosons.
APA, Harvard, Vancouver, ISO, and other styles
37

BABUJIAN, H., and M. KAROWSKI. "TOWARDS THE CONSTRUCTION OF WIGHTMAN FUNCTIONS OF INTEGRABLE QUANTUM FIELD THEORIES." International Journal of Modern Physics A 19, supp02 (May 2004): 34–49. http://dx.doi.org/10.1142/s0217751x04020294.

Full text
Abstract:
The purpose of the "bootstrap program" for integrable quantum field theories in 1+1 dimensions is to construct a model in terms of its Wightman functions explicitly. In this article, the program is mainly illustrated in terms of the sine-Gordon and the sinh-Gordon model and (as an exercise) the scaling Ising model. We review some previous results on sine-Gordon breather form factors and quantum operator equations. The problem to sum over intermediate states is attacked in the short distance limit of the two point Wightman function for the sinh-Gordon and the scaling Ising model.
APA, Harvard, Vancouver, ISO, and other styles
38

SHENG, Z. M., and H. B. GAO. "ON THE SINE-GORDON — THIRRING EQUIVALENCE IN THE PRESENCE OF A BOUNDARY." International Journal of Modern Physics A 11, no. 22 (September 10, 1996): 4089–101. http://dx.doi.org/10.1142/s0217751x96001929.

Full text
Abstract:
In this paper, the relationship between the sine-Gordon model with an integrable boundary condition and the Thirring model with boundary is discussed and the reflection R matrix for the massive Thirring model, which is related to the physical boundary parameters of the sine—Gordon model, is given. The relationship between the boundary parameters and the two formal parameters appearing in the work of Ghoshal and Zamolodchikov is also discussed.
APA, Harvard, Vancouver, ISO, and other styles
39

Lukyanov, Sergei. "Form Factors of Exponential Fields in the Sine–Gordon Model." Modern Physics Letters A 12, no. 33 (October 30, 1997): 2543–50. http://dx.doi.org/10.1142/s0217732397002673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

DING GUO-HUI, XU BO-WEI, and ZHANG YU-MEI. "RENORMALIZATION AND CRITICAL BEHAVIOR OF SINE-GORDON MODEL." Acta Physica Sinica 43, no. 9 (1994): 1404. http://dx.doi.org/10.7498/aps.43.1404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

CHEN YU-GUANG, YUAN QING-SHAN, CHEN HONG, ZHANG YU-MEI, and WU XIANG. "ELEMENTARY EXCITATIONS OF ONE-DIMENSIONALQUANTUM SINE-GORDON MODEL." Acta Physica Sinica 46, no. 6 (1997): 1174. http://dx.doi.org/10.7498/aps.46.1174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Bajnok, Z., L. Palla, G. Takács, and F. Wágner. "The -folded sine-Gordon model in finite volume." Nuclear Physics B 587, no. 1-3 (October 2000): 585–618. http://dx.doi.org/10.1016/s0550-3213(00)00441-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kehrein, Stefan. "Flow equation approach to the sine-Gordon model." Nuclear Physics B 592, no. 3 (January 2001): 512–62. http://dx.doi.org/10.1016/s0550-3213(00)00507-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Nazifkar, Samira, and Kurosh Javidan. "Collective coordinate analysis for double sine-Gordon model." Brazilian Journal of Physics 40, no. 1 (March 2010): 102–7. http://dx.doi.org/10.1590/s0103-97332010000100014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Chueshov, Igor, Peter E. Kloeden, and Meihua Yang. "Synchronization in coupled stochastic sine-Gordon wave model." Discrete and Continuous Dynamical Systems - Series B 21, no. 9 (October 2016): 2969–90. http://dx.doi.org/10.3934/dcdsb.2016082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Lee, Taejun, and Chaiho Rim. "Thermodynamic Bethe ansatz for boundary sine-Gordon model." Nuclear Physics B 672, no. 3 (November 2003): 487–509. http://dx.doi.org/10.1016/j.nuclphysb.2003.08.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Mussardo, G., V. Riva, and G. Sotkov. "Semiclassical particle spectrum of double sine-Gordon model." Nuclear Physics B 687, no. 3 (May 2004): 189–219. http://dx.doi.org/10.1016/j.nuclphysb.2004.04.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Jimbo, M., T. Miwa, and F. Smirnov. "Fermionic screening operators in the sine–Gordon model." Physica D: Nonlinear Phenomena 241, no. 23-24 (December 2012): 2122–30. http://dx.doi.org/10.1016/j.physd.2012.05.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Nepomechie, Rafael I. "The boundary N=2 supersymmetric sine-Gordon model." Physics Letters B 516, no. 3-4 (September 2001): 376–82. http://dx.doi.org/10.1016/s0370-2693(01)00914-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kürkçüoglu, Seçkin, and Olaf Lechtenfeld. "Quantum aspects of the noncommutative Sine-Gordon model." Journal of High Energy Physics 2007, no. 09 (September 5, 2007): 020. http://dx.doi.org/10.1088/1126-6708/2007/09/020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography