To see the other types of publications on this topic, follow the link: Single-chain Fv.

Journal articles on the topic 'Single-chain Fv'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Single-chain Fv.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Essig, Nina Z., James F. Wood, Andrew J. Howard, Reetta Raag, and Marc Whitlow. "Crystallization of Single-Chain Fv Proteins." Journal of Molecular Biology 234, no. 3 (1993): 897–901. http://dx.doi.org/10.1006/jmbi.1993.1638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Huston, J. S., A. J. T. George, F. Jamar, et al. "Perfecting single chain Fv imaging agents." Immunotechnology 2, no. 1 (1996): 67–68. http://dx.doi.org/10.1016/1380-2933(96)80674-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

KONG, DENG, XIAOKE WANG, XIAOHONG WANG, et al. "Design, expression and characterization of single chain Fv, Mms13 and the single chain Fv-mms13 fusion protein." Molecular Medicine Reports 12, no. 1 (2012): 1213–18. http://dx.doi.org/10.3892/mmr.2015.3561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Moosmann, Anna, Elke Gerlach, Robert Lindner, and Heiner Böttinger. "Purification of a PEGylated single chain Fv." Journal of Chromatography A 1236 (May 2012): 90–96. http://dx.doi.org/10.1016/j.chroma.2012.03.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chia, Kin Yen, Khuen Yen Ng, Rhun Yian Koh, and Soi Moi Chye. "Single-chain Fv Antibodies for Targeting Neurodegenerative Diseases." CNS & Neurological Disorders - Drug Targets 17, no. 9 (2018): 671–79. http://dx.doi.org/10.2174/1871527317666180315161626.

Full text
Abstract:
Background & Objective: Protein misfolding and aggregation have been considered the common pathological hallmarks for a number of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD) and Huntington’s disease (HD). These abnormal proteins aggregates damage mitochondria and induce oxidative stress, resulting in neuronal cell death. Prolonged neuronal damage activates microglia and astrocytes, development of inflammation reaction and further promotes neurodegeneration. Thus, elimination of abnormal protein aggregates without eliciting any adverse effects ar
APA, Harvard, Vancouver, ISO, and other styles
6

Begent, R. H. J., and K. A. Chester. "Single-chain Fv antibodies for targeting cancer therapy." Biochemical Society Transactions 25, no. 2 (1997): 715–17. http://dx.doi.org/10.1042/bst0250715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Griep, Remko A., Charlotte van Twisk, Jan M. van der Wolf, and Arjen Schots. "Fluobodies: green fluorescent single-chain Fv fusion proteins." Journal of Immunological Methods 230, no. 1-2 (1999): 121–30. http://dx.doi.org/10.1016/s0022-1759(99)00131-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Whitlow, Marc, and David Filpula. "Single-chain Fv proteins and their fusion proteins." Methods 2, no. 2 (1991): 97–105. http://dx.doi.org/10.1016/s1046-2023(05)80209-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wörn, Arne, and Andreas Plückthun. "Stability engineering of antibody single-chain Fv fragments." Journal of Molecular Biology 305, no. 5 (2001): 989–1010. http://dx.doi.org/10.1006/jmbi.2000.4265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Han, Seung Hee, and Jin-Kyoo Kim. "The development of anti-DR4 single-chain Fv (ScFv) antibody fused to Escherichia coli alkaline phosphatase." Korean Journal of Microbiology 52, no. 1 (2016): 10–17. http://dx.doi.org/10.7845/kjm.2016.6008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ni, Ming, Bing Yu, Yu Huang, et al. "Homology modelling and bivalent single-chain Fv construction of anti-HepG2 single-chain immunoglobulin Fv fragments from a phage display library." Journal of Biosciences 33, no. 5 (2008): 691–97. http://dx.doi.org/10.1007/s12038-008-0089-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Whitlow, Marc, David Filpula, Michele L. Rollence, Sheau-Line Feng, and James F. Wood. "Multivalent Fvs: characterization of single-chain Fv oligomers and preparation of a bispecific Fv." "Protein Engineering, Design and Selection" 7, no. 8 (1994): 1017–26. http://dx.doi.org/10.1093/protein/7.8.1017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Adams, Gregory P., and Robert Schier. "Generating improved single-chain Fv molecules for tumor targeting." Journal of Immunological Methods 231, no. 1-2 (1999): 249–60. http://dx.doi.org/10.1016/s0022-1759(99)00161-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Paoli, George C., Chin-Yi Chen, and Jeffrey D. Brewster. "Single-chain Fv antibody with specificity for Listeria monocytogenes." Journal of Immunological Methods 289, no. 1-2 (2004): 147–55. http://dx.doi.org/10.1016/j.jim.2004.04.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Malby, Robyn L., Airlie J. McCoy, Alexander A. Kortt, Peter J. Hudson, and Peter M. Colman. "Three-dimensional structures of single-chain Fv-neuraminidase complexes." Journal of Molecular Biology 279, no. 4 (1998): 901–10. http://dx.doi.org/10.1006/jmbi.1998.1794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Batra, J. K., D. J. Fitzgerald, V. K. Chaudhary, and I. Pastan. "Single-chain immunotoxins directed at the human transferrin receptor containing Pseudomonas exotoxin A or diphtheria toxin: anti-TFR(Fv)-PE40 and DT388-anti-TFR(Fv)." Molecular and Cellular Biology 11, no. 4 (1991): 2200–2205. http://dx.doi.org/10.1128/mcb.11.4.2200-2205.1991.

Full text
Abstract:
Two single-chain immunotoxins directed at the human transferrin receptor have been constructed by using polymerase chain reaction-based methods. Anti-TFR(Fv)-PE40 is encoded by a gene fusion between the DNA sequence encoding the antigen-binding portion (Fv) of a monoclonal antibody directed at the human transferrin receptor and that encoding a 40,000-molecular-weight fragment of Pseudomonas exotoxin (PE40). The other fusion protein, DT388-anti-TFR(Fv), is encoded by a gene fusion between the DNA encoding a truncated form of diphtheria toxin and that encoding the antigen-binding portion of anti
APA, Harvard, Vancouver, ISO, and other styles
17

Batra, J. K., D. J. Fitzgerald, V. K. Chaudhary, and I. Pastan. "Single-chain immunotoxins directed at the human transferrin receptor containing Pseudomonas exotoxin A or diphtheria toxin: anti-TFR(Fv)-PE40 and DT388-anti-TFR(Fv)." Molecular and Cellular Biology 11, no. 4 (1991): 2200–2205. http://dx.doi.org/10.1128/mcb.11.4.2200.

Full text
Abstract:
Two single-chain immunotoxins directed at the human transferrin receptor have been constructed by using polymerase chain reaction-based methods. Anti-TFR(Fv)-PE40 is encoded by a gene fusion between the DNA sequence encoding the antigen-binding portion (Fv) of a monoclonal antibody directed at the human transferrin receptor and that encoding a 40,000-molecular-weight fragment of Pseudomonas exotoxin (PE40). The other fusion protein, DT388-anti-TFR(Fv), is encoded by a gene fusion between the DNA encoding a truncated form of diphtheria toxin and that encoding the antigen-binding portion of anti
APA, Harvard, Vancouver, ISO, and other styles
18

Devlin, Cecilia M., Mark R. Bowles, Ross B. Gordon, and Susan M. Pond. "Production of a Paraquat-Specific Murine Single Chain Fv Fragment1." Journal of Biochemistry 118, no. 3 (1995): 480–87. http://dx.doi.org/10.1093/oxfordjournals.jbchem.a124933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

XU, BIWEN, JITRA KRIANGKUM, LES P. NAGATA, R. ELAINE FULTON, and MAVANUR R. SURESH. "A Single Chain Fv Specific Against Western Equine Encephalitis Virus." Hybridoma 18, no. 4 (1999): 315–23. http://dx.doi.org/10.1089/hyb.1999.18.315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

HASHIMOTO, Yoshio, Takeshi IKENAGA, Kiyoshi TANIGAWA, Tadashi UEDA, Ichiko EZAKI, and Taiji IMOTO. "Expression and Characterization of Human Rheumatoid Factor Single-Chain Fv." Biological & Pharmaceutical Bulletin 23, no. 8 (2000): 941–45. http://dx.doi.org/10.1248/bpb.23.941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Filpula, David, and Jeffrey McGuire. "Single-chain Fv designs for protein, cell and gene therapeutics." Expert Opinion on Therapeutic Patents 9, no. 3 (1999): 231–45. http://dx.doi.org/10.1517/13543776.9.3.231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Gupta, S., J. Eastman, C. Silski, T. Ferkol, and P. B. Davis. "Single chain Fv: a ligand in receptor-mediated gene delivery." Gene Therapy 8, no. 8 (2001): 586–92. http://dx.doi.org/10.1038/sj.gt.3301451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

West, A. P., R. P. Galimidi, P. N. P. Gnanapragasam, and P. J. Bjorkman. "Single-Chain Fv-Based Anti-HIV Proteins: Potential and Limitations." Journal of Virology 86, no. 1 (2011): 195–202. http://dx.doi.org/10.1128/jvi.05848-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Powers, David B., Peter Amersdorfer, Marie-Alix Poul, et al. "Expression of single-chain Fv-Fc fusions in Pichia pastoris." Journal of Immunological Methods 251, no. 1-2 (2001): 123–35. http://dx.doi.org/10.1016/s0022-1759(00)00290-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Jost, C. R., I. Kurucz, C. M. Jacobus, J. A. Titus, A. J. George, and D. M. Segal. "Mammalian expression and secretion of functional single-chain Fv molecules." Journal of Biological Chemistry 269, no. 42 (1994): 26267–73. http://dx.doi.org/10.1016/s0021-9258(18)47189-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Constantinou, A., A. A. Epenetos, D. Hreczuk-Hirst, et al. "Site-Specific Polysialylation of an Antitumor Single-Chain Fv Fragment." Bioconjugate Chemistry 20, no. 5 (2009): 924–31. http://dx.doi.org/10.1021/bc8005122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Huston, James S., Mei-Sheng Tai, John McCartney, Peter Keck, and Hermann Oppermann. "Antigen recognition and targeted delivery by the single-chain Fv." Cell Biophysics 22, no. 1-3 (1993): 189–224. http://dx.doi.org/10.1007/bf03033874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Huston, J. S., J. E. McCartney, M. S. Tai, et al. "SINGLE-CHAIN Fv FUSIONS WITH C-TERMINAL CYSTEINE PEPTIDES IsFv′." Journal of Immunotherapy 16, no. 2 (1994): 164. http://dx.doi.org/10.1097/00002371-199408000-00073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Krebs, Barbara, Heather Griffin, Greg Winter, and Stefan Rose-John. "Recombinant Human Single Chain Fv Antibodies Recognizing Human Interleukin-6." Journal of Biological Chemistry 273, no. 5 (1998): 2858–65. http://dx.doi.org/10.1074/jbc.273.5.2858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Weiner, L. M., J. Marks, J. Huston, et al. "Determinants of selective tumor targeting by single-chain Fv molecules." Immunotechnology 2, no. 1 (1996): 73. http://dx.doi.org/10.1016/1380-2933(96)80684-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Yan, Xiyun, and Bo Tian. "Human antibodies from a single-chain Fv fusion phage library." Chinese Science Bulletin 42, no. 15 (1997): 1300–1303. http://dx.doi.org/10.1007/bf02882765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Le Gall, F. "Immunosuppressive properties of anti-CD3 single-chain Fv and diabody." Journal of Immunological Methods 285, no. 1 (2004): 111–27. http://dx.doi.org/10.1016/j.jim.2003.11.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Holvoet, P., Y. Laroche, JM Stassen, et al. "Pharmacokinetic and thrombolytic properties of chimeric plasminogen activators consisting of a single-chain Fv fragment of a fibrin- specific antibody fused to single-chain urokinase." Blood 81, no. 3 (1993): 696–703. http://dx.doi.org/10.1182/blood.v81.3.696.696.

Full text
Abstract:
Abstract The pharmacokinetic and thrombolytic properties were determined of two recombinant single-chain chimeric plasminogen activators (PA) consisting of u-PA-33k, a low-molecular weight derivative of single- chain urokinase-type PA (scu-PA) comprising amino acids Ala132 through Leu411, and of either a single-chain variable region fragment (Fv) derived from the fibrin fragment D-dimer-specific monoclonal antibody MA-15C5 (K12G0S32) or of the deglycosylated single-chain Fv fragment obtained by substitution of Asn88 with Glu (K12G2S32). Following bolus injection in hamsters, clearances of reco
APA, Harvard, Vancouver, ISO, and other styles
34

Holvoet, P., Y. Laroche, JM Stassen, et al. "Pharmacokinetic and thrombolytic properties of chimeric plasminogen activators consisting of a single-chain Fv fragment of a fibrin- specific antibody fused to single-chain urokinase." Blood 81, no. 3 (1993): 696–703. http://dx.doi.org/10.1182/blood.v81.3.696.bloodjournal813696.

Full text
Abstract:
The pharmacokinetic and thrombolytic properties were determined of two recombinant single-chain chimeric plasminogen activators (PA) consisting of u-PA-33k, a low-molecular weight derivative of single- chain urokinase-type PA (scu-PA) comprising amino acids Ala132 through Leu411, and of either a single-chain variable region fragment (Fv) derived from the fibrin fragment D-dimer-specific monoclonal antibody MA-15C5 (K12G0S32) or of the deglycosylated single-chain Fv fragment obtained by substitution of Asn88 with Glu (K12G2S32). Following bolus injection in hamsters, clearances of recombinant s
APA, Harvard, Vancouver, ISO, and other styles
35

Pavlinkova, Gabriela, David Colcher, Barbara J. M. Booth, Apollina Goel, and Surinder K. Batra. "Pharmacokinetics and biodistribution of a light-chain-shuffled CC49 single-chain Fv antibody construct." Cancer Immunology, Immunotherapy 49, no. 4-5 (2000): 267–75. http://dx.doi.org/10.1007/s002620000108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hong, Jeong-Won, Woon-Dong Cho, Kwon Pyo Hong, et al. "Generation of 1E8 Single Chain Fv-Fc Construct Against Human CD59." Immune Network 12, no. 1 (2012): 33. http://dx.doi.org/10.4110/in.2012.12.1.33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Mack, Katharina, Ronny Rüger, Sina Fellermeier, Oliver Seifert, and Roland E. Kontermann. "Dual Targeting of Tumor Cells with Bispecific Single-Chain Fv-Immunoliposomes." Antibodies 1, no. 2 (2012): 199–214. http://dx.doi.org/10.3390/antib1020199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Monnier, Philippe, Robin Vigouroux, and Nardos Tassew. "In Vivo Applications of Single Chain Fv (Variable Domain) (scFv) Fragments." Antibodies 2, no. 4 (2013): 193–208. http://dx.doi.org/10.3390/antib2020193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Osamu, Nakajima, Hachisuka Akiko, Okunuki Haruyo, Takagi Kayoko, Teshima Reiko, and Sawada Jun-ichi. "Method for Delivering Radiolabeled Single-Chain Fv Antibody to the Brain." JOURNAL OF HEALTH SCIENCE 50, no. 2 (2004): 159–63. http://dx.doi.org/10.1248/jhs.50.159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kim, Hye-Yeong, Xiaolei Wang, Rui Kang, et al. "RAGE-specific single chain Fv for PET imaging of pancreatic cancer." PLOS ONE 13, no. 3 (2018): e0192821. http://dx.doi.org/10.1371/journal.pone.0192821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Golchin, M., A. Khalili-Yazdi, M. Karamouzian, and A. Abareghi. "Latex Agglutination Test Based on Single-Chain Fv Recombinant Antibody Fragment." Scandinavian Journal of Immunology 75, no. 1 (2011): 38–45. http://dx.doi.org/10.1111/j.1365-3083.2011.02621.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ros, R., F. Schwesinger, D. Anselmetti, et al. "Antigen binding forces of individually addressed single-chain Fv antibody molecules." Proceedings of the National Academy of Sciences 95, no. 13 (1998): 7402–5. http://dx.doi.org/10.1073/pnas.95.13.7402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kobayashi, Norihiro, Kana Shibahara, Kayo Ikegashira, Kazuki Shibusawa, and Junichi Goto. "Single-chain Fv fragments derived from an anti-11-deoxycortisol antibody." Steroids 67, no. 8 (2002): 733–42. http://dx.doi.org/10.1016/s0039-128x(02)00022-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

TZARTOS, S. J., P. TSANTILI, D. PAPANASTASIOU, and A. MAMALAKI. "Construction of Single-Chain Fv Fragments of Anti-MIR Monoclonal Antibodiesa." Annals of the New York Academy of Sciences 841, no. 1 MYASTHENIA GR (1998): 475–77. http://dx.doi.org/10.1111/j.1749-6632.1998.tb10966.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Iliades, Peter, Alexander A. Kortt, and Peter J. Hudson. "Triabodies: single chain Fv fragments without a linker form trivalent trimers." FEBS Letters 409, no. 3 (1997): 437–41. http://dx.doi.org/10.1016/s0014-5793(97)00475-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Poon, Kwok-Man, Frankie Chi-Hang Tam, Yiu-Loon Chui, and Pak-Leong Lim. "Single-chain Fv fragment lacks carrier specificity of the native antibody." Molecular Immunology 39, no. 1-2 (2002): 19–24. http://dx.doi.org/10.1016/s0161-5890(02)00056-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Gunneriusson, E., P. Samuelson, M. Uhlen, P. A. Nygren, and S. Stähl. "Surface display of a functional single-chain Fv antibody on staphylococci." Journal of bacteriology 178, no. 5 (1996): 1341–46. http://dx.doi.org/10.1128/jb.178.5.1341-1346.1996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Veiga, Esteban, Víctor de Lorenzo, and Luis Angel Fernández. "Neutralizationof Enteric Coronaviruses with Escherichia coli CellsExpressing Single-Chain Fv-AutotransporterFusions." Journal of Virology 77, no. 24 (2003): 13396–98. http://dx.doi.org/10.1128/jvi.77.24.13396-13398.2003.

Full text
Abstract:
ABSTRACT We report here that fusions of single-chain antibodies (scFvs) to the autotransporter β domain of the IgA protease of Neisseria gonorrhoeae are instrumental in locating virus-neutralizing activity on the cell surface of Escherichia coli. E. coli cells displaying scFvs against the transmissible gastroenteritis coronavirus on their surface blocked in vivo the access of the infectious agent to cultured epithelial cells. This result raises prospects for antiviral strategies aimed at hindering the entry into target cells by bacteria that naturally colonize the same intestinal niches.
APA, Harvard, Vancouver, ISO, and other styles
49

Gilbert, Ilka, Susanne Schiffmann, Susanne Rubenwolf, et al. "Double chip protein arrays using recombinant single-chain Fv antibody fragments." PROTEOMICS 4, no. 5 (2004): 1417–20. http://dx.doi.org/10.1002/pmic.200300736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Adams, Gregory P., and Louis M. Weiner. "Intracellular Single-Chain Fv Antibodies—A Knockout Punch for Neoplastic Cells?" Gynecologic Oncology 59, no. 1 (1995): 6–7. http://dx.doi.org/10.1006/gyno.1995.1259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!